pp 1-24 | Cite as

Paleovirology: Viral Sequences from Historical and Ancient DNA

Part of the Population Genomics book series


Paleovirology, the study of viruses from historical or ancient samples, is a relatively unexplored but promising subfield of ancient DNA (aDNA) and paleogenomic research. Analysis of viruses, even over short historical timescales, can provide information on virus evolution and biology that may be difficult or impossible to obtain from examining current viral diversity. This is in part because the rapid evolution and proneness to extinction of strains of many viruses can quickly obscure their origins. Though exceptionally difficult to characterize from ancient DNA or RNA extracts, reports on the successful analysis of historical and ancient viruses have been steadily accumulating. In this chapter, we summarize the successes and failures in this new emerging field.


1918 influenza virus Ancient DNA Ancient viromes Biosafety Giant viruses Hepatitis Paleovirology Poxviruses Retroviruses 


  1. Alter MJ. Epidemiology of viral hepatitis and HIV co-infection. J Hepatol. 2006;44(Suppl 1):S6–9.  https://doi.org/10.1016/j.jhep.2005.11.004.CrossRefGoogle Scholar
  2. Appelt S, Fancello L, Le Bailly M, Raoult D, Drancourt M, Desnues C. Viruses in a 14th-century coprolite. Appl Environ Microbiol. 2014;80(9):2648–55.  https://doi.org/10.1128/aem.03242-13.CrossRefGoogle Scholar
  3. Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ. 2015;3:e1029.Google Scholar
  4. Aswad A, Katzourakis A. Paleovirology and virally derived immunity. Trends Ecol Evol. 2012;27(11):627–36.  https://doi.org/10.1016/j.tree.2012.07.007.CrossRefGoogle Scholar
  5. Avila-Arcos MC, Ho SY, Ishida Y, Nikolaidis N, Tsangaras K, Honig K, Medina R, Rasmussen M, Fordyce SL, Calvignac-Spencer S, Willerslev E, Gilbert MT, Helgen KM, Roca AL, Greenwood AD. One hundred twenty years of koala retrovirus evolution determined from museum skins. Mol Biol Evol. 2013;30(2):299–304.  https://doi.org/10.1093/molbev/mss223.CrossRefGoogle Scholar
  6. Bedarida S, Dutour O, Buzhilova AP, de Micco P, Biagini P. Identification of viral DNA (Anelloviridae) in a 200-year-old dental pulp sample (Napoleon’s Great Army, Kaliningrad, 1812). Infect Genet Evol. 2011;11(2):358–62.  https://doi.org/10.1016/j.meegid.2010.11.007.CrossRefGoogle Scholar
  7. Biagini P, Thèves C, Balaresque P, Géraut A, Cannet C, Keyser C, Nikolaeva D, Gérard P, Duchesne S, Orlando L, Willerslev E, Alekseev AN, de Micco P, Ludes B, Crubézy E. Variola virus in a 300-year-old Siberian mummy. N Engl J Med. 2012;367(21):2057–9.  https://doi.org/10.1056/NEJMc1208124.CrossRefGoogle Scholar
  8. Bolte AL, Meurer J, Kaleta EF. Avian host spectrum of avipoxviruses. Avian Pathol. 1999;28(5):415–32.  https://doi.org/10.1080/03079459994434.CrossRefGoogle Scholar
  9. Bouvier NM, Palese P. The biology of influenza viruses. Vaccine. 2008;26:D49–53.Google Scholar
  10. Calvignac S, Terme J-M, Hensley SM, Jalinot P, Greenwood AD, Hänni C. Ancient DNA identification of early 20th century simian T-cell leukemia virus type 1. Mol Biol Evol. 2008;25(6):1093–8.  https://doi.org/10.1093/molbev/msn054.CrossRefGoogle Scholar
  11. Castello JD, Rogers SO, Starmer WT, Catranis CM, Ma L, Bachand GD, Zhao Y, Smith JE. Detection of tomato mosaic tobamovirus RNA in ancient glacial ice. Polar Biol. 1999;22(3):207–12.  https://doi.org/10.1007/s003000050411.CrossRefGoogle Scholar
  12. Chen R, Holmes EC. Avian influenza virus exhibits rapid evolutionary dynamics. Mol Biol Evol. 2006;23(12):2336–41.  https://doi.org/10.1093/molbev/msl102.CrossRefGoogle Scholar
  13. Cooper A, Poinar HN. Ancient DNA: do it right or not at all. Science. 2000;289(5482):1139.  https://doi.org/10.1126/science.289.5482.1139b.CrossRefGoogle Scholar
  14. Drummond A, Pybus OG, Rambaut A. Inference of viral evolutionary rates from molecular sequences. Adv Parasitol. 2003;54:331–58.Google Scholar
  15. Duchene S, Holmes EC, Ho SY. Analyses of evolutionary dynamics in viruses are hindered by a time-dependent bias in rate estimates. Proc Roy Soc Biol Sci. 2014;281(1786).  https://doi.org/10.1098/rspb.2014.0732.Google Scholar
  16. Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet. 2008;9(4):267–76.  https://doi.org/10.1038/nrg2323.CrossRefGoogle Scholar
  17. Duggan AT, Perdomo MF, Piombino-Mascali D, Marciniak S, Poinar D, Emery MV, Buchmann JP, Duchêne S, Jankauskas R, Humphreys M, Golding GB, Southon J, Devault A, Rouillard J-M, Sahl JW, Dutour O, Hedman K, Sajantila A, Smith GL, Holmes EC, Poinar HN. 17th century variola virus reveals the recent history of smallpox. Curr Biol. 2016.  https://doi.org/10.1016/j.cub.2016.10.061.
  18. Fanning TG, Slemons RD, Reid AH, Janczewski TA, Dean J, Taubenberger JK. 1917 avian influenza virus sequences suggest that the 1918 pandemic virus did not acquire its Hemagglutinin directly from birds. J Virol. 2002;76(15):7860–2.  https://doi.org/10.1128/JVI.76.15.7860-7862.2002.CrossRefGoogle Scholar
  19. Fornaciari G, Zavaglia K, Giusti L, Vultaggio C, Ciranni R. Human papillomavirus in a 16th century mummy. Lancet. 2003;362(9390):1160.  https://doi.org/10.1016/S0140-6736(03)14487-X.CrossRefGoogle Scholar
  20. Franco E, Bagnato B, Marino MG, Meleleo C, Serino L, Zaratti L. Hepatitis B: epidemiology and prevention in developing countries. World J Hepatol. 2012;4(3):74–80.  https://doi.org/10.4254/wjh.v4.i3.74.CrossRefGoogle Scholar
  21. Gasc C, Peyretaillade E, Peyret P. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res. 2016;44(10):4504–18.  https://doi.org/10.1093/nar/gkw309.CrossRefGoogle Scholar
  22. Gessain A, Pecon-Slattery J, Meertens L, Mahieux R. Origins of HTLV-1 in South America (letter 1). Nat Med. 2000;6(3):232.Google Scholar
  23. Gilbert MTP, Rambaut A, Wlasiuk G, Spira TJ, Pitchenik AE, Worobey M. The emergence of HIV/AIDS in the Americas and beyond. Proc Natl Acad Sci. 2007;104(47):18566–70.  https://doi.org/10.1073/pnas.0705329104.Google Scholar
  24. Gojobori T, Moriyama EN, Kimura M. Molecular clock of viral evolution, and the neutral theory. Proc Natl Acad Sci. 1990;87(24):10015–8.Google Scholar
  25. Gray RR, Tanaka Y, Takebe Y, Magiorkinis G, Buskell Z, Seeff L, Alter HJ, Pybus OG. Evolutionary analysis of hepatitis C virus gene sequences from 1953. Philos Trans R Soc Biol Sci. 2013;368(1626):20130168.  https://doi.org/10.1098/rstb.2013.0168.CrossRefGoogle Scholar
  26. Greenwood AD, Lee F, Capelli C, DeSalle R, Tikhonov A, Marx PA, MacPhee RDE. Evolution of endogenous retrovirus-like elements of the woolly mammoth (Mammuthus primigenius) and its relatives. Mol Biol Evol. 2001;18(5):840–7.Google Scholar
  27. Harkins KM, Stone AC. Ancient pathogen genomics: insights into timing and adaptation. J Hum Evol. 2015;79:137–49.  https://doi.org/10.1016/j.jhevol.2014.11.002.CrossRefGoogle Scholar
  28. Heintzman PD, Soares AER, Chang D, Shapiro B. Paleogenomics. In: Reviews in cell biology and molecular medicine. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2006.  https://doi.org/10.1002/3527600906.mcb.201500020.
  29. Hofreiter M, Paijmans JL, Goodchild H, Speller CF, Barlow A, Fortes GG, Thomas JA, Ludwig A, Collins MJ. The future of ancient DNA: technical advances and conceptual shifts. Bioessays. 2015;37(3):284–93.  https://doi.org/10.1002/bies.201400160.CrossRefGoogle Scholar
  30. Holman DM, Benard V, Roland KB, Watson M, Liddon N, Stokley S. Barriers to human papillomavirus vaccination among US adolescents: a systematic review of the literature. JAMA Pediatr. 2014;168(1):76–82.  https://doi.org/10.1001/jamapediatrics.2013.2752.CrossRefGoogle Scholar
  31. Holmes EC. Freezing viruses in time. Proc Natl Acad Sci U S A. 2014;111(47):16643–4.  https://doi.org/10.1073/pnas.1419827111.CrossRefGoogle Scholar
  32. Ishida Y, Zhao K, Greenwood AD, Roca AL. Proliferation of endogenous retroviruses in the early stages of a host germ line invasion. Mol Biol Evol. 2015;32(1):109–20.Google Scholar
  33. Jern P, Coffin JM. Effects of retroviruses on host genome function. Annu Rev Genet. 2008;42:709–32.Google Scholar
  34. Kahila Bar-Gal G, Kim MJ, Klein A, Shin DH, Oh CS, Kim JW, Kim TH, Kim SB, Grant PR, Pappo O, Spigelman M, Shouval D. Tracing hepatitis B virus to the 16th century in a Korean mummy. Hepatology. 2012;56(5):1671–80.  https://doi.org/10.1002/hep.25852.CrossRefGoogle Scholar
  35. Kalish ML, Wolfe ND, Ndongmo CB, McNicholl J, Robbins KE, Aidoo M, Fonjungo PN, Alemnji G, Zeh C, Djoko CF, Mpoudi-Ngole E, Burke DS, Folks TM. Central African hunters exposed to simian immunodeficiency virus. Emerg Infect Dis. 2005;11(12):1928–30.  https://doi.org/10.3201/eid1112.050394.CrossRefGoogle Scholar
  36. Katzourakis A. Paleovirology: inferring viral evolution from host genome sequence data. Phil Trans Roy Soc Biol Sci. 2013;368(1626):20120493.  https://doi.org/10.1098/rstb.2012.0493.CrossRefGoogle Scholar
  37. Katzourakis A, Gifford RJ, Tristem M, Gilbert MTP, Pybus OG. Macroevolution of complex retroviruses. Science. 2009;325(5947):1512.Google Scholar
  38. Lecuit M, Eloit M. The human virome: new tools and concepts. Trends Microbiol. 2013;21(10):510–5.  https://doi.org/10.1016/j.tim.2013.07.001.CrossRefGoogle Scholar
  39. Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K, Adrait A, Lescot M, Poirot O, Bertaux L, Bruley C, Coute Y, Rivkina E, Abergel C, Claverie JM. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci. 2014;111(11):4274–9.  https://doi.org/10.1073/pnas.1320670111.CrossRefGoogle Scholar
  40. Li H-C, Fujiyoshi T, Lou H, Yashiki S, Sonoda S, Cartier L, Nunez L, Munoz I, Horai S, Tajima K. The presence of ancient human T-cell lymphotropic virus type I provirus DNA in an Andean mummy. Nat Med. 1999;5(12):1428–32.Google Scholar
  41. Llamas B, Valverde G, Fehren-Schmitz L, Weyrich LS, Cooper A, Haak W. From the field to the laboratory: controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. Sci Technol Archaeol Res. 2017;3(1):1–14.  https://doi.org/10.1080/20548923.2016.1258824.CrossRefGoogle Scholar
  42. Miller S, Selgelid MJ. Ethical and philosophical consideration of the dual-use dilemma in the biological sciences. Sci Eng Ethics. 2007;13(4):523–80.  https://doi.org/10.1007/s11948-007-9043-4.CrossRefGoogle Scholar
  43. Moustafa A, Xie C, Kirkness E, Biggs W, Wong E, Turpaz Y, Bloom K, Delwart E, Nelson KE, Venter JC, Telenti A. The blood DNA virome in 8,000 humans. PLoS Pathog. 2017;13(3):e1006292.  https://doi.org/10.1371/journal.ppat.1006292.CrossRefGoogle Scholar
  44. Ng TFF, Chen L-F, Zhou Y, Shapiro B, Stiller M, Heintzman PD, Varsani A, Kondov NO, Wong W, Deng X, Andrews TD, Moorman BJ, Meulendyk T, MacKay G, Gilbertson RL, Delwart E. Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch. Proc Natl Acad Sci. 2014;111(47):16842–7.  https://doi.org/10.1073/pnas.1410429111.CrossRefGoogle Scholar
  45. Noymer A, Garenne M. The 1918 influenza epidemic’s effects on sex differentials in mortality in the United States. Popul Dev Rev. 2000;26(3):565–81.Google Scholar
  46. Orlando L, Gilbert MT, Willerslev E. Reconstructing ancient genomes and epigenomes. Nat Rev Genet. 2015;16(7):395–408.  https://doi.org/10.1038/nrg3935.CrossRefGoogle Scholar
  47. Pappas C, Aguilar PV, Basler CF, Solorzano A, Zeng H, Perrone LA, Palese P, Garcia-Sastre A, Katz JM, Tumpey TM. Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. Proc Natl Acad Sci. 2008;105(8):3064–9.  https://doi.org/10.1073/pnas.0711815105.CrossRefGoogle Scholar
  48. Parker PG, Buckles EL, Farrington H, Petren K, Whiteman NK, Ricklefs RE, Bollmer JL, Jiménez-Uzcátegui G. 110 Years of avipoxvirus in the Galapagos Islands. PLoS One. 2011;6(1):e15989.  https://doi.org/10.1371/journal.pone.0015989.CrossRefGoogle Scholar
  49. Patterson Ross Z, Klunk J, Fornaciari G, Giuffra V, Duchêne S, Duggan AT, Poinar D, Douglas MW, Eden J-S, Holmes EC, Poinar HN. The paradox of HBV evolution as revealed from a 16th century mummy. PLoS Pathog. 2018;14(1):e1006750.  https://doi.org/10.1371/journal.ppat.1006750.CrossRefGoogle Scholar
  50. Pybus OG, Markov PV, Wu A, Tatem AJ. Investigating the endemic transmission of the hepatitis C virus. Int J Parasitol. 2007;37(8–9):839–49.  https://doi.org/10.1016/j.ijpara.2007.04.009.CrossRefGoogle Scholar
  51. Reardon S. Infectious diseases: smallpox watch. Nature. 2014;509(7498):22–4.  https://doi.org/10.1038/509022a.CrossRefGoogle Scholar
  52. Rector A, Lemey P, Tachezy R, Mostmans S, Ghim S-J, Van Doorslaer K, Roelke M, Bush M, Montali RJ, Joslin J, Burk RD, Jenson AB, Sundberg JP, Shapiro B, Van Ranst M. Ancient papillomavirus-host co-speciation in Felidae. Genome Biol. 2007;8(4):R57.  https://doi.org/10.1186/gb-2007-8-4-r57.CrossRefGoogle Scholar
  53. Reid AH, Fanning TG, Hultin JV, Taubenberger JK. Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc Natl Acad Sci. 1999;96(4):1651–6.Google Scholar
  54. Rizzi E, Lari M, Gigli E, De Bellis G, Caramelli D. Ancient DNA studies: new perspectives on old samples. Genet Sel Evol. 2012;44:21.  https://doi.org/10.1186/1297-9686-44-21.CrossRefGoogle Scholar
  55. Samorodnitsky E, Jewell BM, Hagopian R, Miya J, Wing MR, Lyon E, Damodaran S, Bhatt D, Reeser JW, Datta J, Roychowdhury S. Evaluation of hybridization capture versus amplicon-based methods for whole-Exome sequencing. Hum Mutat. 2015;36(9):903–14.  https://doi.org/10.1002/humu.22825.CrossRefGoogle Scholar
  56. Selgelid MJ. Governance of dual-use research: an ethical dilemma. Bull World Health Organ. 2009;87(9):720–3.Google Scholar
  57. Slater GJ, Cui P, Forasiepi AM, Lenz D, Tsangaras K, Voirin B, de Moraes-Barros N, MacPhee RDE, Greenwood AD. Evolutionary relationships among extinct and extant sloths: the evidence of mitogenomes and retroviruses. Genome Biol Evol. 2016;8(3):607–21.  https://doi.org/10.1093/gbe/evw023.CrossRefGoogle Scholar
  58. Smith O, Clapham A, Rose P, Liu Y, Wang J, Allaby RG. A complete ancient RNA genome: identification, reconstruction and evolutionary history of archaeological barley stripe mosaic virus. Sci Rep. 2014;4:4003.  https://doi.org/10.1038/srep04003.CrossRefGoogle Scholar
  59. Tarlinton RE, Meers J, Young PR. Retroviral invasion of the koala genome. Nature. 2006;442(7098):79–81. http://www.nature.com/nature/journal/v442/n7098/suppinfo/nature04841_S1.html.Google Scholar
  60. Taubenberger JK, Morens DM. 1918 influenza: the mother of all pandemics. Emerg Infect Dis. 2006;12(1):15–22.  https://doi.org/10.3201/eid1201.050979.CrossRefGoogle Scholar
  61. Taubenberger JK, Morens DM. The pathology of influenza virus infections. Annu Rev Pathol. 2008;3:499.Google Scholar
  62. Taubenberger JK, Reid AH, Krafft AE, Bijwaard KE, Fanning TG. Initial genetic characterization of the 1918 “Spanish” influenza virus. Science. 1997;275(5307):1793–6.  https://doi.org/10.1126/science.275.5307.1793.CrossRefGoogle Scholar
  63. Taubenberger JK, Reid AH, Fanning TG. The 1918 influenza virus: a killer comes into view. Virology. 2000;274(2):241–5.  https://doi.org/10.1006/viro.2000.0495.CrossRefGoogle Scholar
  64. Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG. Characterization of the 1918 influenza virus polymerase genes. Nature. 2005;437(7060):889–93.  https://doi.org/10.1038/nature04230.CrossRefGoogle Scholar
  65. Thèves C, Biagini P, Crubézy E. The rediscovery of smallpox. Clin Microbiol Infect. 2014;20(3):210–8.  https://doi.org/10.1111/1469-0691.12536.CrossRefGoogle Scholar
  66. Tiee MS, Harrigan RJ, Thomassen HA, Smith TB. Ghosts of infections past: using archival samples to understand a century of monkeypox virus prevalence among host communities across space and time. R Soc Open Sci. 2018;5(1):171089.Google Scholar
  67. Tsangaras K, Greenwood AD. Museums and disease: using tissue archive and museum samples to study pathogens. Ann Anat. 2012;194(1):58–73.  https://doi.org/10.1016/j.aanat.2011.04.003.CrossRefGoogle Scholar
  68. Tsangaras K, Siracusa MC, Nikolaidis N, Ishida Y, Cui P, Vielgrader H, Helgen KM, Roca AL, Greenwood AD. Hybridization capture reveals evolution and conservation across the entire koala retrovirus genome. PLoS One. 2014;9(4):e95633.  https://doi.org/10.1371/journal.pone.0095633.CrossRefGoogle Scholar
  69. Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solorzano A, Swayne DE, Cox NJ, Katz JM, Taubenberger JK, Palese P, Garcia-Sastre A. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science. 2005;310(5745):77–80.  https://doi.org/10.1126/science.1119392.CrossRefGoogle Scholar
  70. Umemura T, Tanaka Y, Kiyosawa K, Alter HJ, Shih JW. Observation of positive selection within hypervariable regions of a newly identified DNA virus (SEN virus)(1). FEBS Lett. 2002;510(3):171–4.Google Scholar
  71. van Regenmortel MHV, Mahy BWJ. Desk encyclopedia of general virology. Oxford: Academic Press; 2010.Google Scholar
  72. Vandamme A-M, Hall WW, Lewis MJ, Goubau P, Salemi M. Origins of HTLV-1 in South America (letter 2). Nat Med. 2000;6(3):232–3.Google Scholar
  73. VandeWoude S, Apetrei C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin Microbiol Rev. 2006;19(4):728–62.  https://doi.org/10.1128/cmr.00009-06.CrossRefGoogle Scholar
  74. Weiss RA. The discovery of endogenous retroviruses. Retrovirology. 2006;3(1):67.  https://doi.org/10.1186/1742-4690-3-67.CrossRefGoogle Scholar
  75. Willerslev E, Cooper A. Ancient DNA. Proc R Soc B Biol Sci. 2005;272(1558):3–16.  https://doi.org/10.1098/rspb.2004.2813.CrossRefGoogle Scholar
  76. Wolfe ND, Heneine W, Carr JK, Garcia AD, Shanmugam V, Tamoufe U, Torimiro JN, Prosser AT, LeBreton M, Mpoudi-Ngole E, McCutchan FE, Birx DL, Folks TM, Burke DS, Switzer WM. Emergence of unique primate T-lymphotropic viruses among central African bushmeat hunters. Proc Natl Acad Sci. 2005;102(22):7994–9.  https://doi.org/10.1073/pnas.0501734102.CrossRefGoogle Scholar
  77. Worobey M. Phylogenetic evidence against evolutionary stasis and natural abiotic reservoirs of influenza A virus. J Virol. 2008;82(7):3769–74.  https://doi.org/10.1128/jvi.02207-07.CrossRefGoogle Scholar
  78. Worobey M, Gemmel M, Teuwen DE, Haselkorn T, Kunstman K, Bunce M, Muyembe J-J, Kabongo J-MM, Kalengayi RM, Van Marck E, Gilbert MTP, Wolinsky SM. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature. 2008;455(7213):661–4. http://www.nature.com/nature/journal/v455/n7213/suppinfo/nature07390_S1.html.Google Scholar
  79. Worobey M, Watts TD, McKay RA, Suchard MA, Granade T, Teuwen DE, Koblin BA, Heneine W, Lemey P, Jaffe HW. 1970s and “Patient 0” HIV-1 genomes illuminate early HIV/AIDS history in North America. Nature. 2016;539(7627):98–101.  https://doi.org/10.1038/nature19827. http://www.nature.com/nature/journal/v539/n7627/abs/nature19827.html. Supplementary-information.
  80. Wylie TN, Wylie KM, Herter BN, Storch GA. Enhanced virome sequencing using targeted sequence capture. Genome Res. 2015;25(12):1910–20.  https://doi.org/10.1101/gr.191049.115.CrossRefGoogle Scholar
  81. Zhao F, Qi J, Schuster SC. Tracking the past: interspersed repeats in an extinct Afrotherian mammal, Mammuthus primigenius. Genome Res. 2009;19(8):1384–92.  https://doi.org/10.1101/gr.091363.109.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Translational GeneticsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
  2. 2.Department of Wildlife DiseasesLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
  3. 3.Department of Veterinary MedicineFreie Universität BerlinBerlinGermany

Personalised recommendations