Advertisement

pp 1-26 | Cite as

Adaptation Without Boundaries: Population Genomics in Marine Systems

  • Marjorie F. Oleksiak
Chapter
Part of the Population Genomics book series

Abstract

From the surface, the world’s oceans appear vast and boundless. Ocean currents, which can transport marine organisms thousands of kilometers, coupled with species that spend some or all of their life in the pelagic zone, the open sea, highlight the potential for well-mixed, panmictic marine populations. Yet these ocean habitats do harbor boundaries. In this largely three-dimensional marine environment, gradients form boundaries. These gradients include temperature, salinity, and oxygen gradients. Ocean currents also form boundaries between neighboring water masses even as they can break through barriers by transporting organisms huge distances. With the advent of next-generation sequencing approaches, which allow us to easily generate a large number of genomic markers, we are in an unprecedented position to study the effects of these potential oceanic boundaries and can ask how often and when do locally adapted marine populations evolve. This knowledge will inform our understanding of how marine organisms respond to climate change and affect how we protect marine diversity. In this chapter I first discuss the major boundaries present in the marine environment and the implications they have for marine organisms. Next, I discuss the how genomic approaches are impacting our understanding of genetic connectivity, ocean fisheries, and local adaptation, including the potential for epigenetic adaptation. I conclude with considerations for marine conservation and management and future prospects.

Keywords

Adaptation Conservation Genomic diversity Genomics Genotyping by sequencing, GBS Next-generation sequencing, NGS Population genetic structure and differentiation SNPs 

References

  1. Able KW, Hagan SM, Brown SA. Habitat use, movement, and growth of young-of-the-year Fundulus spp. in southern New Jersey salt marshes: comparisons based on tag/recapture. J Exp Mar Biol Ecol. 2006;335(2):177–87.Google Scholar
  2. Able KW, Vivian DN, Petruzzelli G, Hagan SM. Connectivity among salt marsh subhabitats: residency and movements of the mummichog (Fundulus heteroclitus). Estuar Coasts. 2012;35(3):743–53.Google Scholar
  3. Agnew DJ, Pearce J, Pramod G, Peatman T, Watson R, Beddington JR, Pitcher TJ. Estimating the worldwide extent of illegal fishing. PLoS One. 2009;4(2):e4570.Google Scholar
  4. Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservation genetics. Nat Rev Genet. 2010;11(10):697–709.Google Scholar
  5. Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP. Local replenishment of coral reef fish populations in a marine reserve. Science. 2007;316(5825):742–4.Google Scholar
  6. Anastasiadi D, Diaz N, Piferrer F. Small ocean temperature increases elicit stage-dependent changes in DNA methylation and gene expression in a fish, the European sea bass. Sci Rep. 2017;7(1):12401.Google Scholar
  7. Aniagu SO, Williams TD, Allen Y, Katsiadaki I, Chipman JK. Global genomic methylation levels in the liver and gonads of the three-spine stickleback (Gasterosteus aculeatus) after exposure to hexabromocyclododecane and 17-beta oestradiol. Environ Int. 2008;34(3):310–7.Google Scholar
  8. Apodaca JJ, Trexler JC, Jue NK, Schrader M, Travis J. Large-scale natural disturbance alters genetic population structure of the Sailfin Molly, Poecilia latipinna. Am Nat. 2013;181(2):254–63.Google Scholar
  9. Ardura A, Zaiko A, Moran P, Planes S, Garcia-Vazquez E. Epigenetic signatures of invasive status in populations of marine invertebrates. Sci Rep. 2017;7:42193.Google Scholar
  10. Artemov AV, Mugue NS, Rastorguev SM, Zhenilo S, Mazur AM, Tsygankova SV, Boulygina ES, Kaplun D, Nedoluzhko AV, Medvedeva YA, Prokhortchouk EB. Genome-wide DNA methylation profiling reveals epigenetic adaptation of stickleback to marine and freshwater conditions. Mol Biol Evol. 2017;34(9):2203–13.Google Scholar
  11. Avise JC. Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos. 1992;63(1):62–76.Google Scholar
  12. Baird N, Etter P, Atwood T, Currey M, Shiver A, Lewis Z, Selker E, Cresko W, Johnson E. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2008;3:e3376.Google Scholar
  13. Barabas G, D’Andrea R. The effect of intraspecific variation and heritability on community pattern and robustness. Ecol Lett. 2016;19(8):977–86.Google Scholar
  14. Barber PH, Palumbi SR, Erdmann MV, Moosa MK. Biogeography. A marine Wallace’s line? Nature. 2000;406(6797):692–3.Google Scholar
  15. Barth JMI, Berg PR, Jonsson PR, Bonanomi S, Corell H, Hemmer-Hansen J, Jakobsen KS, Johannesson K, Jorde PE, Knutsen H, Moksnes PO, Star B, Stenseth NC, Svedang H, Jentoft S, Andre C. Genome architecture enables local adaptation of Atlantic cod despite high connectivity. Mol Ecol. 2017;26(17):4452–66.Google Scholar
  16. Baums I, Johnson M, Devlin-Durante M, Miller M. Host population genetic structure and zooxanthellae diversity of two reef-building coral species along the Florida Reef Tract and wider Caribbean. Coral Reefs. 2010;29(4):835–42.Google Scholar
  17. Baums IB, Boulay JN, Polato NR, Hellberg ME. No gene flow across the Eastern Pacific Barrier in the reef-building coral Porites lobata. Mol Ecol. 2012;21(22):5418–33.Google Scholar
  18. Belanger CL, Jablonski D, Roy K, Berke SK, Krug AZ, Valentine JW. Global environmental predictors of benthic marine biogeographic structure. Proc Natl Acad Sci U S A. 2012;109(35):14046–51.Google Scholar
  19. Benestan L, Gosselin T, Perrier C, Sainte-Marie B, Rochette R, Bernatchez L. RAD genotyping reveals fine-scale genetic structuring and provides powerful population assignment in a widely distributed marine species, the American lobster (Homarus americanus). Mol Ecol. 2015;24(13):3299–315.Google Scholar
  20. Boitard S, Boussaha M, Capitan A, Rocha D, Servin B. Uncovering adaptation from sequence data: lessons from genome resequencing of four cattle breeds. Genetics. 2016;203(1):433–50.Google Scholar
  21. Bozinovic G, Oleksiak MF. Genomic approaches with natural fish populations from polluted environments. Environ Toxicol Chem. 2011;30(2):283–9.Google Scholar
  22. Breitburg DL, Hondorp DW, Davias LA, Diaz RJ. Hypoxia, nitrogen, and fisheries: integrating effects across local and global landscapes. Annu Rev Mar Sci. 2009;1:329–49.Google Scholar
  23. Burke MK, Liti G, Long AD. Standing genetic variation drives repeatable experimental evolution in outcrossing populations of Saccharomyces cerevisiae. Mol Biol Evol. 2014;31(12):3228–39.Google Scholar
  24. Burton RS. Intraspecific phylogeography across the point conception biogeographic boundary. Evolution. 1998;52(3):734–45.Google Scholar
  25. Burton RS, Feldman MW, Curtsinger JW. Population-genetics of Tigriopus-californicus (Copepoda, Harpacticoida). 1. Population-structure along the Central California coast. Mar Ecol Prog Ser. 1979;1(1):29–39.Google Scholar
  26. Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD. Rapid range shifts of species associated with high levels of climate warming. Science. 2011;333(6045):1024–6.Google Scholar
  27. Clarke A, Barnes DK, Hodgson DA. How isolated is Antarctica? Trends Ecol Evol. 2005;20(1):1–3.Google Scholar
  28. Conover DO, Munch SB. Sustaining fisheries yields over evolutionary time scales. Science. 2002;297(5578):94–6.Google Scholar
  29. Conover DO, Clarke LM, Munch SB, Wagner GN. Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. J Fish Biol. 2006;69:21–47.Google Scholar
  30. Crawford DL, Oleksiak MF. Ecological population genomics in the marine environment. Brief Funct Genomics. 2016;15(5):342–51.Google Scholar
  31. Crawford DL, Powers DA. Molecular-basis of evolutionary adaptation at the lactate dehydrogenase-B locus in the fish Fundulus-heteroclitus. Proc Natl Acad Sci U S A. 1989;86(23):9365–9.Google Scholar
  32. Dana JD. On an isothermal oceanic chart, illustrating the geographical distribution of marine animals. Am J Sci Arts. 1853;16:153–67. 314–327Google Scholar
  33. Deans C, Maggert KA. What do you mean, “epigenetic”? Genetics. 2015;199(4):887–96.Google Scholar
  34. DiMichele L, Powers DA. LDH-B genotype-specific hatching times of Fundulus heteroclitus embryos. Nature. 1982a;296(5857):563–4.Google Scholar
  35. DiMichele L, Powers DA. Physiological basis for swimming endurance differences between LDH-B genotypes of Fundulus heteroclitus. Science. 1982b;216(4549):1014–6.Google Scholar
  36. DiMichele L, Paynter KT, Powers DA. Evidence of lactate dehydrogenase-B allozyme effects in the teleost, Fundulus heteroclitus. Science. 1991;253(5022):898–900.Google Scholar
  37. Drury C, Dale KE, Panlilio JM, Miller SV, Lirman D, Larson EA, Bartels E, Crawford DL, Oleksiak MF. Genomic variation among populations of threatened coral: Acropora cervicornis. BMC Genomics. 2016;17:286.Google Scholar
  38. Eastman J. Antarctic fish biology: evolution in a unique environment. San Diego: Academic Press; 1993.Google Scholar
  39. Ellegren H. Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol. 2014;29(1):51–63.Google Scholar
  40. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379.Google Scholar
  41. Etter P, Bassham S, Hohenlohe P, Johnson E, Cresko W. SNP discovery and genotyping for evolutionary genetics using RAD sequencing. Methods Mol Biol. 2011;772:157–78.Google Scholar
  42. Funk WC, McKay JK, Hohenlohe PA, Allendorf FW. Harnessing genomics for delineating conservation units. Trends Ecol Evol. 2012;27(9):489–96.Google Scholar
  43. Gagnaire PA, Normandeau E, Cote C, Moller Hansen M, Bernatchez L. The genetic consequences of spatially varying selection in the panmictic American eel (Anguilla rostrata). Genetics. 2012;190(2):725–36.Google Scholar
  44. Gagnaire PA, Broquet T, Aurelle D, Viard F, Souissi A, Bonhomme F, Arnaud-Haond S, Bierne N. Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol Appl. 2015;8(8):769–86.Google Scholar
  45. Garud NR, Messer PW, Buzbas EO, Petrov DA. Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps. PLoS Genet. 2015;11(2):e1005004.Google Scholar
  46. Grigg RW, Hey R. Paleoceanography of the tropical eastern Pacific Ocean. Science. 1992;255(5041):172.Google Scholar
  47. Hamilton PB, Cowx IG, Oleksiak MF, Griffiths AM, Grahn M, Stevens JR, Carvalho GR, Nicol E, Tyler CR. Population-level consequences for wild fish exposed to sublethal concentrations of chemicals - a critical review. Fish Fish. 2016;17(3):545–66.Google Scholar
  48. Hand BK, Lowe WH, Kovach RP, Muhlfeld CC, Luikart G. Landscape community genomics: understanding eco-evolutionary processes in complex environments. Trends Ecol Evol. 2015;30(3):161–8.Google Scholar
  49. Hedrick PW. Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution. 1999;53:313–8.Google Scholar
  50. Hess JE, Campbell NR, Close DA, Docker MF, Narum SR. Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species. Mol Ecol. 2013;22(11):2898–916.Google Scholar
  51. Hilbish TJ, Koehn RK. The physiological basis of natural selection at the LAP locus. Evolution. 1985;39(6):1302–17.Google Scholar
  52. Hoffmann RJ. Evolutionary genetics of Metridium senile. II. Geographic patterns of allozyme variation. Biochem Genet. 1981;19(1):145–54.Google Scholar
  53. Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet. 2010;6(2):e1000862.Google Scholar
  54. Holland LZ, McFall-Ngai M, Somero GN. Evolution of lactate dehydrogenase-A homologs of barracuda fishes (genus Sphyraena) from different thermal environments: differences in kinetic properties and thermal stability are due to amino acid substitutions outside the active site. Biochemistry. 1997;36(11):3207–15.Google Scholar
  55. Hunter RL, Halanych KM. Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean. J Hered. 2008;99(2):137–48.Google Scholar
  56. Hutchins LW. The bases for temperature zonation in geographical distribution. Ecol Monogr. 1947;17(3):325–35.Google Scholar
  57. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.Google Scholar
  58. Jones GP, Planes S, Thorrold SR. Coral reef fish larvae settle close to home. Curr Biol. 2005;15(14):1314–8.Google Scholar
  59. Kinlan BP, Gaines SD. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology. 2003;84(8):2007–20.Google Scholar
  60. Kliman R, Sheehy B, Schultz J. Genetic drift and effective population size. Nat Educ. 2008;1(3):3.Google Scholar
  61. Lamichhaney S, Martinez Barrio A, Rafati N, Sundstrom G, Rubin CJ, Gilbert ER, Berglund J, Wetterbom A, Laikre L, Webster MT, Grabherr M, Ryman N, Andersson L. Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. Proc Natl Acad Sci U S A. 2012;109(47):19345–50.Google Scholar
  62. Lessios HA, Robertson DR. Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proc Biol Sci. 2006;273(1598):2201–8.Google Scholar
  63. Lessios HA, Kessing BD, Robertson DR. Massive gene flow across the world’s most potent marine biogeographic barrier. Proc R Soc B Biol Sci. 1998;265(1396):583–8.Google Scholar
  64. Lessios HA, Kane J, Robertson DR. Phylogeography of the pantropical sea urchin Tripneustes: contrasting patterns of population structure between oceans. Evolution. 2003;57(9):2026–36.Google Scholar
  65. Levinton J, Koehn R. Population genetics of mussels. In: Marine mussels, their ecology and physiology. Cambridge: Cambridge University Press; 1976. p. 357–84.Google Scholar
  66. Lotrich VA. Summer home range and movements of Fundulus heteroclitus (Pisces: Cyprinodontidae) in tidal creek. Ecology. 1975;56:191–8.Google Scholar
  67. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4(12):981–94.Google Scholar
  68. Marsh AG, Pasqualone AA. DNA methylation and temperature stress in an Antarctic polychaete, Spiophanes tcherniai. Front Physiol. 2014;5:173.Google Scholar
  69. Mcmillan WO, Palumbi SR. Concordant evolutionary patterns among Indo-West Pacific butterflyfishes. Proc R Soc Lond B Biol Sci. 1995;260(1358):229–36.Google Scholar
  70. Medlin L, Lange M, Baumann M. Genetic differentiation among three colony-forming species of Phaeocystis: further evidence for the phylogeny of the Prymnesiophyta. Phycologia. 1994;33(3):199–212.Google Scholar
  71. Messer PW, Ellner SP, Hairston NG. Can population genetics adapt to rapid evolution? Trends Genet. 2016;32(7):408–18.Google Scholar
  72. Miller AD, van Rooyen A, Rasic G, Ierodiaconou DA, Gorfine HK, Day R, Wong C, Hoffmann AA, Weeks AR. Contrasting patterns of population connectivity between regions in a commercially important mollusc Haliotis rubra: integrating population genetics, genomics and marine LiDAR data. Mol Ecol. 2016;25(16):3845–64.Google Scholar
  73. Mirbahai L, Yin G, Bignell JP, Li N, Williams TD, Chipman JK. DNA methylation in liver tumorigenesis in fish from the environment. Epigenetics. 2011;6(11):1319–33.Google Scholar
  74. Montes I, Conklin D, Albaina A, Creer S, Carvalho GR, Santos M, Estonba A. SNP discovery in European anchovy (Engraulis encrasicolus, L) by high-throughput transcriptome and genome sequencing. PLoS One. 2013;8(8):e70051.Google Scholar
  75. Mora C, Tittensor DP, Adl S, Simpson AG, Worm B. How many species are there on earth and in the ocean? PLoS Biol. 2011;9(8):e1001127.Google Scholar
  76. Newell RIE. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (North and Mid-Atlantic) – blue mussel. US Fish and Wildlife Service Biology Report 82(11. 102), US Army Corps of Engineers, TR El-82-4; 1989. p. 25.Google Scholar
  77. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461(7261):272–6.Google Scholar
  78. Nielsen EE, Hemmer-Hansen J, Poulsen NA, Loeschcke V, Moen T, Johansen T, Mittelholzer C, Taranger GL, Ogden R, Carvalho GR. Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua). BMC Evol Biol. 2009a;9(1):276.Google Scholar
  79. Nielsen EE, Hemmer-Hansen J, Larsen PF, Bekkevold D. Population genomics of marine fishes: identifying adaptive variation in space and time. Mol Ecol. 2009b;18(15):3128–50.Google Scholar
  80. Nielsen EE, Cariani A, Mac Aoidh E, Maes GE, Milano I, Ogden R, Taylor M, Hemmer-Hansen J, Babbucci M, Bargelloni L, Bekkevold D, Diopere E, Grenfell L, Helyar S, Limborg MT, Martinsohn JT, McEwing R, Panitz F, Patarnello T, Tinti F, Van Houdt JK, Volckaert FA, Waples RS, FishPopTrace Consortium, Albin JE, Vieites Baptista JM, Barmintsev V, Bautista JM, Bendixen C, Berge JP, Blohm D, Cardazzo B, Diez A, Espineira M, Geffen AJ, Gonzalez E, Gonzalez-Lavin N, Guarniero I, Jerame M, Kochzius M, Krey G, Mouchel O, Negrisolo E, Piccinetti C, Puyet A, Rastorguev S, Smith JP, Trentini M, Verrez-Bagnis V, Volkov A, Zanzi A, Carvalho GR. Gene-associated markers provide tools for tackling illegal fishing and false eco-certification. Nat Commun. 2012;3:851.Google Scholar
  81. Nishida M, Lucas JS. Genetic differences between geographic populations of the Crown-of-thorns starfish throughout the Pacific region. Mar Biol. 1988;98(3):359–68.Google Scholar
  82. Nunez JC, Seale TP, Fraser MA, Burton TL, Fortson TN, Hoover D, Travis J, Oleksiak MF, Crawford DL. Population genomics of the euryhaline teleost Poecilia latipinna. PLoS One. 2015;10(9):e0137077.Google Scholar
  83. O’Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE, Kinlan BP, Weiss JM. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc Natl Acad Sci U S A. 2007;104(4):1266–71.Google Scholar
  84. Ogden R. Fisheries forensics: the use of DNA tools for improving compliance, traceability and enforcement in the fishing industry. Fish Fish. 2008;9(4):462–72.Google Scholar
  85. Oleksiak MF. Genomic approaches with natural fish populations. J Fish Biol. 2010;76(5):1067–93.Google Scholar
  86. Oleksiak MF. Marine genomics: insights and challenges. Brief Funct Genomics. 2016;15(5):331–2.Google Scholar
  87. Oleksiak MF, Churchill GA, Crawford DL. Variation in gene expression within and among natural populations. Nat Genet. 2002;32(2):261–6.Google Scholar
  88. Page TJ, Linse K. More evidence of speciation and dispersal across the Antarctic polar front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biol. 2002;25(11):818–26.Google Scholar
  89. Palumbi SR. Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl. 2003;13(1):S146–58.Google Scholar
  90. Patarnello T, Bargelloni L, Varotto V, Battaglia B. Krill evolution and the Antarctic Ocean currents: evidence of vicariant speciation as inferred by molecular data. Mar Biol. 1996;126(4):603–8.Google Scholar
  91. Pearse DE. Saving the spandrels? Adaptive genomic variation in conservation and fisheries management. J Fish Biol. 2016;89(6):2697–716.Google Scholar
  92. Pierce VA, Crawford DL. Phylogenetic analysis of glycolytic enzyme expression. Science. 1997;276(5310):256–9.Google Scholar
  93. Pierron F, Baillon L, Sow M, Gotreau S, Gonzalez P. Effect of low-dose cadmium exposure on DNA methylation in the endangered European eel. Environ Sci Technol. 2014;48(1):797–803.Google Scholar
  94. Place AR, Powers DA. Genetic bases for protein polymorphism in Fundulus heteroclitus (L.). I. Lactate dehydrogenase (Ldh-B), malate dehydrogenase (Mdh-A), glucosephosphate isomerase (Gpi-B), and phosphoglucomutase (Pgm-A). Biochem Genet. 1978;16(5–6):577–91.Google Scholar
  95. Place AR, Powers DA. Genetic variation and relative catalytic efficiencies: lactate dehydrogenase B allozymes of Fundulus heteroclitus. Proc Natl Acad Sci U S A. 1979;76(5):2354–8.Google Scholar
  96. Place AR, Powers DA. Kinetic characterization of the lactate dehydrogenase (LDH-B4) allozymes of Fundulus heteroclitus. J Biol Chem. 1984;259(2):1309–18.Google Scholar
  97. Podrabsky JE, Javillonar C, Hand SC, Crawford DL. Intraspecific variation in aerobic metabolism and glycolytic enzyme expression in heart ventricles. Am J Phys Regul Integr Comp Phys. 2000;279(6):R2344–8.Google Scholar
  98. Powers DA, Place AR. Biochemical genetics of Fundulus heteroclitus (L.). I. Temporal and spatial variation in gene frequencies of Ldh-B, Mdh-A, Gpi-B, and Pgm-A. Biochem Genet. 1978;16(5–6):593–607.Google Scholar
  99. Powers DA, Lauerman T, Crawford D, DiMichele L. Genetic mechanisms for adapting to a changing environment. Annu Rev Genet. 1991;25:629–59.Google Scholar
  100. Prado FD, Vera M, Hermida M, Bouza C, Pardo BG, Vilas R, Blanco A, Fernández C, Maroso F, Maes GE, Turan C, Volckaert FAM, Taggart JB, Carr A, Ogden R, Nielsen EE, The Aquatrace Consortium, Martínez P. Parallel evolution and adaptation to environmental factors in a marine flatfish: implications for fisheries and aquaculture management of the turbot (Scophthalmus maximus). Evol Appl. 2018.  https://doi.org/10.1111/eva.12628.
  101. Pujolar JM, Jacobsen MW, Als TD, Frydenberg J, Munch K, Jonsson B, Jian JB, Cheng L, Maes GE, Bernatchez L, Hansen MM. Genome-wide single-generation signatures of local selection in the panmictic European eel. Mol Ecol. 2014;23(10):2514–28.Google Scholar
  102. Putnam HM, Davidson JM, Gates RD. Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol Appl. 2016;9(9):1165–78.Google Scholar
  103. Quinn TP, Kinnison MT, Unwin MJ. Evolution of Chinook salmon (Oncorhynchus tshawytscha) populations in New Zealand: pattern, rate, and process. Genetica. 2001;112–113:493–513.Google Scholar
  104. Reid NM, Proestou DA, Clark BW, Warren WC, Colbourne JK, Shaw JR, Karchner SI, Hahn ME, Nacci D, Oleksiak MF, Crawford DL, Whitehead A. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science. 2016;354(6317):1305–8.Google Scholar
  105. Reid NM, Jackson CE, Gilbert D, Minx P, Montague MJ, Hampton TH, Helfrich LW, King BL, Nacci DE, Aluru N, Karchner SI, Colbourne JK, Hahn ME, Shaw JR, Oleksiak MF, Crawford DL, Warren WC, Whitehead A. The landscape of extreme genomic variation in the highly adaptable Atlantic killifish. Genome Biol Evol. 2017.  https://doi.org/10.1093/gbe/evx023.
  106. Reitzel A, Herrera S, Layden M, Martindale M, Shank T. Going where traditional markers have not gone before: utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics. Mol Ecol. 2013;22(11):2953–70.Google Scholar
  107. Ricklefs RE. Ecology. Asheville: Chiron Press; 1979.Google Scholar
  108. Riginos C, Nachman MW. Population subdivision in marine environments: the contributions of biogeography, geographical distance and discontinuous habitat to genetic differentiation in a blennioid fish, Axoclinus nigricaudus. Mol Ecol. 2001;10(6):1439–53.Google Scholar
  109. Rockman MV. The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution. 2012;66(1):1–17.Google Scholar
  110. Rosenblatt RH, Waples RS. A genetic comparison of allopatric populations of shore fish species from the eastern and Central Pacific Ocean: dispersal or vicariance? Copeia. 1986;1986(2):275–84.Google Scholar
  111. Rudman SM, Rodriguez-Cabal MA, Stier A, Sato T, Heavyside J, El-Sabaawi RW, Crutsinger GM. Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem. Proc R Soc B Biol Sci. 2015;282(1812):20151234.Google Scholar
  112. Sandoval-Castillo J, Robinson NA, Hart AM, Strain LWS, Beheregaray LB. Seascape genomics reveals adaptive divergence in a connected and commercially important mollusc, the greenlip abalone (Haliotis laevigata), along a longitudinal environmental gradient. Mol Ecol. 2018;27(7):1603–20.Google Scholar
  113. Saunders NC, Kessler LG, Avise JC. Genetic variation and geographic differentiation in mitochondrial DNA of the horseshoe crab, Limulus polyphemus. Genetics. 1986;112(3):613–27.Google Scholar
  114. Shaw PW, Arkhipkin AI, Al-Khairulla H. Genetic structuring of Patagonian toothfish populations in the Southwest Atlantic Ocean: the effect of the Antarctic polar front and deep-water troughs as barriers to genetic exchange. Mol Ecol. 2004;13(11):3293–303.Google Scholar
  115. Shulzitski K, Sponaugle S, Hauff M, Walter KD, Cowen RK. Encounter with mesoscale eddies enhances survival to settlement in larval coral reef fishes. Proc Natl Acad Sci U S A. 2016;113(25):6928–33.Google Scholar
  116. Sorte CJ, Williams SL, Carlton JT. Marine range shifts and species introductions: comparative spread rates and community impacts. Glob Ecol Biogeogr. 2010;19(3):303–16.Google Scholar
  117. Spalding MD, Agostini VN, Rice J, Grant SM. Pelagic provinces of the world: a biogeographic classification of the world’s surface pelagic waters. Ocean Coast Manag. 2012;60:19–30.Google Scholar
  118. Stillman JH, Armstrong E. Genomics are transforming our understanding of responses to climate change. Bioscience. 2015;65(3):237–46.Google Scholar
  119. Strand AE, Williams LM, Oleksiak MF, Sotka EE. Can diversifying selection be distinguished from history in geographic clines? A population genomic study of killifish (Fundulus heteroclitus). PLoS One. 2012;7(9):e45138.Google Scholar
  120. Sunday JM, Calosi P, Dupont S, Munday PL, Stillman JH, Reusch TB. Evolution in an acidifying ocean. Trends Ecol Evol. 2014;29(2):117–25.Google Scholar
  121. Swearer SE, Shima JS, Hellberg ME, Thorrold SR, Jones GP, Robertson DR, Morgan SG, Selkoe KA, Ruiz GM, Warner RR. Evidence of self-recruitment in demersal marine populations. Bull Mar Sci. 2002;70(1):251–71.Google Scholar
  122. Therkildsen NO, Palumbi SR. Practical low-coverage genomewide sequencing of hundreds of individually barcoded samples for population and evolutionary genomics in nonmodel species. Mol Ecol Resour. 2016;17(2):194–208.Google Scholar
  123. Thornhill DJ, Mahon AR, Norenburg JL, Halanych KM. Open-ocean barriers to dispersal: a test case with the Antarctic polar front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol Ecol. 2008;17(23):5104–17.Google Scholar
  124. Trexler JC, Travis J, Dinep A. Variation among populations of the sailfin molly in the rate of concurrent multiple paternity and its implications for mating-system evolution. Behav Ecol Sociobiol. 1997;40(5):297–305.Google Scholar
  125. Valenzuela-Quinonez F. How fisheries management can benefit from genomics? Brief Funct Genomics. 2016;15(5):352–7.Google Scholar
  126. Van Wyngaarden M, Snelgrove PV, DiBacco C, Hamilton LC, Rodríguez-Ezpeleta N, Jeffery NW, Stanley RR, Bradbury IR. Identifying patterns of dispersal, connectivity, and selection in the sea scallop, Placopecten magellanicus, using RAD-seq derived SNPs. Evol Appl. 2016;10(1):102–17.Google Scholar
  127. Varriale A, Bernardi G. DNA methylation and body temperature in fishes. Gene. 2006;385:111–21.Google Scholar
  128. Vasemagi A. The adaptive hypothesis of clinal variation revisited: single-locus clines as a result of spatially restricted gene flow. Genetics. 2006;173(4):2411–4.Google Scholar
  129. Villacorta-Rath C, Ilyushkina I, Strugnell JM, Green BS, Murphy NP, Doyle SR, Hall NE, Robinson AJ, Bell JJ. Outlier SNPs enable food traceability of the southern rock lobster, Jasus edwardsii. Mar Biol. 2016;163(11):223.Google Scholar
  130. Vollmer SV, Palumbi SR. Restricted gene flow in the Caribbean staghorn coral Acropora cervicornis: implications for the recovery of endangered reefs. J Hered. 2007;98(1):40–50.Google Scholar
  131. Waples RS. Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered. 1998;89(5):438–50.Google Scholar
  132. Waples RS, Gaggiotti O. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol. 2006;15(6):1419–39.Google Scholar
  133. Ward RD, Woodwark M, Skibinski DOF. A comparison of genetic diversity levels in marine, fresh-water, and anadromous fishes. J Fish Biol. 1994;44(2):213–32.Google Scholar
  134. Wethey DS, Woodin SA, Hilbish TJ, Jones SJ, Lima FP, Brannock PM. Response of intertidal populations to climate: effects of extreme events versus long term change. J Exp Mar Biol Ecol. 2011;400(1):132–44.Google Scholar
  135. Willette DA, Allendorf FW, Barber PH, Barshis DJ, Carpenter KE, Crandall ED, Cresko WA, Fernandez-Silva I, Matz MV, Meyer E, Santos MD, Seeb LW, Seeb JE. So, you want to use next-generation sequencing in marine systems? Insight from the Pan-Pacific Advanced Studies Institute. Bull Mar Sci. 2014;90(1):79–122.Google Scholar
  136. Williams S, Benzie J. Evidence of a biogeographic break between populations of a high dispersal starfish: congruent regions within the Indo-West Pacific defined by color morphs, mtDNA, and allozyme data. Evolution. 1998;52(1):87–99.Google Scholar
  137. Wood CW, Brodie ED 3rd. Evolutionary response when selection and genetic variation covary across environments. Ecol Lett. 2016;19(10):1189–200.Google Scholar
  138. Wright S. The genetical structure of populations. Ann Eugenics. 1949;15(1):323–54.Google Scholar
  139. Zamer WE, Hoffmann RJ. Allozymes of glucose-6-phosphate isomerase differentially modulate pentose-shunt metabolism in the sea anemone Metridium senile. Proc Natl Acad Sci U S A. 1989;86(8):2737–41.Google Scholar
  140. Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010;328(5980):916.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Marine Biology and EcologyRosenstiel School of Marine and Atmospheric Science, University of MiamiMiamiUSA

Personalised recommendations