Genome-Wide Association Studies and Heritability Estimation in the Functional Genomics Era

  • Dunia Pino Del Carpio
  • Roberto Lozano
  • Marnin D. Wolfe
  • Jean-Luc Jannink
Part of the Population Genomics book series (POGE)


Genome-wide association studies (GWAS) are designed to detect the statistical association between genomic markers and phenotypic data in order to identify loci that control complex traits and more recently to quantify the relative amount of trait variance that arises from genetic sources. Moreover, many genomic resources have been generated and analytical tools developed to bring together information linking GWAS results to causal variants. This book chapter is an incredible effort to bring together information about current aspects of genome-wide studies and the concept of heritability. In the first section of this book chapter, we discuss the most critical concepts and experimental considerations in order to follow GWAS. In the later sections, we explore how researchers are trying to answer the question of whether using functional genomic data can improve the power of GWAS in complex phenotypes and if so far has led us to important biological insights. We review the core concept of heritability, its practical applications, and the classical (pre-genomics) methods for measurement, which largely remain relevant. Finally, we outline the genomic resources available for GWA studies. Also, based on what is available for humans, we identify what are the most critical resources that need to be developed for other species by contrasting the human genomic resources with resources being developed in plant and animal models.


Data mining Functional genomics Genomics Genome-wide association study Heritability Meta-analysis Network Pathways Post-GWAS 


  1. Abdi H. Bonferroni and Sidak corrections for multiple comparisons. In: Salkind NJ, editor. Encyclopedia of measurement and statistics. Thousand Oaks: Sage; 2007. p. 103–7.Google Scholar
  2. Adey A, Morrison HG, Asan, Xun X, Kitzman JO, Turner EH, et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol. 2010;11:R119.PubMedPubMedCentralGoogle Scholar
  3. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.PubMedPubMedCentralGoogle Scholar
  4. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17:487–500.PubMedGoogle Scholar
  5. Al-Tassan NA, Whiffin N, Hosking FJ, Palles C, Farrington SM, Dobbins SE, et al. A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer. Sci Rep. 2015;5:10442.PubMedPubMedCentralGoogle Scholar
  6. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.PubMedGoogle Scholar
  7. Amin N, van Duijn CM, Aulchenko YS. A genomic background based method for association analysis in related individuals. PLoS One. 2007;2:e1274.PubMedPubMedCentralGoogle Scholar
  8. Amos CI. Successful design and conduct of genome-wide association studies. Hum Mol Genet. 2007;16.PubMedPubMedCentralGoogle Scholar
  9. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507:455–61.PubMedPubMedCentralGoogle Scholar
  10. Aulchenko YS, De Koning DJ, Haley C. Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics. 2007a;177:577–85.PubMedPubMedCentralGoogle Scholar
  11. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007b;23:1294–6.PubMedGoogle Scholar
  12. Ay F, Noble WS, Dekker J, Rippe K, Dekker M, Kleckner N, et al. Analysis methods for studying the 3D architecture of the genome. Genome Biol. 2015;16:183.PubMedPubMedCentralGoogle Scholar
  13. Bac-Molenaar JA, Vreugdenhil D, Granier C, Keurentjes JJB. Genome-wide association mapping of growth dynamics detects time-specific and general quantitative trait loci. J Exp Bot. 2015;66:5567–80.PubMedPubMedCentralGoogle Scholar
  14. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41:703–7.PubMedPubMedCentralGoogle Scholar
  15. Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129:823–37.Google Scholar
  16. Bax L, Yu L-M, Ikeda N, Moons KG. A systematic comparison of software dedicated to meta-analysis of causal studies. BMC Med Res Methodol. 2007;7:40.PubMedPubMedCentralGoogle Scholar
  17. Becker K, Siegert S, Toliat MR, Du J, Casper R, Dolmans GH, et al. Meta-analysis of genome-wide association studies and network analysis-based integration with gene expression data identify new suggestive loci and unravel a Wnt-centric network associated with Dupuytren’s disease. PLoS One. 2016;11:e0158101.PubMedPubMedCentralGoogle Scholar
  18. Belton J-M, McCord RP, Gibcus JH, Naumova N, Zhan Y. Hi–C: a comprehensive technique to capture the conformation of genomes. Methods. 2012;58:268–76.PubMedGoogle Scholar
  19. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289–300.Google Scholar
  20. van Binsbergen R, Bink MC, Calus MP, van Eeuwijk FA, Hayes BJ, Hulsegge I, et al. Accuracy of imputation to whole-genome sequence data in Holstein Friesian cattle. Genet Sel Evol. 2014;46:41.PubMedPubMedCentralGoogle Scholar
  21. Bird A. Perceptions of epigenetics. Nature. 2007;447:396–8.PubMedGoogle Scholar
  22. Birney E, Smith GD, Greally JM. Epigenome-wide association studies and the interpretation of disease -omics (GS Barsh, Ed). PLoS Genet. 2016;12:e1006105.PubMedPubMedCentralGoogle Scholar
  23. Boeger H, Griesenbeck J, Strattan JS, Kornberg RD. Nucleosomes unfold completely at a transcriptionally active promoter. Mol Cell. 2003;11:1587–98.PubMedGoogle Scholar
  24. Bonferroni C. Il calcolo delle assicurazioni su gruppi di teste. In: In Studi in Onore del Professore Salvatore Ortu Carboni, Bardi. 1935. pp 13–60.Google Scholar
  25. Bønnelykke K, Matheson MC, Pers TH, Granell R, Strachan DP, Alves AC, et al. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization. Nat Genet. 2013;45:902–6.PubMedPubMedCentralGoogle Scholar
  26. Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–86.PubMedPubMedCentralGoogle Scholar
  27. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5.PubMedGoogle Scholar
  28. Branca A, Paape TD, Zhou P, Briskine R, Farmer AD, Mudge J, et al. Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc Natl Acad Sci U S A. 2011;108:E864–70.PubMedPubMedCentralGoogle Scholar
  29. Bucksch A, Burridge J, York LM, Das A, Nord E, Weitz JS, et al. Image-based high-throughput field phenotyping of crop roots. Plant Physiol. 2014;166:470–86.PubMedPubMedCentralGoogle Scholar
  30. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10:1213–8.PubMedPubMedCentralGoogle Scholar
  31. Bukowski R, Guo X, Lu Y, et al. Construction of the third generation Zea mays haplotype map. Gigascience. 2017. [Epub ahead of print].
  32. Bulik-Sullivan B, Selitsky S, Sethupathy P. Prioritization of genetic variants in the microrna regulome as functional candidates in genome-wide association studies. Hum Mutat. 2013;34:1049–56.PubMedPubMedCentralGoogle Scholar
  33. Bulmer MG. The effect of selection on genetic variability. Am Nat. 1971;105:201–11.Google Scholar
  34. de los Campos G, Sorensen D, Gianola D. Genomic heritability: what is it? PLoS Genet. 2015;11:e1005048.PubMedCentralGoogle Scholar
  35. Chen GB. Estimating heritability of complex traits from genome-wide association studies using IBS-based Haseman-Elston regression. Front Genet. 2014;5:1–14.Google Scholar
  36. Chen C-Y, Chang I-S, Hsiung CA, Wasserman WW. On the identification of potential regulatory variants within genome wide association candidate SNP sets. BMC Med Genomics. 2014;7:34.PubMedPubMedCentralGoogle Scholar
  37. Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, et al. Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet. 2012;44:803–7.PubMedGoogle Scholar
  38. Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res. 2007;61:24R–9R.PubMedGoogle Scholar
  39. Clark RT, Famoso AN, Zhao K, Shaff JE, Craft EJ, Bustamante CD, et al. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ. 2013;36:454–66.PubMedGoogle Scholar
  40. Claussnitzer M, Dankel SN, Kim K-H, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015;373:895–907.PubMedPubMedCentralGoogle Scholar
  41. Consortium 1000 Genomes Project, others, Africa W, Consortium T 1000 genomes project, Durbin RM, Altshuler DL, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–73.Google Scholar
  42. Cooper GM, Stone EA, Asimenos G, NISC Comparative Sequencing Program, Green ED, Batzoglou S, et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15:901–13.PubMedPubMedCentralGoogle Scholar
  43. Crawford GE, Holt IE, Whittle J, Webb BD, Tai D, Davis S, et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 2006;16:123–31.PubMedPubMedCentralGoogle Scholar
  44. Daetwyler HD, Capitan A, Pausch H, Stothard P, van Binsbergen R, Brøndum RF, et al. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat Genet. 2014;46:858–65.PubMedGoogle Scholar
  45. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the human genome to be under selective constraint using GERP++ (WW Wasserman, Ed). PLoS Comput Biol. 2010;6:e1001025.PubMedPubMedCentralGoogle Scholar
  46. De los Campos G, Gianola D, Rosa GJM, Weigel KA, Crossa J. Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet Res (Camb). 2010;92:295–308.Google Scholar
  47. De Mita S, Ronfort J, McKhann HI, Poncet C, El Malki R, Bataillon T. Investigation of the demographic and selective forces shaping the nucleotide diversity of genes involved in nod factor signaling in Medicago truncatula. Genetics. 2007;177:2123–33.PubMedPubMedCentralGoogle Scholar
  48. Dingwall C, Lomonossoff GP, Laskey RA. High sequence specificity of micrococcal nuclease. Nucleic Acids Res. 1981;9:2659–74.PubMedPubMedCentralGoogle Scholar
  49. van Dongen J, Slagboom PE, Draisma HHM, Martin NG, Boomsma DI. The continuing value of twin studies in the omics era. Nat Publ Gr. 2012;13:640–53.Google Scholar
  50. Eberle MA, Ng PC, Kuhn K, Zhou L, Peiffer DA, Galver L, et al. Power to detect risk alleles using genome-wide tag SNP panels. PLoS Genet. 2007;3:1827–37.PubMedGoogle Scholar
  51. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11:446–50.PubMedPubMedCentralGoogle Scholar
  52. Elsik CG, Tellam RL, Worley KC. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science. 2009;324:522–8.PubMedPubMedCentralGoogle Scholar
  53. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.Google Scholar
  54. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 2011;473:43–9.PubMedPubMedCentralGoogle Scholar
  55. Evangelou E, Ioannidis JPA. Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet. 2013;14:379–89.PubMedGoogle Scholar
  56. Ewens WJ, Spielman RS. The transmission/disequilibrium test: history, subdivision, and admixture. Am J Hum Genet. 1995;57:455–64.PubMedPubMedCentralGoogle Scholar
  57. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2016;44:D481–7.PubMedPubMedCentralGoogle Scholar
  58. Fahlgren N, Gehan MA, Baxter I. Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol. 2015;24:93–9.PubMedGoogle Scholar
  59. Falconer D, Mackay T. Introduction to quantitative genetics. 4th ed. Harlow, Essex: Longmans Green; 1996.Google Scholar
  60. Farnham PJ. Insights from genomic profiling of transcription factors. Nat Rev Genet. 2009;10:605–16.PubMedPubMedCentralGoogle Scholar
  61. Fernandez-Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, et al. The Sol Genomics Network (SGN)-from genotype to phenotype to breeding. Nucleic Acids Res. 2015;43:D1036–41.PubMedGoogle Scholar
  62. Finotello F, Di Camillo B. Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis. Brief Funct Genomics. 2015;14:130–42.PubMedGoogle Scholar
  63. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh P-R, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet. 2015;47:1228–35.PubMedPubMedCentralGoogle Scholar
  64. Fisher RA. XV.—the correlation between relatives on the supposition of mendelian inheritance. Trans R Soc Edinb. 1918;52:399–433.Google Scholar
  65. Fisher RA. Statistical methods for research workers. Can Med Assoc J. 1932;27:460.Google Scholar
  66. Flint-Garcia SA, Thornsberry JM, Buckler ES 4th. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol. 2003;54:357–74.PubMedGoogle Scholar
  67. Franke A, McGovern DPB, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–25.PubMedPubMedCentralGoogle Scholar
  68. Furey TS. ChIP–seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions. Nat Rev Genet. 2012;13:840–52.PubMedPubMedCentralGoogle Scholar
  69. Galton F. Regression toward mediocrity in hereditary stature. J Anthropol Inst Gt Britain Irel. 1886;15:246–63.Google Scholar
  70. Garner C, Slatkin M. On selecting markers for association studies: patterns of linkage disequilibrium between two and three diallelic loci. Genet Epidemiol. 2003;24:57–67.PubMedGoogle Scholar
  71. Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S. Genetic structure and diversity in Oryza sativa L. Genetics. 2005;169:1631–8.PubMedPubMedCentralGoogle Scholar
  72. 1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–73.Google Scholar
  73. Gerasimova A, Chavez L, Li B, Seumois G, Greenbaum J, Rao A, et al. Predicting cell types and genetic variations contributing to disease by combining GWAS and epigenetic data (Y-H Hsu, Ed). PLoS One. 2013;8:e54359.PubMedPubMedCentralGoogle Scholar
  74. Gianola D, Rosa GJM. One hundred years of statistical developments in animal breeding. Annu Rev Anim Biosci. 2015;3:19–56.PubMedGoogle Scholar
  75. Gianola D, van Kaam JBCHM. Reproducing kernel hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics. 2008;178:2289–303.PubMedPubMedCentralGoogle Scholar
  76. Gibbs RA, Taylor JF, Van Tassell CP, Barendse W, Eversole KA, Gill CA, et al. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science. 2009;324:528–32.PubMedGoogle Scholar
  77. Gibson G. Hints of hidden heritability in GWAS. Nat Genet. 2010;42:558–60.PubMedGoogle Scholar
  78. Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet. 2012;13:135–45.PubMedPubMedCentralGoogle Scholar
  79. Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron. 2011;70:898–907.PubMedPubMedCentralGoogle Scholar
  80. Giresi PG, Lieb JD. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). Methods. 2009;48:233–9.PubMedPubMedCentralGoogle Scholar
  81. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 2007;17:877–85.PubMedPubMedCentralGoogle Scholar
  82. Glazier AM, Nadeau JH, Aitman TJ. Finding genes that underlie complex traits. Science. 2002;298:2345–9.PubMedGoogle Scholar
  83. Goddard M. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica. 2009;136:245–57.PubMedGoogle Scholar
  84. Golan D, Lander ES, Rosset S. Measuring missing heritability: inferring the contribution of common variants. Proc Natl Acad Sci. 2014;111:E5272–81.PubMedGoogle Scholar
  85. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128:635–8.PubMedGoogle Scholar
  86. Gore MA, Chia J-M, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, et al. A first-generation haplotype map of maize. Science. 2009;326:1115–7.PubMedGoogle Scholar
  87. Graur D, Zheng Y, Price N, Azevedo RBR, Zufall RA, Elhaik E. On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol. 2013;5:578–90.PubMedPubMedCentralGoogle Scholar
  88. Green JM, Appel H, Rehrig EM, Harnsomburana J, Chang J-F, Balint-Kurti P, et al. PhenoPhyte: a flexible affordable method to quantify 2D phenotypes from imagery. Plant Methods. 2012;8:45.PubMedPubMedCentralGoogle Scholar
  89. Grob S, Schmid MW, Grossniklaus U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol Cell. 2014;55:678–93.PubMedGoogle Scholar
  90. Groenen MAM, Amaral A, Megens HJ, et al. The porcine HapMap project: genome-wide assessment of nucleotide diversity, haplotype diversity and footprints of selection in the pig. In: Abstract from plant and animal genomes XVIII conference. San Diego; 2010.Google Scholar
  91. Grubert F, Zaugg JB, Kasowski M, Ursu O, Spacek DV, Martin AR, et al. Genetic control of chromatin states in humans involves local and distal chromosomal interactions. Cell. 2015;162:1051–65.PubMedPubMedCentralGoogle Scholar
  92. Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson BV, Zusmanovich P, et al. Many sequence variants affecting diversity of adult human height. Nat Genet. 2008;40:609–15.PubMedGoogle Scholar
  93. Gusev A, Bhatia G, Zaitlen N, Vilhjalmsson BJ, Diogo D, Stahl EA, et al. Quantifying missing heritability at known GWAS loci. PLoS Genet. 2013;9:10–4.Google Scholar
  94. Gusev A, Lee SH, Trynka G, Finucane H, Vilhjálmsson BJ, Xu H, et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am J Hum Genet. 2014;95:535–52.PubMedPubMedCentralGoogle Scholar
  95. Han Y, Gao S, Muegge K, Zhang W, Zhou B. Advanced applications of RNA sequencing and challenges. Bioinform Biol Insights. 2015;9:29–46.PubMedPubMedCentralGoogle Scholar
  96. Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123:2145–56.PubMedPubMedCentralGoogle Scholar
  97. Hangauer MJ, Vaughn IW, McManus MT, Hindorff L, Sethupathy P, Junkins H, et al. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs (JL Rinn, Ed). PLoS Genet. 2013;9:e1003569.PubMedPubMedCentralGoogle Scholar
  98. HapMap CTI. The International HapMap Project. Nature. 2003;426:789–96.Google Scholar
  99. Harrison MJ. Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol. 2005;59:19–42.PubMedGoogle Scholar
  100. Hartmann A, Czauderna T, Hoffmann R, Stein N, Schreiber F. HTPheno: an image analysis pipeline for high-throughput plant phenotyping. BMC Bioinformatics. 2011;12:148.PubMedPubMedCentralGoogle Scholar
  101. Haseman JK, Elston RC. The investigation of linkage between a quantitative trait and a marker locus. Behav Genet. 1972;2:3–19.PubMedGoogle Scholar
  102. Hayes B. Overview of statistical methods for genome-wide association studies (GWAS). Methods Mol Biol. 2013;1019:149–69.PubMedGoogle Scholar
  103. Hayes B, Goddard ME. The distribution of the effects of genes affecting quantitative traits in livestock. Genet Sel Evol. 2001;33:209–29.PubMedPubMedCentralGoogle Scholar
  104. Hayes BJ, Visscher PM, Goddard ME. Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res (Camb). 2009;91:47–60.Google Scholar
  105. Heath KD, Tiffin P. Context dependence in the coevolution of plant and rhizobial mutualists. Proc Biol Sci. 2007;274:1905–12.PubMedPubMedCentralGoogle Scholar
  106. Heffner EL, Sorrells ME, Jannink J-L. Genomic selection for crop improvement. Crop Sci. 2009;49:1.Google Scholar
  107. Henderson CR. Estimation of variance and covariance components. Biometrics. 1953;9:226–52.Google Scholar
  108. Henderson C. Best linear unbiased estimation and prediction under a selection model. Biometrics. 1975;31:423–47.PubMedGoogle Scholar
  109. Henderson CR. A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values. Biometrics. 1976;32:69–83.Google Scholar
  110. Herwig R, Hardt C, Lienhard M, Kamburov A. Analyzing and interpreting genome data at the network level with ConsensusPathDB. Nat Protoc. 2016;11:1889–907.PubMedGoogle Scholar
  111. Hill WG, Robertson A. Linkage disequilibrium in finite populations. Theor Appl Genet. 1968;38:226–31.PubMedGoogle Scholar
  112. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–7.PubMedPubMedCentralGoogle Scholar
  113. Holland JB, Nyquist WE, Cervantes-Martinez CT. Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev. 2003;22:9–112.Google Scholar
  114. Houle D, Govindaraju DR, Omholt S. Phenomics: the next challenge. Nat Rev Genet. 2010;11:855–66.PubMedGoogle Scholar
  115. Huber CD, Nordborg M, Hermisson J, Hellmann I. Keeping it local: evidence for positive selection in Swedish Arabidopsis thaliana. Mol Biol Evol. 2014;31:3026–39.PubMedPubMedCentralGoogle Scholar
  116. Ioannidis JP, Patsopoulos NA, Evangelou E. Heterogeneity in meta-analyses of genome-wide association investigations. PLoS One. 2007;2:e841.PubMedPubMedCentralGoogle Scholar
  117. Jeffreys AJ, Kauppi L, Neumann R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet. 2001;29:217–22.PubMedGoogle Scholar
  118. Jeffries MA, Sawalha AH. Autoimmune disease in the epigenetic era: how has epigenetics changed our understanding of disease and how can we expect the field to evolve? Expert Rev Clin Immunol. 2015;11:45–58.PubMedPubMedCentralGoogle Scholar
  119. Jia P, Zheng S, Long J, Zheng W, Zhao Z. dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks. Bioinformatics. 2011;27:95–102.PubMedGoogle Scholar
  120. Jiang C, Pugh BF. Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet. 2009;10:161–72.PubMedPubMedCentralGoogle Scholar
  121. Jin L, Zuo X-Y, Su W-Y, Zhao X-L, Yuan M-Q, Han L-Z, et al. Pathway-based analysis tools for complex diseases: a review. Genomics Proteomics Bioinformatics. 2014;12:210–20.PubMedPubMedCentralGoogle Scholar
  122. John S, Sabo PJ, Thurman RE, Sung M-H, Biddie SC, Johnson TA, et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet. 2011;43:264–8.PubMedGoogle Scholar
  123. Jordan KW, Wang S, Lun Y, Gardiner L-J, MacLachlan R, Hucl P, et al. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol. 2015;16:48.PubMedPubMedCentralGoogle Scholar
  124. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24.PubMedPubMedCentralGoogle Scholar
  125. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, et al. Efficient control of population structure in model organism association mapping. Genetics. 2008;178:1709–23.PubMedPubMedCentralGoogle Scholar
  126. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-Y, Freimer NB, et al. Variance component model to account for sample structure in genome-wide association studies. Nat Genet. 2010;42:348–54.PubMedPubMedCentralGoogle Scholar
  127. Kang Y, Sakiroglu M, Krom N, Stanton-Geddes J, Wang M, Lee YC, et al. Genome-wide association of drought-related and biomass traits with HapMap SNPs in Medicago truncatula. Plant Cell Environ. 2015;38:1997–2011.PubMedGoogle Scholar
  128. Karaletsos T, Stegle O, Dreyer C, Winn J, Borgwardt KM. ShapePheno: unsupervised extraction of shape phenotypes from biological image collections. Bioinformatics. 2012;28:1001–8.PubMedGoogle Scholar
  129. Karczewski KJ, Dudley JT, Kukurba KR, Chen R, Butte AJ, Montgomery SB, et al. Systematic functional regulatory assessment of disease-associated variants. Proc Natl Acad Sci U S A. 2013;110:9607–12.PubMedPubMedCentralGoogle Scholar
  130. Keene MA, Corces V, Lowenhaupt K, Elgin SC. DNase I hypersensitive sites in Drosophila chromatin occur at the 5′ ends of regions of transcription. Proc Natl Acad Sci U S A. 1981;78:143–46.Google Scholar
  131. Kellis M, Wold B, Snyder MP, Bernstein BE, Kundaje A, Marinov GK, et al. Defining functional DNA elements in the human genome. Proc Natl Acad Sci U S A. 2014;111:6131–8.PubMedPubMedCentralGoogle Scholar
  132. Kemper KE, Reich CM, Bowman PJ, Vander Jagt CJ, Chamberlain AJ, Mason BA, et al. Improved precision of QTL mapping using a nonlinear Bayesian method in a multi-breed population leads to greater accuracy of across-breed genomic predictions. Genet Sel Evol. 2015;47:29.PubMedPubMedCentralGoogle Scholar
  133. Kim T-K, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465:182–7.PubMedPubMedCentralGoogle Scholar
  134. Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9:29.PubMedPubMedCentralGoogle Scholar
  135. Korte A, Vilhjálmsson BJ, Segura V, Platt A, Long Q, Nordborg M. A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nat Genet. 2012;44:1066–71.PubMedPubMedCentralGoogle Scholar
  136. Kruuk LE. Estimating genetic parameters in natural populations using the “animal model”. Philos Trans R Soc Lond B Biol Sci. 2004;359:873–90.PubMedPubMedCentralGoogle Scholar
  137. Ku CS, Naidoo N, Wu M, Soong R. Studying the epigenome using next generation sequencing. J Med Genet. 2011;48:721–30.PubMedGoogle Scholar
  138. Lander ES, Schork NJ. Genetic dissection of complex traits. Science. 1994;265:2037–48.PubMedGoogle Scholar
  139. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.PubMedGoogle Scholar
  140. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467:832–8.PubMedPubMedCentralGoogle Scholar
  141. Le TBK, Imakaev MV, Mirny LA, Laub MT. High-resolution mapping of the spatial organization of a bacterial chromosome. Science. 2013;342:731–4.PubMedPubMedCentralGoogle Scholar
  142. Lee C-K, Shibata Y, Rao B, Strahl BD, Lieb JD. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet. 2004;36:900–5.PubMedGoogle Scholar
  143. Lee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet. 2011;88:294–305.PubMedPubMedCentralGoogle Scholar
  144. Lee SH, Yang J, Chen GB, Ripke S, Stahl EA, Hultman CM, et al. Estimation of SNP heritability from dense genotype data. Am J Hum Genet. 2013;93:1151–5.PubMedPubMedCentralGoogle Scholar
  145. Leiserson MDM, Eldridge JV, Ramachandran S, Raphael BJ. Network analysis of GWAS data. Curr Opin Genet Dev. 2013;23:602–10.PubMedGoogle Scholar
  146. Lettre G, Jackson AU, Gieger C, Schumacher FR, Berndt SI, Sanna S, et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat Genet. 2008;40:584–91.PubMedPubMedCentralGoogle Scholar
  147. Lewontin RC. The interaction of selection and linkage. I. General considerations; heterotic models. Genetics. 1964;49:49–67.PubMedPubMedCentralGoogle Scholar
  148. Li Y, Ghosh D. Meta-analysis based on weighted ordered P-values for genomic data with heterogeneity. BMC Bioinformatics. 2014;15:226.PubMedPubMedCentralGoogle Scholar
  149. Li Y, Haseneyer G, Schön C, Ankerst D, Korzun V, Wilde P, et al. High levels of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cereale L.) genes involved in frost response. BMC Plant Biol. 2011;11:1–14.Google Scholar
  150. Li H, Chen H, Liu F, Ren C, Wang S, Bo X, et al. Functional annotation of HOT regions in the human genome: implications for human disease and cancer. Sci Rep. 2015a;5:11633.PubMedPubMedCentralGoogle Scholar
  151. Li L, Lyu X, Hou C, Takenaka N, Nguyen HQ, Ong C-T, et al. Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. Mol Cell. 2015b;58:216–31.PubMedPubMedCentralGoogle Scholar
  152. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93.PubMedPubMedCentralGoogle Scholar
  153. Ligthart S, Marzi C, Aslibekyan S, Mendelson MM, Conneely KN, Tanaka T, et al. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol. 2016;17:255.PubMedPubMedCentralGoogle Scholar
  154. Lin X, Barton S, Holbrook JD. How to make DNA methylome wide association studies more powerful. Epigenomics. 2016;8:1117–29.PubMedPubMedCentralGoogle Scholar
  155. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012;28:2397–9.PubMedGoogle Scholar
  156. Lipka AE, Kandianis CB, Hudson ME, Yu J, Drnevich J, Bradbury PJ, et al. From association to prediction: statistical methods for the dissection and selection of complex traits in plants. Curr Opin Plant Biol. 2015;24:110–8.PubMedGoogle Scholar
  157. Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D. FaST linear mixed models for genome-wide association studies. Nat Methods. 2011;8:833–5.PubMedGoogle Scholar
  158. Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, et al. A versatile gene-based test for genome-wide association studies. Am J Hum Genet. 2010;87:139–45.PubMedPubMedCentralGoogle Scholar
  159. Liu C, Wang C, Wang G, Becker C, Zaidem M, Weigel D. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res. 2016;26:1057–68.PubMedPubMedCentralGoogle Scholar
  160. Long Q, Rabanal FA, Meng D, Huber CD, Farlow A, Platzer A, et al. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat Genet. 2013;45:884–90.PubMedPubMedCentralGoogle Scholar
  161. de Los Campos G, Vazquez AI, Fernando R, Klimentidis YC, Sorensen D. Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genet. 2013;9:e1003608.PubMedGoogle Scholar
  162. Lynch M, Walsh B. Genetics and analysis of quantitative traits. Sunderland, MA: Sinauer Associates; 1998.Google Scholar
  163. Mackay TFC. Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet. 2014;15:22–33.PubMedGoogle Scholar
  164. MacLeod IM, Bowman PJ, Vander Jagt CJ, Haile-Mariam M, Kemper KE, Chamberlain AJ, et al. Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits. BMC Genomics. 2016;17:144.PubMedPubMedCentralGoogle Scholar
  165. Magi R, Morris AP. GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics. 2010;11:288.PubMedPubMedCentralGoogle Scholar
  166. Maher B. The case of the missing heritability. Nature. 2008;456:18–21.PubMedGoogle Scholar
  167. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.PubMedPubMedCentralGoogle Scholar
  168. Marbouty M, Le Gall A, Cattoni DI, Cournac A, Koh A, Fiche J-B, et al. Condensin- and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and super-resolution imaging. Mol Cell. 2015;59:588–602.PubMedGoogle Scholar
  169. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.PubMedPubMedCentralGoogle Scholar
  170. Mellor J, Adam M, Robert F, Larochelle M, Gaudreau L, Adkins MW, et al. The dynamics of chromatin remodeling at promoters. Mol Cell. 2005;19:147–57.PubMedGoogle Scholar
  171. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, et al. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33(Database issue):D433–7.Google Scholar
  172. Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–29.PubMedPubMedCentralGoogle Scholar
  173. Mewes HW, Heumann K, Kaps A, Mayer K, Pfeiffer F, Stocker S, et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 1999;27:44–8.PubMedPubMedCentralGoogle Scholar
  174. Meyer CA, Liu XS. Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat Rev Genet. 2014;15:709–21.PubMedPubMedCentralGoogle Scholar
  175. Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL, et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet. 2013;45:353–61.PubMedPubMedCentralGoogle Scholar
  176. Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I, et al. Recommendations for the design and analysis of epigenome-wide association studies. Nat Methods. 2013;10:949–55.PubMedGoogle Scholar
  177. Miska EA. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev. 2005;15:563–8.PubMedGoogle Scholar
  178. Moser G, Lee SH, Hayes BJ, Goddard ME, Wray NR, Visscher PM. Simultaneous discovery, estimation and prediction analysis of complex traits using a Bayesian mixture model. PLoS Genet. 2015;11(4):e1004969.PubMedPubMedCentralGoogle Scholar
  179. Mousseau TA, Ritland K, Heath DD. A novel method for estimating heritability using molecular markers. Heredity (Edinb). 1998;80:218–24.Google Scholar
  180. Muller-Myhsok B, Abel L. Genetic analysis of complex diseases. Science. 1997;275:1328–9.PubMedGoogle Scholar
  181. Muñoz PR, Resende MFR, SA G, Deon M, Resende V. Unraveling additive from nonadditive effects using genomic relationship matrices. Genetics. 2014;198:1759–68.PubMedPubMedCentralGoogle Scholar
  182. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, et al. Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell. 2009;21:2194–202.PubMedPubMedCentralGoogle Scholar
  183. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008;320(5881):1344–9.PubMedPubMedCentralGoogle Scholar
  184. Nagamine Y, Pong-Wong R, Navarro P, Vitart V, Hayward C, Rudan I, et al. Localising loci underlying complex trait variation using Regional Genomic Relationship Mapping. PLoS One. 2012;7(10):e46501.PubMedPubMedCentralGoogle Scholar
  185. Nei M, Li WH. Linkage disequilibrium in subdivided populations. Genetics. 1973;75:213–9.PubMedPubMedCentralGoogle Scholar
  186. Nica AC, Montgomery SB, Dimas AS, Stranger BE, Beazley C, Barroso I, Dermitzakis ET. Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet. 2010;6:e1000895.PubMedPubMedCentralGoogle Scholar
  187. Nicolae DL, Gamazon E, Zhang W, Duan S, Eileen Dolan M, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010;6(4):e1000895.Google Scholar
  188. Nordborg M. Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization. Genetics. 2000;154:923–9.PubMedPubMedCentralGoogle Scholar
  189. Nordborg M, Donnelly P. The coalescent process with selfing. Genetics. 1997;146:1185–95.PubMedPubMedCentralGoogle Scholar
  190. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29–34.PubMedPubMedCentralGoogle Scholar
  191. Onengut-Gumuscu S, Chen W-M, Burren O, Cooper NJ, Quinlan AR, Mychaleckyj JC, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet. 2015;47:381–6.PubMedPubMedCentralGoogle Scholar
  192. Paape T, Bataillon T, Zhou P, Kono TJY, Briskine R, Young ND, et al. Selection, genome-wide fitness effects and evolutionary rates in the model legume Medicago truncatula. Mol Ecol. 2013;22:3525–38.PubMedGoogle Scholar
  193. Pal LR, Yu C-H, Mount SM, Moult J. Insights from GWAS: emerging landscape of mechanisms underlying complex trait disease. BMC Genomics. 2015;16(Suppl 8):S4.PubMedPubMedCentralGoogle Scholar
  194. Panagiotou OA, Willer CJ, Hirschhorn JN, Ioannidis JPA. The power of meta-analysis in genome-wide association studies. Annu Rev Genomics Hum Genet. 2013;14:441–65.PubMedPubMedCentralGoogle Scholar
  195. Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10:669–80.PubMedPubMedCentralGoogle Scholar
  196. Pavy N, Namroud M-C, Gagnon F, Isabel N, Bousquet J. The heterogeneous levels of linkage disequilibrium in white spruce genes and comparative analysis with other conifers. Heredity. 2012;108(3):273–84.PubMedGoogle Scholar
  197. Peri S, Navarro JD, Kristiansen TZ, Amanchy R, Surendranath V, Muthusamy B, et al. Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res. 2004;32:D497–501.PubMedPubMedCentralGoogle Scholar
  198. Pers TH, Karjalainen JM, Chan Y, Westra H-J, Wood AR, Yang J, et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat Commun. 2015;6:5890.PubMedPubMedCentralGoogle Scholar
  199. Pickrell JK. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am J Hum Genet. 2014;94:559–73.PubMedPubMedCentralGoogle Scholar
  200. Pratt D, Chen J, Welker D, Rivas R, Pillich R, Rynkov V, et al. NDEx, the network data exchange. Cell Syst. 2015;1:302–5.PubMedPubMedCentralGoogle Scholar
  201. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.PubMedGoogle Scholar
  202. Pritchard JK, Rosenberg NA. Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet. 1999;65:220–8.PubMedPubMedCentralGoogle Scholar
  203. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.PubMedPubMedCentralGoogle Scholar
  204. Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet. 2011;12:529–41.PubMedPubMedCentralGoogle Scholar
  205. Rands CM, Meader S, Ponting CP, Lunter G. 8.2% of the human genome is constrained: variation in rates of turnover across functional element classes in the human lineage. PLoS Genet. 2014;10:e1004525.PubMedPubMedCentralGoogle Scholar
  206. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159:1665–80.PubMedPubMedCentralGoogle Scholar
  207. Raven LA, Cocks BG, Kemper KE, Chamberlain AJ, Vander Jagt CJ, Goddard ME, et al. Targeted imputation of sequence variants and gene expression profiling identifies twelve candidate genes associated with lactation volume, composition and calving interval in dairy cattle. Mamm Genome. 2016;27:81–97.PubMedGoogle Scholar
  208. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype–phenotype interactions. Nat Rev Genet. 2015;16:85–97.Google Scholar
  209. Ritland K. Marker-based method for inferences about quantitative inheritance in natural populations. Evolution. 1996;50:1062–73.PubMedGoogle Scholar
  210. Ritland K. Marker-inferred relatedness as a tool for detecting heritability in nature. Mol Ecol. 2000;9:1195–204.PubMedGoogle Scholar
  211. Rodgers-Melnick E, Vera DL, Bass HW, Buckler ES. Open chromatin reveals the functional maize genome. Proc Natl Acad Sci U S A. 2016;113:E3177–84.PubMedPubMedCentralGoogle Scholar
  212. Rossin EJ, Lage K, Raychaudhuri S, Xavier RJ, Tatar D, Benita Y, et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet. 2011;7(1):e1001273.PubMedPubMedCentralGoogle Scholar
  213. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347–55.PubMedPubMedCentralGoogle Scholar
  214. Sardiu ME, Washburn MP. Building protein-protein interaction networks with proteomics and informatics tools. J Biol Chem. 2011;286:23645–51.PubMedPubMedCentralGoogle Scholar
  215. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PIW, Chen H, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.PubMedGoogle Scholar
  216. Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations with regulatory information in the human genome. Genome Res. 2012;22:1748–59.PubMedPubMedCentralGoogle Scholar
  217. Schones DE, Cui K, Cuddapah S, Roh T-Y, Barski A, Wang Z, et al. Dynamic regulation of nucleosome positioning in the human genome. Cell. 2008;132:887–98.PubMedGoogle Scholar
  218. Schork AJ, Thompson WK, Pham P, Torkamani A, Roddey JC, Sullivan PF, et al. All SNPs are not created equal: genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs (G Gibson, Ed). PLoS Genet. 2013;9:e1003449.PubMedPubMedCentralGoogle Scholar
  219. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316:1341–5.PubMedPubMedCentralGoogle Scholar
  220. Scott LJ, Muglia P, Kong XQ, Guan W, Flickinger M, Upmanyu R, et al. Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proc Natl Acad Sci U S A. 2009;106:7501–6.PubMedPubMedCentralGoogle Scholar
  221. Shimada-Sugimoto M, Otowa T, Miyagawa T, Umekage T, Kawamura Y, Bundo M, et al. Epigenome-wide association study of DNA methylation in panic disorder. Clin Epigenetics. 2017;9:6.PubMedPubMedCentralGoogle Scholar
  222. Shirali M, Pong-Wong R, Navarro P, Knott S, Hayward C, Vitart V, et al. Regional heritability mapping method helps explain missing heritability of blood lipid traits in isolated populations. Heredity (Edinb). 2016;116:333–8.Google Scholar
  223. Shu W, Chen H, Bo X, Wang S. Genome-wide analysis of the relationships between DNaseI HS, histone modifications and gene expression reveals distinct modes of chromatin domains. Nucleic Acids Res. 2011;39:7428–43.PubMedPubMedCentralGoogle Scholar
  224. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15:1034–50.PubMedPubMedCentralGoogle Scholar
  225. van der Sijde MR, Ng A, Fu J. Systems genetics: from GWAS to disease pathways. Biochim Biophys Acta Mol Basis Dis. 2014;1842:1903–9.Google Scholar
  226. Silventoinen K, Sammalisto S, Perola M, Boomsma DI, Cornes BK, Davis C, et al. Heritability of adult body height: a comparative study of twin cohorts in eight countries. Twin Res. 2003;6:399–408.PubMedGoogle Scholar
  227. Slatkin M. Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet. 2008;9:477–85.PubMedPubMedCentralGoogle Scholar
  228. van der Sluis S, Verhage M, Posthuma D, Dolan CV. Phenotypic complexity, measurement bias, and poor phenotypic resolution contribute to the missing heritability problem in genetic association studies. PLoS One. 2010;5(11):e13929.PubMedPubMedCentralGoogle Scholar
  229. Soulé M. Phenetics of natural populations I. Phenetic relationships of insular populations of the side-blotched lizard. Evolution. 1967;21:584–91.PubMedGoogle Scholar
  230. Sozzani R, Busch W, Spalding EP, Benfey PN. Advanced imaging techniques for the study of plant growth and development. Trends Plant Sci. 2014;19:304–10.PubMedPubMedCentralGoogle Scholar
  231. Spain SL, Barrett JC. Strategies for fine-mapping complex traits. Hum Mol Genet. 2015;24:R111–9.PubMedPubMedCentralGoogle Scholar
  232. Speed D, Balding DJ. MultiBLUP: improved SNP-based prediction for complex traits. Genome Res. 2014;24:1550–7.PubMedPubMedCentralGoogle Scholar
  233. Speed D, Balding DJ. Relatedness in the post-genomic era: is it still useful? Nat Rev Genet. 2015;16:33–44.PubMedGoogle Scholar
  234. Speed D, Hemani G, Johnson MR, Balding DJ. Improved heritability estimation from genome-wide SNPs. Am J Hum Genet. 2012;91:1011–21.PubMedPubMedCentralGoogle Scholar
  235. Speed D, Hemani G, Johnson MR, Balding DJ. Response to Lee et al.: SNP-based heritability analysis with dense data. Am J Hum Genet. 2013;93:1155–7.PubMedPubMedCentralGoogle Scholar
  236. Stacey G, Libault M, Brechenmacher L, Wan J, May GD. Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol. 2006;9:110–21.PubMedGoogle Scholar
  237. Stanton-Geddes J, Paape T, Epstein B, Briskine R, Yoder J, Mudge J, et al. Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula. PLoS One. 2013;8(5):e65688.PubMedPubMedCentralGoogle Scholar
  238. Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006;34:D535–9.PubMedGoogle Scholar
  239. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.PubMedPubMedCentralGoogle Scholar
  240. Sun L, Wu R. Mapping complex traits as a dynamic system. Phys Life Rev. 2015;13:155–85.PubMedPubMedCentralGoogle Scholar
  241. Svishcheva GR, Axenovich TI, Belonogova NM, van Duijn CM, Aulchenko YS. Rapid variance components-based method for whole-genome association analysis. Nat Genet. 2012;44:1166–70.PubMedGoogle Scholar
  242. Swarts K, Li HH, Navarro JAR, An D, Romay MC, Hearne S, Acharya C, et al. Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants. Plant Genome. 2014;7:1–12.Google Scholar
  243. Swerdlow DI, Kuchenbaecker KB, Shah S, Sofat R, Holmes MV, White J, et al. Selecting instruments for Mendelian randomization in the wake of genome-wide association studies. Int J Epidemiol. 2016;45(5):1600–16.PubMedPubMedCentralGoogle Scholar
  244. Tak YG, Farnham PJ. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics Chromatin. 2015;8:57.PubMedPubMedCentralGoogle Scholar
  245. Tasan M, Musso G, Hao T, Vidal M, MacRae CA, Roth FP. Selecting causal genes from genome-wide association studies via functionally coherent subnetworks. Nat Methods. 2014;12:154–9.PubMedPubMedCentralGoogle Scholar
  246. Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci U S A. 2001;98:9161–6.PubMedPubMedCentralGoogle Scholar
  247. Teo YY, Fry AE, Bhattacharya K, Small KS, Kwiatkowski DP, Clark TG. Genome-wide comparisons of variation in linkage disequilibrium. Genome Res. 2009;19:1849–60.PubMedPubMedCentralGoogle Scholar
  248. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74.PubMedPubMedCentralGoogle Scholar
  249. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5.PubMedPubMedCentralGoogle Scholar
  250. Trynka G, Hunt KA, Bockett NA, Romanos J, Castillejo G, de la Concha EG, et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet. 2012a;43:1193–201.Google Scholar
  251. Trynka G, Sandor C, Han B, Xu H, Stranger BE, Liu XS, et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet. 2012b;45:124–30.PubMedGoogle Scholar
  252. Tsompana M, Buck MJ. Chromatin accessibility: a window into the genome. Epigenetics Chromatin. 2014;7:33.PubMedPubMedCentralGoogle Scholar
  253. Tulah AS, Holloway JW, Sayers I, Yang I, Savarimuthu S, Kim S, et al. Defining the contribution of SNPs identified in asthma GWAS to clinical variables in asthmatic children. BMC Med Genet. 2013;14:100.PubMedPubMedCentralGoogle Scholar
  254. VanLiere JM, Rosenberg NA. Mathematical properties of the r2 measure of linkage disequilibrium. Theor Popul Biol. 2008;74:130–7.PubMedPubMedCentralGoogle Scholar
  255. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91:4414–23.PubMedPubMedCentralGoogle Scholar
  256. VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, et al. Invited review: reliability of genomic predictions for North American Holstein bulls. J Dairy Sci. 2009;92:16–24.PubMedGoogle Scholar
  257. Vastrik I, D’Eustachio P, Schmidt E, Joshi-Tope G, Gopinath G, Croft D, et al. Reactome: a knowledge base of biologic pathways and processes. Genome Biol. 2007;8:R39.PubMedPubMedCentralGoogle Scholar
  258. Vera DL, Madzima TF, Labonne JD, Alam MP, Hoffman GG, Girimurugan SB, et al. Differential nuclease sensitivity profiling of chromatin reveals biochemical footprints coupled to gene expression and functional DNA elements in maize. Plant Cell. 2014;26:3883–93.PubMedPubMedCentralGoogle Scholar
  259. Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36:1–48.Google Scholar
  260. Vinkhuyzen AA, Wray NR, Yang J, Goddard ME, Visscher PM. Estimation and partitioning of heritability in human populations using whole genome analysis methods. Annu Rev Genet. 2013;47:75–95.PubMedPubMedCentralGoogle Scholar
  261. Visscher PM. Sizing up human height variation. Nat Genet. 2008;40:489–90.PubMedGoogle Scholar
  262. Visscher PM, Medland SE, Ferreira MAR, Morley KI, Zhu G, Cornes BK, et al. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet. 2006;2:0316–25.Google Scholar
  263. Visscher PM, Macgregor S, Benyamin B, Zhu G, Gordon S, Medland S, et al. Genome partitioning of genetic variation for height from 11,214 sibling pairs. Am J Hum Genet. 2007;81:1104–10.PubMedPubMedCentralGoogle Scholar
  264. Visscher PM, Hill WG, Wray NR. Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet. 2008;9:255–66.PubMedGoogle Scholar
  265. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet. 2012;90:7–24.PubMedPubMedCentralGoogle Scholar
  266. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 Years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101:5–22.PubMedPubMedCentralGoogle Scholar
  267. Vitezica ZG, Varona L, Legarra A. On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics. 2013;195:1223–30.PubMedPubMedCentralGoogle Scholar
  268. Voight BF, Kang HM, Ding J, Palmer CD, Sidore C, Chines PS, et al. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet. 2012;8(8):e1002793.PubMedPubMedCentralGoogle Scholar
  269. Waddington CH. The epigenotype. Int J Epidemiol. 2012;41:10–3.PubMedGoogle Scholar
  270. Wallace BC, Schmid CH, Lau J, Trikalinos TA, Lau J, Schmid C, et al. Meta-analyst: software for meta-analysis of binary, continuous and diagnostic data. BMC Med Res Methodol. 2009;9:80.PubMedPubMedCentralGoogle Scholar
  271. Wallace JG, Bradbury PJ, Zhang N, Gibon Y, Stitt M, Buckler ES. Association mapping across numerous traits reveals patterns of functional variation in maize. PLoS Genet. 2014;10:e1004845.PubMedPubMedCentralGoogle Scholar
  272. Walter A, Liebisch F, Hund A. Plant phenotyping: from bean weighing to image analysis. Plant Methods. 2015;11:14.PubMedPubMedCentralGoogle Scholar
  273. Wang L, Uilecan IV, Assadi AH, Kozmik CA, Spalding EP. HYPOTrace: image analysis software for measuring hypocotyl growth and shape demonstrated on Arabidopsis seedlings undergoing photomorphogenesis. Plant Physiol. 2009;149:1632–7.PubMedPubMedCentralGoogle Scholar
  274. Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-wide association studies. Nat Rev Genet. 2010;11:843–54.PubMedGoogle Scholar
  275. Wang L, Matsushita T, Madireddy L, Mousavi P, Baranzini SE. PINBPA: cytoscape app for network analysis of GWAS data. Bioinformatics. 2015a;31:262–4.PubMedGoogle Scholar
  276. Wang Q, Yu H, Zhao Z, Jia P. EW_dmGWAS: edge-weighted dense module search for genome-wide association studies and gene expression profiles. Bioinformatics. 2015b;31:2591–4.PubMedPubMedCentralGoogle Scholar
  277. Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet. 2008;40:575–83.PubMedPubMedCentralGoogle Scholar
  278. Weintraub H, Groudine M. Chromosomal subunits in active genes have an altered conformation. Science. 1976;193(4256):848–56.PubMedGoogle Scholar
  279. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1.PubMedPubMedCentralGoogle Scholar
  280. Winkler TW, Day FR, Croteau-Chonka DC, Wood AR, Locke AE, Mägi R, et al. Quality control and conduct of genome-wide association meta-analyses. Nat Protoc. 2014;9:1192–212.PubMedPubMedCentralGoogle Scholar
  281. Wise PM, Challagundla KB, Fabbri M. Epigenetics and microRNAs in cancer. In: Rezaei N, editor. Cancer immunology: a translational medical context. New York: Springer; 2015. p. 285–94.Google Scholar
  282. Wolfe MD, Kulakow P, Rabbi IY, Jannink J-L. Marker-based estimates reveal significant non-additive effects in clonally propagated cassava (Manihot esculenta): implications for the prediction of total genetic value and the selection of varieties. G3 (Bethesda). 2016;6:3497–506.Google Scholar
  283. Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46:1173–86.PubMedPubMedCentralGoogle Scholar
  284. Wray NR. Allele frequencies and the r2 measure of linkage disequilibrium: impact on design and interpretation of association studies. Twin Res Hum Genet. 2005;8:87–94.PubMedGoogle Scholar
  285. WTCCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.Google Scholar
  286. Wu G, Feng X, Stein L. A human functional protein interaction network and its application to cancer data analysis. Genome Biol. 2010;11:R53.PubMedPubMedCentralGoogle Scholar
  287. Xenarios I, Salwínski L, Duan XJ, Higney P, Kim S-M, Eisenberg D. DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 2002;30:303–5.PubMedPubMedCentralGoogle Scholar
  288. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42:565–9.PubMedPubMedCentralGoogle Scholar
  289. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011a;88:76–82.PubMedPubMedCentralGoogle Scholar
  290. Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham JM, et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat Genet. 2011b;43:519–25.PubMedPubMedCentralGoogle Scholar
  291. Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. Advantages and pitfalls in the application of mixed-model association methods. Nat Genet. 2014;46:100–6.PubMedPubMedCentralGoogle Scholar
  292. Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AAE, Lee SH, et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat Genet. 2015a;47:1114–20.PubMedPubMedCentralGoogle Scholar
  293. Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AAE, Lee SH, et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat Genet. 2015b;47:1114–20.PubMedPubMedCentralGoogle Scholar
  294. Yang J, Fritsche LG, Zhou X, Abecasis G, International Age-Related Macular Degeneration Genomics Consortium. A scalable Bayesian method for integrating functional information in genome-wide association studies. Am J Hum Genet. 2017;101:404–16.PubMedPubMedCentralGoogle Scholar
  295. Yao H, Zhou Q, Li J, Smith H, Yandeau M, Nikolau BJ, et al. Molecular characterization of meiotic recombination across the 140-kb multigenic a1-sh2 interval of maize. Proc Natl Acad Sci U S A. 2002;99:6157–62.PubMedPubMedCentralGoogle Scholar
  296. Yong W-S, Hsu F-M, Chen P-Y. Profiling genome-wide DNA methylation. Epigenetics Chromatin. 2016;9:26.PubMedPubMedCentralGoogle Scholar
  297. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38:203–8.PubMedGoogle Scholar
  298. Yu C-P, Lin J-J, Li W-H. Positional distribution of transcription factor binding sites in Arabidopsis thaliana. Sci Rep. 2016;6:25164.PubMedPubMedCentralGoogle Scholar
  299. Zeggini E, Ioannidis JPA. Meta-analysis in genome-wide association studies. Pharmacogenomics. 2009;10:191–201.PubMedPubMedCentralGoogle Scholar
  300. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316:1336–41.PubMedPubMedCentralGoogle Scholar
  301. Zhang D, Bai G, Zhu C, Yu J, Carver BF. Genetic diversity, population structure, and linkage disequilibrium in U.S. elite winter wheat. Plant Genome J. 2010a;3:117–27.Google Scholar
  302. Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, et al. Mixed linear model approach adapted for genome-wide association studies. Nat Genet. 2010b;42:355–60.PubMedPubMedCentralGoogle Scholar
  303. Zhang Y, McCord RP, Ho Y-J, Lajoie BR, Hildebrand DG, Simon AC, et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell. 2012;148:908–21.PubMedPubMedCentralGoogle Scholar
  304. Zhu C, Gore M, Buckler ES, Yu J. Status and prospects of association mapping in plants. Plant Genome J. 2008;1:5–20.Google Scholar
  305. Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci. 2012;109:1193–8.PubMedGoogle Scholar
  306. Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S, et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci U S A. 2014;111:E455–64.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Dunia Pino Del Carpio
    • 1
  • Roberto Lozano
    • 2
  • Marnin D. Wolfe
    • 3
  • Jean-Luc Jannink
    • 4
  1. 1.Agriculture Research DivisionAgriculture VictoriaMelbourneAustralia
  2. 2.Plant Breeding and GeneticsSchool for Integrative Plant Science, Cornell UniversityIthacaUSA
  3. 3.Section on Plant Breeding and GeneticsSchool of Integrative Plant Sciences, Cornell UniversityIthacaUSA
  4. 4.United States Department of Agriculture, Agricultural Research ServiceR.W. Holley Center for Agriculture and HealthIthacaUSA

Personalised recommendations