Population Genomics of Colonization and Invasion

  • Shana R. Welles
  • Katrina M. DlugoschEmail author
Part of the Population Genomics book series (POGE)


Population genomic analyses can reveal the mechanisms shaping the evolution of colonizing and invasive taxa, as for any species, including the fundamental processes of mutation, genetic drift, gene flow, and selection. Colonization events associated with species introductions, range shifts, and invasions pose a number of unique evolutionary questions, however, for which population genomic approaches are especially well-equipped to answer. These include quantifying the extent of founder effects, genetic bottlenecks, gene flow, and admixture that give rise to successful colonizing populations, identifying the nature and architecture of adaptive variation that resides in these populations (including types of mutations, their effect sizes, and their standing levels of variation), disentangling signatures of adaptation from other mechanisms of evolution, and identifying the ecological traits that have been the targets of natural selection and might be directly involved in the evolution of colonizing ability itself. We address each of these topics in this chapter, highlighting examples of recent research and the potential for population genomics to provide answers to some of the most pressing questions in the biology of colonizing and invasive species.


Adaptation Admixture Colonizers Gene flow Genetic drift Invasive species Mutations Phylogeography Population genetics 



The authors thank B. S. Barker, F. A. Cang, and members of the Dlugosch lab for helpful discussion regarding the information in this chapter. Support was provided by USDA grant #2015-67013-23000 and NSF grant #1550838 to KMD.


  1. Allendorf FW, Lundquist LL. Introduction: population biology, evolution, and control of invasive species. Conserv Biol. 2003;17(1):24–30.Google Scholar
  2. Aminetzach YT, Macpherson JM, Petrov DA. Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila. Science. 2005;309(5735):764–7.PubMedGoogle Scholar
  3. Avise JC. Molecular markers, natural history and evolution. New York: Springer; 1994.Google Scholar
  4. Baker HG. Self-compatibility and establishment after “long-distance” dispersal. Evolution. 1955;9(3):347–9.Google Scholar
  5. Baker HG. Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL, editors. The genetics of colonizing species. New York: Academic; 1965.Google Scholar
  6. Baker HG, Stebbins GL, editors. The genetics of colonizing species. New York: Academic; 1965.Google Scholar
  7. Balanyá J, Oller JM, Huey RB, Gilchrist GW, Serra L. Global genetic change tracks global climate warming in Drosophila subobscura. Science. 2006;313(5794):1773–5.PubMedGoogle Scholar
  8. Barker BS, Andonian K, Swope SM, Luster DG, Dlugosch KM. Population genomic analyses reveal a history of range expansion and trait evolution across the native and invaded range of yellow starthistle (Centaurea solstitialis). Mol Ecol. 2017a;26(4):1131–47.PubMedPubMedCentralGoogle Scholar
  9. Barker BS, Cocio JE, Anderson SR, Braasch J, Cang FA, Gillette HD, et al. The prevalence and benefits of admixture during species invasions: a role for epistasis? [Internet]. bioRxiv. 2017b. p. 139709. Accessed 21 May 2017.
  10. Barrett RDH, Schluter D. Adaptation from standing genetic variation. Trends Ecol Evol. 2008;23(1):38–44.Google Scholar
  11. Barrett SCH, Husband BC, Brown AHD, Clegg MT, Kahler AL, Weir BS. The genetics of plant migration and colonization. Sunderland: Sinauer Associates; 1990. p. 254–77.Google Scholar
  12. Barrett SCH, Colautti RI, Dlugosch KM, Rieseberg LH, editors. Invasion genetics: the Baker and Stebbins legacy. Chichester: Wiley; 2017.Google Scholar
  13. Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol. 2008;179(4):975–86.PubMedGoogle Scholar
  14. Beaumont MA, Nichols RA. Evaluating loci for use in the genetic analysis of population structure. Proc Biol Sci. 1996;263(1377):1619–26.Google Scholar
  15. Berg JJ, Coop G. A population genetic signal of polygenic adaptation. PLoS Genet. 2014;10(8):e1004412.PubMedPubMedCentralGoogle Scholar
  16. Bertorelle G, Benazzo A, Mona S. ABC as a flexible framework to estimate demography over space and time: some cons, many pros. Mol Ecol. 2010;19(13):2609–25.PubMedGoogle Scholar
  17. Blackburn T, Lockwood JL, Cassey P. The influence of numbers on invasion success. Mol Ecol. 2015;24(9):1942–53.PubMedGoogle Scholar
  18. Bock DG, Caseys C, Cousens RG, Hahn MA, Heredia SM, Hubner S, et al. What we still don’t know about invasion genetics. Mol Ecol. 2015;24:2277–97.Google Scholar
  19. Bortesi L, Fischer R. The CRISP R/Cas9 system for plant genome editing and beyond. Biotechnol Adv. 2015;33(1):41–52.PubMedGoogle Scholar
  20. Braverman JM, Hedson RR, Kaplan NL, Langley CH, Stephan W. The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics. 1995;140(2):183–96.Google Scholar
  21. Briskie JV, Mackintosh M. Hatching failure increases with severity of population bottlenecks in birds. PNAS. 2004;101(2):558–61.PubMedGoogle Scholar
  22. Brumfield RT, Beerli P, Nickerson DA, Edwards SV. The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol. 2003;18(5):249–56.Google Scholar
  23. Carroll SP, Dingle H, Famula TR. Rapid appearance of epistasis during adaptive divergence following colonization. Proc Biol Sci. 2003;270:S80–3.PubMedPubMedCentralGoogle Scholar
  24. Carson HL. Chromosomal morphism in geographically widespread species of Drosophila. In: Baker HG, Stebbins GL, editors. The genetics of colonizing species. New York: Academic; 1965.Google Scholar
  25. Colautti RI, Barrett SCH. Rapid adaptation to climate facilitates range expansion of an invasive plant. Science. 2013;342(6156):364–6.PubMedGoogle Scholar
  26. Colautti RI, Lau JA. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol Ecol. 2015;24(9):1999–2017.Google Scholar
  27. Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac HJ. Is invasion success explained by the enemy release hypothesis? Ecol Lett. 2004;7(8):721–33.Google Scholar
  28. Colautti RI, Maron JL, Barrett SCH. Common garden comparisons of native and introduced plant populations: latitudinal clines can obscure evolutionary inferences. Evol Appl. 2009;2(2):187–99.PubMedGoogle Scholar
  29. Coop G, Witonsky D, Di Rienzo A, Pritchard JK. Using environmental correlations to identify loci underlying local adaptation. Genetics. 2010;185(4):1411–23.PubMedPubMedCentralGoogle Scholar
  30. Cornuet J-M, Santos F, Beaumont MA, Robert CP, Marin J-M, Balding DJ, et al. Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics. 2008;24(23):2713–9.PubMedPubMedCentralGoogle Scholar
  31. Cox GW. Alien species and evolution. Washington: Island Press; 2004.Google Scholar
  32. Crawford KM, Whitney KD. Population genetic diversity influences colonization success. Mol Ecol. 2010;19(6):1253–63.PubMedGoogle Scholar
  33. Cristescu ME. Genetic reconstructions of invasion history. Mol Ecol. 2015;24(9):2212–25.PubMedGoogle Scholar
  34. Crosby K, Stokes TO, Latta RG. Evolving California genotypes of Avena barbata are derived from multiple introductions but still maintain substantial population structure. PeerJ. 2014;2:e633.PubMedPubMedCentralGoogle Scholar
  35. Csilléry K, Blum MGB, Gaggiotti OE, François O. Approximate Bayesian Computation (ABC) in practice. Trends Ecol Evol. 2010;25(7):410–8.PubMedGoogle Scholar
  36. de Villemereuil P, Gaggiotti OE. A new FST-based method to uncover local adaptation using environmental variables. Methods Ecol Evol. 2015;6(11):1248–58.Google Scholar
  37. de Villemereuil P, Frichot É, Bazin É, François O, Gaggiotti OE. Genome scan methods against more complex models: when and how much should we trust them? Mol Ecol. 2014;23(8):2006–19.PubMedGoogle Scholar
  38. de Visser JAGM, Krug J. Empirical fitness landscapes and the predictability of evolution. Nat Rev Genet. 2014;15(7):480–90.PubMedGoogle Scholar
  39. Demuth JP, Hahn MW. The life and death of gene families. BioEssays. 2009;31(1):29–39.PubMedGoogle Scholar
  40. Dlugosch KM, Parker IM. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol. 2008;17(1):431–49.PubMedGoogle Scholar
  41. Dlugosch KM, Anderson SR, Braasch J, Cang FA, Gillette HD. The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol Ecol. 2015a;24:2095–111.PubMedGoogle Scholar
  42. Dlugosch KM, Cang FA, Barker BS, Andonian K, Swope SM, Rieseberg LH. Evolution of invasiveness through increased resource use in a vacant niche. Nat Plants. 2015b;1(6):15066.PubMedPubMedCentralGoogle Scholar
  43. Dobzhansky T. “Wild” and “domestic” species of Drosophila. In: Baker HG, Stebbins GL, editors. The genetics of colonizing species. New York: Academic; 1965.Google Scholar
  44. Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, et al. Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot. 1998;82(suppl 1):17–26.Google Scholar
  45. Domingues VS, Poh Y-P, Peterson BK, Pennings PS, Jensen JD, Hoekstra HE. Evidence of adaptation from ancestral variation in young populations of beach mice. Evolution. 2012;66(10):3209–23.PubMedGoogle Scholar
  46. Drake JM. Heterosis, the catapult effect and establishment success of a colonizing bird. Biol Lett. 2006;2(2):304–7.PubMedPubMedCentralGoogle Scholar
  47. Edmonds CA, Lillie AS, Cavalli-Sforza LL. Mutations arising in the wave front of an expanding population. Proc Natl Acad Sci U S A. 2004;101(4):975–9.PubMedPubMedCentralGoogle Scholar
  48. Ellis EC, Antill EC, Kreft H. All is not loss: plant biodiversity in the anthropocene. PLoS One. 2012a;7(1):e30535.PubMedPubMedCentralGoogle Scholar
  49. Ellis N, Smith SJ, Pitcher CR. Gradient forests: calculating importance gradients on physical predictors. Ecology. 2012b;93(1):156–68.PubMedGoogle Scholar
  50. Ellstrand NC, Schierenbeck KA. Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci U S A. 2000;97(13):7043–50.PubMedPubMedCentralGoogle Scholar
  51. Elton CS. The ecology of invasions by animals and plants. Chicago: University of Chicago Press; 1958.Google Scholar
  52. Emerson BC, Paradis E, Thébaud C. Revealing the demographic histories of species using DNA sequences. Trends Ecol Evol. 2001;16(12):707–16.Google Scholar
  53. Eriksen RL, Hierro JL, Eren Ö, Andonian K, Török K, Becerra PI, et al. Dispersal pathways and genetic differentiation among worldwide populations of the invasive weed Centaurea solstitialis L. (Asteraceae). PLoS One. 2014;9(12):e114786.PubMedPubMedCentralGoogle Scholar
  54. Estoup A, Guillemaud T. Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol. 2010;19:4113–30.PubMedGoogle Scholar
  55. Excoffier L, Ray N. Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol. 2008;23(7):347–51.PubMedGoogle Scholar
  56. Excoffier L, Foll M, Petit RJ. Genetic consequences of range expansions. Annu Rev Ecol Evol Syst. 2009a;40(1):481–501.Google Scholar
  57. Excoffier L, Hofer T, Foll M. Detecting loci under selection in a hierarchically structured population. Heredity. 2009b;103(4):285–98.PubMedGoogle Scholar
  58. Exposito-Alonso M, Becker C, Schuenemann VH, Reiter E, Setzer C, Slovak R, Brachi B, Hagmann J, Grimm DG, Chen J, Busch W, Bergelson J, Ness RW, Weigel D. PLoS Genet. 2018;14(2):e100715.Google Scholar
  59. Facon B, Hufbauer RA, Tayeh A, Loiseau A, Lombaert E, Vitalis R, et al. Inbreeding depression is purged in the invasive insect Harmonia axyridis. Curr Biol. 2011;21(5):424–7.PubMedGoogle Scholar
  60. Falush D, van Dorp L, Lawson D. A tutorial on how (not) to over-interpret STRUCTURE/ADMIXTURE bar plots [Internet]. bioRxiv. 2016. Accessed 13 May 2017.
  61. Fay JC, Wu C-I. Hitchhiking under positive Darwinian selection. Genetics. 2000;155(3):1405–13.PubMedPubMedCentralGoogle Scholar
  62. Ferrier S, Manion G, Elith J, Richardson K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers Distrib. 2007;13(3):252–64.Google Scholar
  63. Fitzpatrick MC, Keller SR. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol Lett. 2015;18(1):1–16.PubMedGoogle Scholar
  64. Foll M, Gaggiotti O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics. 2008;180(2):977–93.PubMedPubMedCentralGoogle Scholar
  65. François O, Martins H, Caye K, Schoville SD. Controlling false discoveries in genome scans for selection. Mol Ecol. 2016;25(2):454–69.PubMedGoogle Scholar
  66. Frankham R. Resolving the genetic paradox in invasive species. Heredity. 2005;94(4):385.PubMedGoogle Scholar
  67. Freeman JL, Perry GH, Feuk L, Redon R, McCarroll SA, Altshuler DM, et al. Copy number variation: new insights in genome diversity. Genome Res. 2006;16(8):949–61.Google Scholar
  68. Frichot E, Schoville SD, Bouchard G, François O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol. 2013;30(7):1687–99.PubMedPubMedCentralGoogle Scholar
  69. Frichot E, Schoville SD, de Villemereuil P, Gaggiotti OE, François O. Detecting adaptive evolution based on association with ecological gradients: orientation matters! Heredity. 2015;115(1):22–8.PubMedPubMedCentralGoogle Scholar
  70. García-Ramos G, Rodríguez D. Evolutionary speed of species invasions. Evolution. 2002;56(4):661–8.PubMedGoogle Scholar
  71. Gerlach JD. How the West was lost: reconstructing the invasion dynamics of yellow starthistle and other plant invaders of western rangelands and natural areas. Proc Calif Exotic Pest Plant Counc Symp. 1997;3:67–72.Google Scholar
  72. Gompert Z. A continuous correlated beta process model for genetic ancestry in admixed populations. PLoS One. 2016;11(3):e0151047.PubMedPubMedCentralGoogle Scholar
  73. Gompert Z, Alex Buerkle C. introgress: a software package for mapping components of isolation in hybrids. Mol Ecol Resour. 2010;10(2):378–84.PubMedGoogle Scholar
  74. Gompert Z, Buerkle CA. bgc: software for Bayesian estimation of genomic clines. Mol Ecol Resour. 2012;12(6):1168–76.PubMedGoogle Scholar
  75. Gompert Z, Buerkle CA. Analyses of genetic ancestry enable key insights for molecular ecology. Mol Ecol. 2013;22(21):5278–94.PubMedGoogle Scholar
  76. Gompert Z, Mandeville EG, Buerkle CA. Using genomic data in the analysis of hybrid zones [Internet]. Annu Rev Ecol Evol Syst. 2016.
  77. Graciá E, Botella F, Anadón JD, Edelaar P, Harris DJ, Giménez A. Surfing in tortoises? Empirical signs of genetic structuring owing to range expansion. Biol Lett. 2013;9(3):20121091.PubMedPubMedCentralGoogle Scholar
  78. Gralka M, Stiewe F, Farrell F, Möbius W, Waclaw B, Hallatschek O. Allele surfing promotes microbial adaptation from standing variation. Ecol Lett. 2016;19(8):889–98.PubMedPubMedCentralGoogle Scholar
  79. Grandbastien M-A, Audeon C, Bonnivard E, Casacuberta JM, Chalhoub B, Costa A-PP, et al. Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res. 2005;110(1–4):229–41.PubMedGoogle Scholar
  80. Gray AJ, Mack RN, Harper JL, Usher MB, Joysey K, Kornberg H. Do invading species have definable genetic characteristics? Philos Trans Biol Sci. 1986;314(1167):655–74.Google Scholar
  81. Grotkopp E, Rejmánek M, Sanderson MJ, Rost TL. Evolution of genome size in pines (Pinus) and its life-history correlates: supertree analyses. Evolution. 2004;58(8):1705–29.PubMedGoogle Scholar
  82. Guillemaud T, Beaumont MA, Ciosi M, Cornuet J-M, Estoup A. Inferring introduction routes of invasive species using approximate Bayesian computation on microsatellite data. Heredity. 2010;104(1):88–99.PubMedGoogle Scholar
  83. Günther T, Coop G. Robust identification of local adaptation from allele frequencies. Genetics. 2013;195(1):205–20.PubMedPubMedCentralGoogle Scholar
  84. Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 2009;5(10):e1000695.PubMedPubMedCentralGoogle Scholar
  85. Hallatschek O, Hersen P, Ramanathan S, Nelson DR. Genetic drift at expanding frontiers promotes gene segregation. Proc Natl Acad Sci U S A. 2007;104(50):19926–30.PubMedPubMedCentralGoogle Scholar
  86. Hamilton J, Okada M, Korves T, Schmitt J. The role of climate adaptation in colonization success in Arabidopsis thaliana. Mol Ecol. 2015;24(9):2253–63.PubMedGoogle Scholar
  87. Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics. 2005;169(4):2335–52.PubMedPubMedCentralGoogle Scholar
  88. Hirase S, Ozaki H, Iwasaki W. Parallel selection on gene copy number variations through evolution of three-spined stickleback genomes. BMC Genomics. 2014;15(1):735.PubMedPubMedCentralGoogle Scholar
  89. Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G, Lowry DB, et al. Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am Nat. 2016;188(4):379–97.PubMedPubMedCentralGoogle Scholar
  90. Hodgins KA, Bock DG, Hahn MA, Heredia SM, Turner KG, Rieseberg LH. Comparative genomics in the Asteraceae reveals little evidence for parallel evolutionary change in invasive taxa. Mol Ecol. 2015;24(9):2226–40.PubMedGoogle Scholar
  91. Hoffmann AA, Rieseberg LH. Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu Rev Ecol Evol Syst. 2008;39:21–42.PubMedPubMedCentralGoogle Scholar
  92. Hoffmann AA, Weeks AR. Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia. Genetica. 2007;129(2):133–47.PubMedGoogle Scholar
  93. Huang Y, Agrawal AF. Experimental evolution of gene expression and plasticity in alternative selective regimes. PLoS Genet. 2016;12(9):e1006336.PubMedPubMedCentralGoogle Scholar
  94. Huber CD, Nordborg M, Hermisson J, Hellmann I. Keeping it local: evidence for positive selection in Swedish Arabidopsis thaliana. Mol Biol Evol. 2014;31(11):3026–39.PubMedPubMedCentralGoogle Scholar
  95. Hufbauer RA. Biological invasions: paradox lost and paradise gained. Curr Biol. 2008;18(6):R246–7.PubMedGoogle Scholar
  96. Hufbauer RA. Admixture is a driver rather than a passenger in experimental invasions. J Anim Ecol. 2017;86(1):4–6.PubMedGoogle Scholar
  97. Hwang WY, Fu Y, Reyon D, Maeder ML, Kaini P, Sander JD, et al. Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One. 2013;8(7):e68708.PubMedPubMedCentralGoogle Scholar
  98. Jabot F, Faure T, Dumoulin N. EasyABC: performing efficient approximate Bayesian computation sampling schemes using R. Methods Ecol Evol. 2013;4(7):684–7.Google Scholar
  99. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al. Nanopore sequencing and assembly of the genome with ultra-long reads. Nat Biotechnol. 2018;36:338–45.PubMedPubMedCentralGoogle Scholar
  100. Jeschke JM, Strayer DL. Invasion success of vertebrates in Europe and North America. Proc Natl Acad Sci U S A. 2005;102(20):7198–202.PubMedPubMedCentralGoogle Scholar
  101. Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature. 2012;484(7392):55–61.PubMedPubMedCentralGoogle Scholar
  102. Joost S, Bonin A, Bruford MW, Després L, Conord C, Erhardt G, et al. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol. 2007;16(18):3955–69.PubMedGoogle Scholar
  103. Kalinowski ST. The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity. 2011;106(4):625–32.PubMedGoogle Scholar
  104. Kaplan NL, Hudson R, Lagley C. The “hitchhiking effect” revisited. Genetics. 1989;123(4):887–99.PubMedPubMedCentralGoogle Scholar
  105. Kashkush K, Feldman M, Levy AA. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet. 2003;33(1):102–6.PubMedGoogle Scholar
  106. Keane R, Crawley MJ. Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol. 2002;17(4):164–70.Google Scholar
  107. Keller SR, Taylor DR. History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol Lett. 2008;11(8):852–66.PubMedGoogle Scholar
  108. Keller SR, Taylor DR. Genomic admixture increases fitness during a biological invasion. J Evol Biol. 2010;23(8):1720–31.PubMedGoogle Scholar
  109. Kelly JK. A test of neutrality based on interlocus associations. Genetics. 1997;146(3):1197–206.PubMedPubMedCentralGoogle Scholar
  110. Kimura M. The neutral theory of molecular evolution. Cambridge: Cambridge University Press; 1985. p. 367.Google Scholar
  111. Kirkpatrick M, Barrett B. Chromosome inversions, adaptive cassettes, and the evolution of species’ ranges. Mol Ecol. 2015;24:2046–55.PubMedGoogle Scholar
  112. Knowles LL. Statistical phylogeography. Annu Rev Ecol Evol Syst. 2009;40:593–612.Google Scholar
  113. Knowles LL, Maddison WP. Statistical phylogeography. Mol Ecol. 2002;11(12):2623–35.PubMedGoogle Scholar
  114. Kolbe JJ, Glor RE, Rodríguez Schettino L, Lara AC, Larson A, Losos JB. Genetic variation increases during biological invasion by a Cuban lizard. Nature. 2004;431(7005):177–81.Google Scholar
  115. Kondrashov FA. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc Biol Sci. 2012;279(1749):5048–57.PubMedPubMedCentralGoogle Scholar
  116. Koskella B. Research highlights for issue 7: the evolution of invasiveness. Evol Appl. 2015;8(7):633–4.PubMedPubMedCentralGoogle Scholar
  117. Krieger MJB, Ross KG. Identification of a major gene regulating complex social behavior. Science. 2002;295(5553):328–32.PubMedGoogle Scholar
  118. Kuester A, Conner JK, Culley T, Baucom RS. How weeds emerge: a taxonomic and trait-based examination using United States data. New Phytol. 2014;202(3):1055–68.PubMedPubMedCentralGoogle Scholar
  119. Lavergne S, Molofsky J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci U S A. 2007;104(10):3883–8.PubMedPubMedCentralGoogle Scholar
  120. Lee CE. Evolutionary genetics of invasive species. Trends Ecol Evol. 2002;17(8):386–91.Google Scholar
  121. Lee CE, Gelembiuk GW. Evolutionary origins of invasive populations. Evol Appl. 2008;1(3):427–48.PubMedPubMedCentralGoogle Scholar
  122. Li L-F, Costello JC, Holloway AK, Hahn MW. “Reverse ecology” and the power of population genomics. Evolution. 2008;62(12):2984–94.PubMedPubMedCentralGoogle Scholar
  123. Li L-F, Jia Y, Caicedo AL, Olsen KM. Signatures of adaptation in the weedy rice genome. Nat Genet. 2017;49(5):811–4.PubMedGoogle Scholar
  124. Linde M. Flowering ecotypes of Capsella bursa-pastoris (L.) Medik. (Brassicaceae) analysed by a cosegregation of phenotypic characters (QTL) and molecular markers. Ann Bot. 2001;87(1):91–9.Google Scholar
  125. Linnen CR, Poh Y-P, Peterson BK, Barrett RDH, Larson JG, Jensen JD, et al. Adaptive evolution of multiple traits through multiple mutations at a single gene. Science. 2013;339(6125):1312–6.PubMedGoogle Scholar
  126. Lohman B, Stutz W, Bolnick D. Gene expression stasis and plasticity following migration into a foreign environment [Internet]. bioRxiv. 2017. p. 121608. Accessed 20 May 2017.
  127. Lopes JS, Balding D, Beaumont MA. PopABC: a program to infer historical demographic parameters. Bioinformatics. 2009;25(20):2747–9.PubMedGoogle Scholar
  128. Lotterhos KE, Whitlock MC. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol Ecol. 2014;23(9):2178–92.PubMedPubMedCentralGoogle Scholar
  129. Louthan AM, Kay KM. Comparing the adaptive landscape across trait types: larger QTL effect size in traits under biotic selection. BMC Evol Biol. 2011;11(1):60.PubMedPubMedCentralGoogle Scholar
  130. Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF, et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour. 2017;17(2):142–52.Google Scholar
  131. Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science. 2000;290(5494):1151–5.PubMedGoogle Scholar
  132. Mattenberger F, Sabater-Muñoz B, Toft C, Fares MA. The phenotypic plasticity of duplicated genes in Saccharomyces cerevisiae and the origin of adaptations. G3. 2017;7(1):63–75.PubMedGoogle Scholar
  133. Maumus F, Allen AE, Mhiri C, Hu H, Jabbari K, Vardi A, et al. Potential impact of stress activated retrotransposons on genome evolution in a marine diatom. BMC Genomics. 2009;10:624.PubMedPubMedCentralGoogle Scholar
  134. Meudt HM, Clarke AC. Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci. 2007;12(3):106–17.PubMedGoogle Scholar
  135. Michael TP, Jupe F, Bemm F, Motley ST, Sandoval JP, Lanz C, Loudet O, Weigel D, Ecker JR. High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nat Commun. 2018;9:541.PubMedPubMedCentralGoogle Scholar
  136. Moreau C, Bhérer C, Vézina H, Jomphe M, Labuda D, Excoffier L. Deep human genealogies reveal a selective advantage to be on an expanding wave front. Science. 2011;334(6059):1148–50.PubMedGoogle Scholar
  137. Mueller JC, Edelaar P, Carrete M, Serrano D, Potti J, Blas J, et al. Behaviour-related DRD4 polymorphisms in invasive bird populations. Mol Ecol. 2014;23(11):2876–85.PubMedGoogle Scholar
  138. Mutti JS, Bhullar RK, Gill KS. Evolution of gene expression balance among homeologs of natural polyploids. G3. 2017;7(4):1225–37.PubMedGoogle Scholar
  139. Nachman M, Hoekstra H, D’Agostino S, Kidwell M. The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci U S A. 2003;100(9):5268–73.PubMedPubMedCentralGoogle Scholar
  140. Narum SR, Hess JE. Comparison of FST outlier tests for SNP loci under selection. Mol Ecol Resour. 2011;11:184–94.PubMedGoogle Scholar
  141. Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA. Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol. 2013;22(11):2841–7.PubMedPubMedCentralGoogle Scholar
  142. Nei M, Maruyama T, Chakraborty R. The bottleneck effect and genetic variability in populations. Evolution. 1975;29(1):1–10.PubMedGoogle Scholar
  143. Nolte AW, Gompert Z, Buerkle CA. Variable patterns of introgression in two sculpin hybrid zones suggest that genomic isolation differs among populations. Mol Ecol. 2009;18(12):2615–27.PubMedGoogle Scholar
  144. Novembre J. Pritchard, Stephens, and Donnelly on population structure. Genetics. 2016;204(2):391–3.PubMedPubMedCentralGoogle Scholar
  145. Ochocki BM, Miller TEX. Rapid evolution of dispersal ability makes biological invasions faster and more variable. Nat Commun. 2017;8:14315.PubMedPubMedCentralGoogle Scholar
  146. Oleksyk TK, Smith MW, O’Brien SJ. Genome-wide scans for footprints of natural selection. Philos Trans Biol Sci. 2010;365(1537):185–205.Google Scholar
  147. Olson-Manning CF, Wagner MR, Mitchell-Olds T. Adaptive evolution: evaluating empirical support for theoretical predictions. Nat Rev Genet. 2012;13(12):867–77.PubMedPubMedCentralGoogle Scholar
  148. Orr HA. Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait locus data. Genetics. 1998;149(4):2099–104.PubMedPubMedCentralGoogle Scholar
  149. Pandit MK, White SM, Pocock MJO. The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytol. 2014;203(2):697–703.PubMedGoogle Scholar
  150. Pannell JR. Evolution of the mating system in colonizing plants. Mol Ecol. 2015;24(9):2018–37.PubMedGoogle Scholar
  151. Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421(6918):37–42.PubMedPubMedCentralGoogle Scholar
  152. Pascual M, Chapuis MP, Mestres F, Balanyà J, Huey RB, Gilchrist GW, et al. Introduction history of Drosophila subobscura in the New World: a microsatellite-based survey using ABC methods. Mol Ecol. 2007;16(15):3069–83.PubMedGoogle Scholar
  153. Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL. The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) Pers. Proc Natl Acad Sci U S A. 1995;92(13):6127–31.PubMedPubMedCentralGoogle Scholar
  154. Payseur BA, Rieseberg LH. A genomic perspective on hybridization and speciation. Mol Ecol. 2016;25(11):2337–60.PubMedPubMedCentralGoogle Scholar
  155. Peischl S, Excoffier L. Expansion load: recessive mutations and the role of standing genetic variation. Mol Ecol. 2015;24(9):2084–94.Google Scholar
  156. Peischl S, Kirkpatrick M, Excoffier L. Expansion load and the evolutionary dynamics of a species range. Am Nat. 2015;185(4):E81–93.PubMedGoogle Scholar
  157. Pierce AA, Zalucki MP, Bangura M, Udawatta M, Kronforst MR, Altizer S, et al. Serial founder effects and genetic differentiation during worldwide range expansion of monarch butterflies [Internet]. Proc Biol Sci. 2014;281(1797). Scholar
  158. Poh Y-P, Domingues VS, Hoekstra HE, Jensen JD. On the prospect of identifying adaptive loci in recently bottlenecked populations. PLoS One. 2014;9(11):e110579.PubMedPubMedCentralGoogle Scholar
  159. Porto-Neto LR, Lee SH, Lee HK, Gondro C. Detection of signatures of selection using FST. In: Gondro C, van der Werf J, Hayes B, editors. Genome-wide association studies and genomic prediction, Methods in molecular biology. New York: Humana Press; 2013. p. 423–36.Google Scholar
  160. Prevosti A, Ribo G, Serra L, Aguade M, Balana J, Monclus M, et al. Colonization of America by Drosophila subobscura: experiment in natural populations that supports the adaptive role of chromosomal-inversion polymorphism. Proc Natl Acad Sci U S A. 1988;85(15):5597–600.PubMedPubMedCentralGoogle Scholar
  161. Price AL, Tandon A, Patterson N, Barnes KC, Rafaels N, Ruczinski I, et al. Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLoS Genet. 2009;5(6):e1000519.PubMedPubMedCentralGoogle Scholar
  162. Pritchard JK, Di Rienzo A. Adaptation – not by sweeps alone. Nat Rev Genet. 2010;11(10):665–7.PubMedPubMedCentralGoogle Scholar
  163. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–59.PubMedPubMedCentralGoogle Scholar
  164. Pudlo P, Marin J-M, Estoup A, Cornuet J-M, Gautier M, Robert CP. Reliable ABC model choice via random forests. Bioinformatics. 2016;32(6):859–66.PubMedGoogle Scholar
  165. Puzey J, Vallejo-Marín M. Genomics of invasion: diversity and selection in introduced populations of monkeyflowers (Mimulus guttatus). Mol Ecol. 2014;23(18):4472–85.PubMedGoogle Scholar
  166. Qi X, An H, Ragsdale AP, Hall TE, Gutenkunst RN, Chris Pires J, et al. Genomic inferences of domestication events are corroborated by written records in Brassica rapa [Internet]. Mol Ecol. 2017. Scholar
  167. Raj A, Stephens M, Pritchard JK. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics. 2014;197(2):573–89.PubMedPubMedCentralGoogle Scholar
  168. Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, Cavalli-Sforza LL. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc Natl Acad Sci U S A. 2005;102(44):15942–7.PubMedPubMedCentralGoogle Scholar
  169. Ramakrishnan AP, Musial T, Cruzan MB. Shifting dispersal modes at an expanding species’ range margin. Mol Ecol. 2010;19(6):1134–46.PubMedGoogle Scholar
  170. Richards CL, Schrey AW, Pigliucci M. Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol Lett. 2012;15(9):1016–25.PubMedGoogle Scholar
  171. Rius M, Darling JA. How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol Evol. 2014;29(4):233–42.PubMedGoogle Scholar
  172. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, et al. The population biology of invasive species. Annu Rev Ecol Syst. 2001;32:305–32.Google Scholar
  173. Schrader L, Kim JW, Ence D, Zimin A, Klein A, Wyschetzki K, et al. Transposable element islands facilitate adaptation to novel environments in an invasive species. Nat Commun. 2014;5:5495.PubMedPubMedCentralGoogle Scholar
  174. Schrey AW, Coon CAC, Grispo MT, Awad M, Imboma T, McCoy ED, et al. Epigenetic variation may compensate for decreased genetic variation with introductions: a case study using house sparrows (Passer domesticus) on two continents. Genet Res Int. 2012;2012:979751.PubMedPubMedCentralGoogle Scholar
  175. Stapley J, Santure A, Dennis S. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol Ecol. 2015;24:2241–52.PubMedGoogle Scholar
  176. Stebbins GL. Polyploidy, hybridization, and the invasion of new habitats. Ann Mo Bot Gard. 1985;72(4):824–32.Google Scholar
  177. Straub SCK, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A. Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics. Am J Bot. 2012;99(2):349–64.PubMedGoogle Scholar
  178. Szűcs M, Melbourne BA, Tuff T, Hufbauer RA. The roles of demography and genetics in the early stages of colonization. Proc Biol Sci. 2014;281(1792):20141073.PubMedPubMedCentralGoogle Scholar
  179. Szűcs M, Melbourne BA, Tuff T, Weiss-Lehman C, Hufbauer RA. Genetic and demographic founder effects have long-term fitness consequences for colonising populations. Ecol Lett. 2017;20(4):436–44.PubMedGoogle Scholar
  180. te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubesová M, et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot. 2012;109(1):19–45.Google Scholar
  181. Tenaillon MI, Hollister JD, Gaut BS. A triptych of the evolution of plant transposable elements. Trends Plant Sci. 2010;15(8):471–8.PubMedGoogle Scholar
  182. Thompson JN. Rapid evolution as an ecological process. Trends Ecol Evol. 1998;13(8):329–32.PubMedGoogle Scholar
  183. Thornton KR, Jensen JD. Controlling the false-positive rate in multilocus genome scans for selection. Genetics. 2007;175(2):737–50.PubMedPubMedCentralGoogle Scholar
  184. Tiffin P, Ross-Ibarra J. Advances and limits of using population genetics to understand local adaptation. Trends Ecol Evol. 2014;29(12):673–80.PubMedGoogle Scholar
  185. Tsutsui ND, Suarez AV, Holway DA, Case TJ. Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci U S A. 2000;97(11):5948–53.PubMedPubMedCentralGoogle Scholar
  186. Tsutsui ND, Suarez AV, Grosberg RK. Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proc Natl Acad Sci U S A. 2003;100(3):1078–83.PubMedPubMedCentralGoogle Scholar
  187. Uller T, Leimu R. Founder events predict changes in genetic diversity during human-mediated range expansions. Glob Chang Biol. 2011;17(11):3478–85.Google Scholar
  188. Ungerer MC, Strakosh SC, Zhen Y. Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr Biol. 2006;16(20):R872–3.PubMedGoogle Scholar
  189. Vandepitte K, de Meyer T, Helsen K, van Acker K, Roldán-Ruiz I, Mergeay J, et al. Rapid genetic adaptation precedes the spread of an exotic plant species. Mol Ecol. 2014;23(9):2157–64.PubMedGoogle Scholar
  190. Verhoeven KJF, Macel M, Wolfe LM, Biere A. Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc Biol Sci. 2011;278(1702):2–8.PubMedGoogle Scholar
  191. Vermeij GJ. Invasion as expectation: a historical fact of life. In: Sax DF, Stachowicz JJ, Gaines SD, editors. Species invasions: insights into ecology, evolution, and biogeography. Sunderland: Sinauer Associates; 2005. p. 315–39.Google Scholar
  192. Waddington CH. Introduction to the symposium. In: Baker HG, Stebbins GL, editors. The genetics of colonizing species. New York: Academic; 1965.Google Scholar
  193. Wagner NK, Ochocki BM, Crawford KM, Compagnoni A, Miller TEX. Genetic mixture of multiple source populations accelerates invasive range expansion. J Anim Ecol. 2017;86(1):21–34.PubMedGoogle Scholar
  194. Wang J. The computer program structure for assigning individuals to populations: easy to use but easier to misuse [Internet]. Mol Ecol Resour. 2016. Scholar
  195. Wegmann D, Leuenberger C, Neuenschwander S, Excoffier L. ABCtoolbox: a versatile toolkit for approximate Bayesian computations. BMC Bioinf. 2010;11:116.Google Scholar
  196. Wegmann D, Kessner DE, Veeramah KR, Mathias RA, Nicolae DL, Yanek LR, et al. Recombination rates in admixed individuals identified by ancestry-based inference. Nat Genet. 2011;43(9):847–53.PubMedGoogle Scholar
  197. Wellband KW, Heath DD. Plasticity in gene transcription explains the differential performance of two invasive fish species [Internet]. Evol Appl. 2017. Scholar
  198. Welles SR, Ellstrand NC. Rapid range expansion of a newly formed allopolyploid weed in the genus Salsola. Am J Bot. 2016;103(4):663–7.PubMedGoogle Scholar
  199. Wessler SR. Plant retrotransposons: turned on by stress. Curr Biol. 1996;6(8):959–61.PubMedGoogle Scholar
  200. White TA, Perkins SE, Heckel G, Searle JB. Adaptive evolution during an ongoing range expansion: the invasive bank vole (Myodes glareolus) in Ireland. Mol Ecol. 2013;22(11):2971–85.Google Scholar
  201. Whitlock MC, Phillips PC, Moore FB, Tonsor SJ. Multiple fitness peaks and epistasis. Annu Rev Ecol Syst. 1995;26(1):601–29.Google Scholar
  202. Whitney KD, Broman KW, Kane NC, Hovick SM, Randell RA, Rieseberg LH. Quantitative trait locus mapping identifies candidate alleles involved in adaptive introgression and range expansion in a wild sunflower. Mol Ecol. 2015;24(9):2194–211.PubMedPubMedCentralGoogle Scholar
  203. Williams JL, Kendall BE, Levine JM. Rapid evolution accelerates plant population spread in fragmented experimental landscapes. Science. 2016;353(6298):482–5.PubMedGoogle Scholar
  204. Wright S. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proc Sixth Intl Congr Genetics. 1932;1:356–66.Google Scholar
  205. Yeaman S. Genomic rearrangements and the evolution of clusters of locally adaptive loci. Proc Natl Acad Sci U S A. 2013;110:E1743–51.PubMedPubMedCentralGoogle Scholar
  206. Zenni RD, Hoban SM. Loci under selection during multiple range expansions of an invasive plant are mostly population specific, but patterns are associated with climate. Mol Ecol. 2015;24(13):3360–71.PubMedGoogle Scholar
  207. Zhou X, Rinker DC, Pitts RJ, Rokas A, Zwiebel LJ. Divergent and conserved elements comprise the chemoreceptive repertoire of the nonblood-feeding mosquito Toxorhynchites amboinensis. Genome Biol Evol. 2014;6(10):2883–96.PubMedPubMedCentralGoogle Scholar
  208. Żmieńko A, Samelak A, Kozłowski P, Figlerowicz M. Copy number polymorphism in plant genomes. Theor Appl Genet. 2014;127(1):1–18.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA

Personalised recommendations