Advertisement

Population Genomics of Animal Domestication and Breed Development

  • Samantha WilkinsonEmail author
  • Pamela Wiener
Chapter
Part of the Population Genomics book series (POGE)

Abstract

Domesticated animals have a rich and complex history, comprising several population-shaping events, which has resulted in an assortment of distinctive phenotypes and highly specialised breeds that meet a variety of human needs. The availability of whole genome sequences and single nucleotide polymorphism (SNP) arrays for the major domestic animal species allows for a thorough interrogation of the genomic landscape of breeds using population genomic approaches. In this chapter, we synthesise insights gained into the processes of domestication and breed development from the patterns of diversity mapped across domestic genomes, with particular focus on cattle (Bos taurus taurus and Bos taurus indicus), chicken (Gallus gallus domesticus), dog (Canis lupus familiaris), pig (Sus scrofa) and sheep (Ovis aries) breeds. First, we evaluate the current state of genome-wide diversity within domestic animals, a topic of importance considering concerns over the continuing erosion of genetic variation within breeds. Second, we review the growing catalogue of selective sweeps found for key phenotypic traits in domestic animals, illustrating that breeds have been intensively selected for a range of breed-defining traits (e.g. coat colour, horn morphology, ear carriage and body size) and production traits (e.g. milk production, muscular conformation, reproduction and meat quality). Finally, we discuss insights into the selection history of domestic animals and the genetic architecture of phenotypic traits and we address the future management of genetic diversity in domestic breeds.

Keywords

Coat colour Dairy breeds Domestication genetics Effective population size Genomic diversity Meat breeds Phenotypic traits Signatures of selection SNPs 

References

  1. Ai H, Huang L, Ren J. Genetic diversity, linkage disequilibrium and selection signatures in Chinese and western pigs revealed by genome-wide SNP markers. PLoS One. 2013;8(2):e56001.  https://doi.org/10.1371/journal.pone.0056001.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ajmone-Marsan P, GLOBALDIV Consortium. A global view of livestock biodiversity and conservation--GLOBALDIV. Anim Genet. 2010;41(Suppl 1):1–5.  https://doi.org/10.1111/j.1365-2052.2010.02036.x.CrossRefPubMedGoogle Scholar
  3. Akey JM, Ruhe AL, Akey DT, Wong AK, Connelly CF, Madeoy J, et al. Tracking footprints of artificial selection in the dog genome. Proc Natl Acad Sci U S A. 2010;107(3):1160–5.  https://doi.org/10.1073/pnas.0909918107.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Amaral AJ, Ferretti L, Megens HJ, Crooijmans RP, Nie H, Ramos-Onsins SE, et al. Genome-wide footprints of pig domestication and selection revealed through massive parallel sequencing of pooled DNA. PLoS One. 2011;6:e14782.  https://doi.org/10.1371/journal.pone.0014782.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Andersson L, Georges M. Domestic-animal genomics: deciphering the genetics of complex traits. Nat Rev Genet. 2004;5(3):202–12.  https://doi.org/10.1038/nrg1294.CrossRefPubMedGoogle Scholar
  6. Andersson L, Plastow G. Molecular genetics of coat colour variation. In: Rothschild MF, Ruvinsky A, editors. The genetics of the pig. Oxon, UK: CAB International; 2011. p. 38–50.CrossRefGoogle Scholar
  7. Archibald AL, Bolund L, Churcher C, Fredholm M, Groenen MAM, Harlizius B, et al. Pig genome sequence – analysis and publication strategy. BMC Genomics. 2010;11:438.  https://doi.org/10.1186/1471-2164-11-438.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Badke YM, Bates RO, Ernst CW, Schwab C, Steibel JP. Estimation of linkage disequilibrium in four US pig breeds. BMC Genomics. 2012;13:24.  https://doi.org/10.1186/1471-2164-13-24.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bannasch D, Young A, Myers J, Truvé K, Dickinson P, Gregg J, et al. Localization of canine brachycephaly using an across breed mapping approach. PLoS One. 2010;5(3):e9632.  https://doi.org/10.1371/journal.pone.0009632.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Banos G, Woolliams JA, Woodward BW, Forbes AB, Coffey MP. Impact of single nucleotide polymorphisms in leptin, leptin receptor, growth hormone receptor, and diacylglycerol acyltransferase (DGAT1) gene loci on milk production, feed, and body energy traits of UK dairy cows. J Dairy Sci. 2008;91:3190–200.  https://doi.org/10.3168/jds.2007-0930.CrossRefPubMedGoogle Scholar
  11. Bateson P, Sargan DR. Analysis of the canine genome and canine health: a commentary. Vet J. 2012;194(3):265–9.  https://doi.org/10.1016/j.tvjl.2012.09.001.CrossRefPubMedGoogle Scholar
  12. Berry C, Thomas M, Langley B, Sharma M, Kambadur R. Single cysteine to tyrosine transition inactivates the growth inhibitory function of piedmontese myostatin. Am J Physiol Cell Physiol. 2002;283(1):C135–41.CrossRefGoogle Scholar
  13. Berry DP, Friggens NC, Lucy M, Roche JR. Milk production and fertility in cattle. Annu Rev Anim Biosci. 2016;4:269–90.  https://doi.org/10.1146/annurev-animal-021815-111406.CrossRefPubMedGoogle Scholar
  14. Bickart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, Cjam S, et al. Single-molecular sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat Genet. 2017;49:643–50.  https://doi.org/10.1038/ng.3802.CrossRefGoogle Scholar
  15. Bosse M, Megens HJ, Madsen O, Paudel Y, Frantz LA, Schook LB, et al. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genet. 2012;8(11):e1003100.  https://doi.org/10.1371/journal.pgen.1003100.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bovine Genome Sequencing and Analysis Consortium. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science. 2009;324:522–8.  https://doi.org/10.1126/science.1169588.CrossRefGoogle Scholar
  17. Bovine HapMap Consortium. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science. 2009;324:528–32.  https://doi.org/10.1126/science.1167936.CrossRefGoogle Scholar
  18. Boyko A, Quignon P, Li L, Schoenenbeck J, Degenhardt J, Lohmueller K, et al. A simple genetic architecture underlies morphological variation in dogs. PLoS Biol. 2010;8:e1000451.  https://doi.org/10.1371/journal.pbio.1000451.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bruford MW, Ginja C, Hoffmann I, Joost S, Orozco-terWengel P, Alberto FJ, et al. Prospects and challenges for the conservation of farm animal genomic resources, 2015-2025. Front Genet. 2015;6:314.  https://doi.org/10.3389/fgene.2015.00314.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Buske B, Sternstein I, Brockmann G. QTL and candidate genes for fecundity in sows. Anim Reprod Sci. 2006;95:167–83.  https://doi.org/10.1016/j.anireprosci.2005.12.015.CrossRefPubMedGoogle Scholar
  21. Cadieu E, Neff MW, Quignon P, Walsh K, Chase K, Parker HG, et al. Coat variation in the domestic dog is governed by variants in three genes. Science. 2009;326:150–3.  https://doi.org/10.1126/science.1177808.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cameron ND, Enser MB. Fatty acid composition of lipid in Longissimus dorsi muscle of Duroc and British Landrace pigs and its relationship with eating quality. Meat Sci. 1991;29:295–307.  https://doi.org/10.1016/0309-1740(91)90009-F.CrossRefPubMedGoogle Scholar
  23. Cavalli-Sforza LL. Population structure and human evolution. Proc R Soc Lond Biol Sci. 1966;164:362–79.CrossRefGoogle Scholar
  24. Chase K, Carrier DR, Adler FR, Jarvik T, Ostrander EA, Lorentzen TD, Lark KG. Genetic basis for systems of skeletal quantitative traits: principal component analysis of the canid skeleton. Proc Natl Acad Sci U S A. 2002;99:9930–5.  https://doi.org/10.1073/pnas.152333099.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cieslak M, Reissmann M, Hofreiter M, Ludwig A. Colours of domestication. Biol Rev Camb Philos Soc. 2011;86:885–99.  https://doi.org/10.1111/j.1469-185X.2011.00177.x.CrossRefPubMedGoogle Scholar
  26. Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet. 2006;38(7):813–8.  https://doi.org/10.1038/ng1810.CrossRefPubMedGoogle Scholar
  27. Clutton-Brock J. A natural history of domesticated mammals. Cambridge: Cambridge University Press; 1999.Google Scholar
  28. Cohen-Zinder M, Seroussi E, Larkin DM, Loor JJ, Evertsvan der Wind A, Lee JH, et al. Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res. 2005;15(7):936–44.  https://doi.org/10.1101/gr.3806705.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Darwin C. The variation of animals and plants under domestication. London: John Murray; 1868.Google Scholar
  30. Dawkins MS, Layton R. Breeding for better welfare: genetic goals for broiler chickens and their parents. Anim Welf. 2012;21:147–55.  https://doi.org/10.7120/09627286.21.2.147.CrossRefGoogle Scholar
  31. DEFRA. UK national action plan on farm animal genetic resources. London: DEFRA; 2006.Google Scholar
  32. DEFRA. Review of molecular characterisation studies relating to UK farm animal genetic resources. London: DEFRA; 2009.Google Scholar
  33. Dreger DL, Rimbault M, Davis BW, Bhatnagar A, Parker HG, Ostrander EA. Whole-genome sequence, SNP chips and pedigree structure: building demographic profiles in domestic dog breeds to optimize genetic-trait mapping. Dis Model Mech. 2016;9(12):1445–60.  https://doi.org/10.1242/dmm.027037.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Druet T, Pérez-Pardal L, Charlier C, Gautier M. Identification of large selective sweeps associated with major genes in cattle. Anim Genet. 2013;44(6):758–62.  https://doi.org/10.1111/age.12073.CrossRefPubMedGoogle Scholar
  35. Druet T, Ahariz N, Cambisano N, Tamma N, Michaux C, Coppieters W, et al. Selection in action: dissecting the molecular underpinnings of the increasing muscle mass of Belgian Blue Cattle. BMC Genomics. 2014;15:796.  https://doi.org/10.1186/1471-2164-15-796.CrossRefPubMedPubMedCentralGoogle Scholar
  36. FAO. In: Scherf BD, Rome PD, editors. The second report on the state of the world’s animal genetic resources for food and agriculture. Rome: FAO Commission on Genetic Resources for Food and Agriculture Assessments; 2015.Google Scholar
  37. Farrell LL, Schoenebeck JJ, Wiener P, Clements DN, Summers KM. The challenges of pedigree dog health: approaches to combating inherited disease. Canine Genet Epidemiol. 2015;2:3.  https://doi.org/10.1186/s40575-015-0014-9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Flink GL, Allen R, Barnett R, Malmstrom H, Peters J, Eriksson J, et al. Establishing the validity of domestication genes using DNA from ancient chickens. Proc Natl Acad Sci U S A. 2014;111(17):6184–9.  https://doi.org/10.1073/pnas.1308939110.CrossRefGoogle Scholar
  39. Flori L, Fritz S, Jaffrezic F, Boussaha M, Gut I, Heath S, et al. The genome response to artificial selection: a case study in dairy cattle. PLoS One. 2009;4(8):e6595.  https://doi.org/10.1371/journal.pone.0006595.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Fortes MR, Deatley KL, Lehnert SA, Burns BM, Reverter A, Hawken RJ, et al. Genomic regions associated with fertility traits in male and female cattle: advances from microsatellites to high-density chips and beyond. Anim Reprod Sci. 2013;141(1-2):1–19.  https://doi.org/10.1016/j.anireprosci.2013.07.002.CrossRefPubMedGoogle Scholar
  41. Frankham R, Ballou JD, Briscoe DA. Introduction to conservation genetics. 2nd ed. Cambridge, UK: Cambridge University Press; 2010.CrossRefGoogle Scholar
  42. Goddard ME, Hayes BJ. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet. 2009;10:381–91.  https://doi.org/10.1038/nrg2575.CrossRefPubMedGoogle Scholar
  43. Gray MM, Granka JM, Bustamante CD, Sutter NB, Boyko AR, Zhu L, et al. Linkage disequilibrium and demographic history of wild and domestic canids. Genetics. 2009;181(4):1493–505.  https://doi.org/10.1534/genetics.108.098830.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Grobet L, Poncelet D, Royo LJ, Brouwers B, Pirottin D, Michaux C, et al. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mamm Genome. 1997;9(3):210–3.CrossRefGoogle Scholar
  45. Groenen MAM, Megens H-J, Zare Y, Warren WC, Hillier LW, et al. The development and characterization of a 60 K SNP chip for chicken. BMC Genomics. 2011;12(1):274.  https://doi.org/10.1186/1471-2164-12-274.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Groeneveld LF, Lenstra JA, Eding H, Toro MA, Scherf B, Pilling D, et al. Genetic diversity in farm animals –a review. Anim Genet. 2010;41(suppl. 1):6–31.  https://doi.org/10.1111/j.1365-2052.2010.02038.x.CrossRefPubMedGoogle Scholar
  47. Gurgul A, Pawlina K, Frys-Żurek M, Bugno-Poniewierska M. Identification of differential selection traces in two Polish cattle breeds. Anim Sci J. 2015;86(1):17–24.  https://doi.org/10.1111/asj.12242.CrossRefPubMedGoogle Scholar
  48. Gutiérrez-Gil B, Arranz JJ, Pong-Wong R, García-Gámez E, Kijas J, Wiener P. Application of selection mapping to identify genomic regions associated with dairy production in sheep. PLoS One. 2014;9(5):e94623.  https://doi.org/10.1371/journal.pone.0094623.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gutiérrez-Gil B, Arranz JJ, Wiener P. An interpretive review of selective sweep studies in Bos taurus cattle populations: identification of unique and shared selection signals across breeds. Front Genet. 2015;13(6):167.  https://doi.org/10.3389/fgene.2015.00167.CrossRefGoogle Scholar
  50. Hall S, Clutton-Brock J. Two hundred years of British farm livestock. London: British Museum (Natural History); 1988.Google Scholar
  51. Hartl D, Clark A. Principles of population genetics. 4th ed. Sunderland, MA: Sinauer Associates; 2007.Google Scholar
  52. Hayes BJ, Visscher PM, McPartlan HC, Goddard ME. Novel multilocus measure of linkage disequilibrium to estimate past effective population size. Genome Res. 2003;13(4):635–43.  https://doi.org/10.1101/gr.387103.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hayes BJ, Lien S, Nilsen H, Olsen HG, Berg P, Maceachern S, et al. The origin of selection signatures on bovine chromosome 6. Anim Genet. 2008;39:105–11.  https://doi.org/10.1111/j.1365-2052.2007.01683.x.CrossRefPubMedGoogle Scholar
  54. Hayes BJ, Chamberlain AJ, Maceachern S, Savin K, McPartlan H, MacLeod I, et al. A genome map of divergent artificial selection between Bos taurus dairy cattle and Bos taurus beef cattle. Anim Genet. 2009;40(2):176–84.  https://doi.org/10.1111/j.1365-2052.2008.01815.x.CrossRefPubMedGoogle Scholar
  55. Hayes BJ, Pryce J, Chamberlain AJ, Bowman PJ, Goddard ME. Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS Genet. 2010;6(9):e1001139.  https://doi.org/10.1371/journal.pgen.1001139.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hill WG. Linkage disequilibrium among multiple neutral alleles produced by mutation in finite population. Theor Popu Biol. 1975;8(2):117–26.  https://doi.org/10.1016/0040-5809(75)90028-3.CrossRefGoogle Scholar
  57. Hill WG. Estimation of effective population-size from data on linkage disequilibrium. Genet Res. 1981;38:209–16.  https://doi.org/10.1017/S0016672300020553.CrossRefGoogle Scholar
  58. Hoze C, Fouilloux MN, Venot E, Guillaume F, Dassonneville R, Fritz S, et al. High-density marker imputation accuracy in sixteen French cattle breeds. Genet Sel Evol. 2013;45:33.  https://doi.org/10.1186/1297-9686-45-33.CrossRefPubMedPubMedCentralGoogle Scholar
  59. International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432(7018):695–716.  https://doi.org/10.1038/nature03154.CrossRefGoogle Scholar
  60. International Chicken Polymorphism Map Consortium. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature. 2004;432(7018):717–22.  https://doi.org/10.1038/nature03156.CrossRefPubMedCentralGoogle Scholar
  61. Iso-Touru T, Sahana G, Guldbrandtsen B, Lund MS, Vilkki J. Genome-wide association analysis of milk yield traits in Nordic Red Cattle using imputed whole genome sequence variants. BMC Genet. 2016;17:55.  https://doi.org/10.1186/s12863-016-0363-8.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Jackson I. Mouse coat colour mutations: a molecular genetic resource which spans the centuries. Bioessays. 1991;13(9):439–6.  https://doi.org/10.1002/bies.950130903.CrossRefPubMedGoogle Scholar
  63. Jacobs GS, Sluckin TJ, Kivisild T. Refining the use of linkage disequilibrium as a robust signature of selective sweeps. Genetics. 2016;203(4):1807–25.  https://doi.org/10.1534/genetics.115.185900.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Jiang Y, Xie M, Chen W, Talbot R, Maddox JF, Faraut T, et al. The sheep genome illuminates biology of the rumen and lipid metabolism. Science. 2014;344(6188):1168–73.  https://doi.org/10.1126/science.1252806.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Johnston SE, Beraldi D, McRae AF, Pemberton JM, Slate J. Horn type and horn length genes map to the same chromosomal region in Soay sheep. Heredity. 2010;104(2):196–205.  https://doi.org/10.1038/hdy.2009.109.CrossRefPubMedGoogle Scholar
  66. Johnston SE, McEwan JC, Pickering NK, Kijas JW, Beraldi D, Pilkington JG, et al. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Mol Ecol. 2011;20(12):2555–66.  https://doi.org/10.1111/j.1365-294X.2011.05076.x.CrossRefPubMedGoogle Scholar
  67. Kadri NK, Sahana G, Charlier C, Iso-Touru T, Guldbrandtsen B, Karim L, et al. A 660-kb deletion with antagonistic effects on fertility and milk production segregates at high frequency in Nordic Red cattle: additional evidence for the common occurrence of balancing selection in livestock. PLoS Genet. 2014;10(1):e1004049.  https://doi.org/10.1371/journal.pgen.1004049.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kambadur R, Sharma M, Smith TP, Bass JJ. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 1997;7(9):910–6.CrossRefGoogle Scholar
  69. Kardos M, Luikart G, Bunch R, Dewey S, Edwards W, McWilliam S, et al. Whole-genome resequencing uncovers molecular signatures of natural and sexual selection in wild bighorn sheep. Mol Ecol. 2015;24(22):5616–32.  https://doi.org/10.1111/mec.13415.CrossRefPubMedGoogle Scholar
  70. Karlsson EK, Baranowska I, Wade CM, Salmon Hillbertz NHC, Zody MC, Anderson N, et al. Efficient mapping of mendelian traits in dogs through genome-wide association. Nat Genet. 2007;39(11):1321–8.  https://doi.org/10.1038/ng.2007.10.CrossRefPubMedGoogle Scholar
  71. Kelly JK. A test of neutrality based on interlocus associations. Genetics. 1997;146(3):1197–206.PubMedPubMedCentralGoogle Scholar
  72. Kemper KE, Saxton SJ, Bolormaa S, Hayes BJ, Goddard ME. Selection for complex traits leaves little or no classic signatures of selection. BMC Genomics. 2014;15:246.  https://doi.org/10.1186/1471-2164-15-246.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Khatkar MS, Thomson PC, Tammen I, Raadsma HW. Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet Sel Evol. 2004;6:163–90.  https://doi.org/10.1051/gse:2003057.CrossRefGoogle Scholar
  74. Khatkar MS, Randhawa IAS, Raadsma HW. Meta-assembly of genomic regions and variants associated with female reproductive efficiency in cattle. Livest Sci. 2014;166:144–57.  https://doi.org/10.1016/j.livsci.2014.05.015.CrossRefGoogle Scholar
  75. Kijas JW, Townley D, Dalrymple BP, Heaton MP, Maddox JF, McGrath A, et al. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS One. 2009;4(3):e4668.  https://doi.org/10.1371/journal.pone.0004668.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Kijas JW, Lenstra JA, Hayes B, Boitard S, Porto Neto LR, San Cristobal M, et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012;10(2):e1001258.  https://doi.org/10.1371/journal.pbio.1001258.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Kijas JW, Porto-Neto L, Dominik S, Reverter A, Bunch R, McCulloch R, et al. Linkage disequilibrium over short physical distances measured in sheep using a high-density SNP chip. Anim Genet. 2014;45(5):754–7.  https://doi.org/10.1111/age.12197.CrossRefPubMedGoogle Scholar
  78. Kijas JW, Hadfield T, Naval Sanchez M, Cockett N. Genome-wide association reveals the locus responsible for four-horned ruminant. Anim Genet. 2016;47(2):258–62.  https://doi.org/10.1111/age.12409.CrossRefPubMedGoogle Scholar
  79. Kilman R, Sheehy B, Schultz J. Genetic drift and effective population size. Nat Ed. 2008;1(3):3.Google Scholar
  80. Kim Y, Nielsen R. Linkage disequilibrium as a signature of selective sweeps. Genetics. 2004;167(3):1513–24.  https://doi.org/10.1534/genetics.103.025387.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Kim Y, Stephan W. Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics. 2002;160(2):765–77.PubMedPubMedCentralGoogle Scholar
  82. Kim S-J, Ka S, Ha J-W, Kim J, Yoo D, Kim K, et al. Cattle genome-wide analysis reveals genetic signatures in trypanotolerant N’Dama. BMC Genomics. 2017;18:371.  https://doi.org/10.1186/s12864-017-3742-2.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, Talbot R, et al. Development of a high density 600K SNP genotyping array for chicken. BMC Genomics. 2013;14:59.  https://doi.org/10.1186/1471-2164-14-59.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467(7317):832–8.  https://doi.org/10.1038/nature09410.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Lewontin RC, Krakauer J. Distribution of gene frequency as a test of theory of selective neutrality of polymorphisms. Genetics. 1973;74:175–95.PubMedPubMedCentralGoogle Scholar
  86. Li DF, Liu WB, Liu JF, Yi GQ, Lian L, Qu LJ, et al. Whole-genome scan for signatures of recent selection reveals loci associated with important traits in White Leghorn chickens. Poult Sci. 2012a;91(8):1804–12.  https://doi.org/10.3382/ps.2012-02275.CrossRefPubMedGoogle Scholar
  87. Li P, Xiao S, Wei N, Zhang Z, Huang GR, et al. Fine mapping of a QTL for ear size on porcine chromosome 5 and identification of high mobility group AT-hook 2 (HMGA2) as a positional candidate gene. Genet Sel Evol. 2012b;44:6.  https://doi.org/10.1186/1297-9686-44-6.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Li MH, Tiirikka T, Kantanen J. A genome-wide scan study identifies a single nucleotide substitution in ASIP associated with white versus non-white coat-colour variation in sheep (Ovis aries). Heredity. 2013;112(2):122–31.  https://doi.org/10.1038/hdy.2013.83.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Li Z, Chen J, Wang Z, Pan Y, Wang Q, Xu N, Wang Z. Detection of selection signatures of population-specific genomic regions selected during domestication process in Jinhua pigs. Anim Genet. 2016;47(6):672–81.  https://doi.org/10.1111/age.12475.CrossRefPubMedGoogle Scholar
  90. Librado P, Gamba C, Gaunitz C, Der Sarkissian C, Pruvost M, Albrechtsen A, et al. Ancient genomic changes associated with domestication of the horse. 2017;356(6336):442–5.  https://doi.org/10.1126/science.aam5298.CrossRefGoogle Scholar
  91. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438(8):803–19.  https://doi.org/10.1038/nature04338.CrossRefPubMedGoogle Scholar
  92. Linderholm A, Larson G. The role of humans in facilitating and sustaining coat colour variation in domestic animals. Semin Cell Dev Biol. 2013;24(6-7):587–93.  https://doi.org/10.1016/j.semcdb.2013.03.015.CrossRefPubMedGoogle Scholar
  93. Liu Z, Sun C, Qu L, Wang K, Yang N. Genome-wide detection of selective signatures in chicken through high density SNPs. PLoS One. 2016;11(11):e0166146.  https://doi.org/10.1371/journal.pone.0166146.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Lu MD, Han XM, Ma YF, Irwin DM, Gao Y, Deng J-K, et al. Genetic variations associated with six-white-point coat pigmentation in Diannan small-ear pigs. Sci Rep. 2016;6:27534.  https://doi.org/10.1038/srep27534.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Ludwig A, Pruvost M, Reissmann M, Benecke N, Brockmann GA, Castaños P, et al. Coat color variation at the beginning of horse domestication. Science. 2009;324:484–6.  https://doi.org/10.1126/science.1172750.CrossRefGoogle Scholar
  96. Lv FH, Agha S, Kantanen J, Colli L, Stucki S, Kijas JW, et al. Adaptations to climate-mediated selective pressures in sheep. Mol Biol Evol. 2014;31(12):3324–43.  https://doi.org/10.1093/molbev/msu264.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Ma J, Qi W, Ren D, Duan Y, Qiao R, Guo Y, et al. A genome scan for quantitative trait loci affecting three ear traits in a White Duroc x Chinese Erhualian resource population. Anim Genet. 2009;40(4):463–7.  https://doi.org/10.1111/j.1365-2052.2009.01867.x.CrossRefPubMedGoogle Scholar
  98. Ma Y, Wei J, Zhang Q, Chen L, Wang J, Liu J, Ding X. A genome scan for selection signatures in pigs. PLoS One. 2015;10(3):e0116850.  https://doi.org/10.1371/journal.pone.0116850.CrossRefPubMedPubMedCentralGoogle Scholar
  99. MacHugh DE, Larson G, Orlando L. Taming the past: ancient DNA and the study of animal domestication. Annu Rev Anim Biosci. 2017;5:329–51.  https://doi.org/10.1146/annurev-animal-022516-022747.CrossRefPubMedGoogle Scholar
  100. MacNeil MD, Nkrumah JD, Woodward BW, Northcutt SL. Genetic evaluation of Angus cattle for carcass marbling using ultrasound and genomic indicators. J Anim Sci. 2010;88(2):5170–522.  https://doi.org/10.2527/jas.2009-2022.CrossRefGoogle Scholar
  101. Makvandi-Nejad S, Hoffman GE, Allen JJ, Chu E, Gu E, Chandler AM, et al. Four loci explain 83% of size variation in the horse. PLoS One. 2012;7(7):e39929.  https://doi.org/10.1371/journal.pone.0039929.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Marchant TW, Johnson EJ, McTeir L, Johnson CI, Gow A, Liuti T, et al. Canine bracycephaly is associated with a retrotransposon-mediated missplicing of SMOC2. Curr Biol. 2017;27(11):1573–1584.e6.  https://doi.org/10.1016/j.cub.2017.04.057.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP, et al. Development and characterization of a high density SNP genotyping assay for cattle. PLoS One. 2009;4(4):e5350.  https://doi.org/10.1371/journal.pone.0005350.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Maynard Smith J, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974;23:23–35.  https://doi.org/10.1017/S0016672300014634.CrossRefGoogle Scholar
  105. McCue ME, Bannasch DL, Petersen JL, Gurr J, Bailey E, Binns MM, et al. A high density SNP array for the domestic horse and extant Perissodactyla: utility for association mapping, genetic diversity, and phylogeny studies. PLoS Genet. 2012;8:e1002451.  https://doi.org/10.1371/journal.pgen.1002451.CrossRefPubMedPubMedCentralGoogle Scholar
  106. McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A. 1997;94(23):12457–61.CrossRefGoogle Scholar
  107. Megens H-J, Groenen MAM. Domesticated species form a treasure-trove for molecular characterization of Mendelian traits by exploiting the specific genetic structure of these species in across-breed genome wide association studies. Heredity. 2012;109(1):1–3.  https://doi.org/10.1038/hdy.2011.128.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Montgomery GW, Henry HM, Dodds KG, Beattie AE, Wuliji T, Crawford AM. Mapping the horns (Ho) locus in sheep: a further locus controlling horn development in domestic animals. J Hered. 1996;87(5):358–63.CrossRefGoogle Scholar
  109. Moradi MH, Nejati-Javaremi A, Moradi-Shahrbabak M, Dodds KG, McEwan JC. Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet. 2012;13:10.  https://doi.org/10.1186/1471-2156-13-10.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Muir WM, Wong GK-S, Zhang Y, Wang J, Groenen MAM, Crooijmans RPMA, et al. Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proc Natl Acad Sci U S A. 2008;105(45):17312–7.  https://doi.org/10.1073/pnas.0806569105.CrossRefPubMedPubMedCentralGoogle Scholar
  111. Mwai O, Hanotte O, Kwon Y-J, Cho S. African indigenous cattle: unique genetic resources in a rapidly changing world. Asian-Australas J Anim Sci. 2015;28(7):911–21.Google Scholar
  112. Nakao N, Ono H, Yoshimura T. Thyroid hormones and seasonal reproductive neuroendocrine interactions. Reproduction. 2008;136(1):1–8.  https://doi.org/10.1530/REP-08-0041.CrossRefPubMedGoogle Scholar
  113. Nielsen R, Williamson S, Kim Y, Hubisz MJ, Clark AG, Bustamante C. Genomic scans for selective sweeps using SNP data. Genome Res. 2005;15(11):1566–75.  https://doi.org/10.1101/gr.4252305.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Nosil P, Buerkle A. Population genomics. Nat Ed. 2010;1:8.Google Scholar
  115. Ogorevc J, Kunej T, Razpet A, Dovc P. Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim Genet. 2009;40(6):832–51.  https://doi.org/10.1111/j.1365-2052.2009.01921.x.CrossRefPubMedPubMedCentralGoogle Scholar
  116. Oltenacu PA, Broom DM. The impact of genetic selection for increased milk yield on the welfare of dairy cows. Anim Welf. 2010;19(S):39–49.Google Scholar
  117. Orozco-terWengel P, Barbato M, Nicolazzi E, Biscarini F, Milanesi M, Davies W, et al. Revisiting demographic processes in cattle with genome-wide population genetic analysis. Front Genet. 2015;6:191.  https://doi.org/10.3389/fgene.2015.00191.CrossRefPubMedPubMedCentralGoogle Scholar
  118. Park SD, Magee DA, McGettigan PA, Teasdale MD, Edwards CJ, Lohan AJ, et al. Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle. Genome Biol. 2015;16:234.  https://doi.org/10.1186/s13059-015-0790-2.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Pérez O’Brien AM, Mészáros G, Utsunomiya YT, Sonstegard TS, Garcia JF, Van Tassel CP, et al. Linkage disequilibrium levels in Bos indicus and Bos taurus cattle using medium and high density SNP chip data and different minor allele frequency distributions. Livest Sci. 2014;166:121–32.  https://doi.org/10.1016/j.livsci.2014.05.007.CrossRefGoogle Scholar
  120. Petersen JL, Mickelson JR, Rendahl AK, Valberg SJ, Andersson LS, Axelsson J, Bailey E, et al. Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genet. 2013;9(1):e1003211.  https://doi.org/10.1371/journal.pgen.1003211.CrossRefPubMedPubMedCentralGoogle Scholar
  121. Pryce JE, Woolaston R, Berry DP, Wall E, Winters M, Butler R, Shaffer M. World trends in dairy cow fertility. In: Proceedings of 10th world congress of genetics applied to livestock production. 2014. https://asas.org/docs/default-source/wcgalp-proceedings-oral/154_paper_10356_manuscript_1630_0.pdf?sfvrsn=2. Accessed 1 Dec 2016
  122. Qanbari S, Pimentel ECG, Tetens J, Thaller G, Lichtner P, Sharifi AR, Simianer H. A genome-wide scan for signatures of recent selection in Holstein cattle. Anim Genet. 2010;41(4):377–89.  https://doi.org/10.1111/j.1365-2052.2009.02016.x.CrossRefPubMedGoogle Scholar
  123. Quilez J, Short AD, Martinez V, Kennedy LJ, Ollier W, Sanchez A, et al. A selective sweep of >8 Mb on chromosome 26 in the Boxer genome. BMC Genomics. 2011;12:339.  https://doi.org/10.1186/1471-2164-12-339.CrossRefPubMedPubMedCentralGoogle Scholar
  124. Rajora OP, Eckert AJ, Zinck JWR. Single-locus versus multilocus patterns of local adaptation to climate in eastern white pine (Pinus strobus, Pinaceae). PLoS One. 2016;11(7):e0158691.  https://doi.org/10.1371/journal.pone.0158691.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Ramos AM, Crooijmans RPMA, Affara NA, Amaral AJ, Archibald AL, Beever JE, et al. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One. 2009;4(8):e6524.  https://doi.org/10.1371/journal.pone.0006524.CrossRefPubMedPubMedCentralGoogle Scholar
  126. Randhawa IAS, Khatkar MS, Thomson PC, Raadsma HW. Composite selection signals can localize the trait specific genomic regions in multi-breed populations of cattle and sheep. BMC Genet. 2014;15:34.  https://doi.org/10.1186/1471-2156-15-34.CrossRefPubMedPubMedCentralGoogle Scholar
  127. Ren J, Duan Y, Qiao R, Yao F, Zhang Z, Yang B, et al. A missense mutation in PPARD causes a major QTL effect on ear size in pigs. PLoS Genet. 2011;7(5):e1002043.  https://doi.org/10.1371/journal.pgen.1002043.CrossRefPubMedPubMedCentralGoogle Scholar
  128. Rimbault M, Beale HC, Schoenebeck JJ, Hoopes BC, Allen JJ, Kilroy-Glynn P, et al. Derived variants at six genes explain nearly half of size reduction in dog breeds. Genome Res. 2013;23(12):1985–95.  https://doi.org/10.1101/gr.157339.113.CrossRefPubMedPubMedCentralGoogle Scholar
  129. Ros-Freixedes R, Gol S, Pena RN, Tor M, Ibáñez-Escriche N, Dekkers JCM, Estany J. Genome-wide association study singles out SCD and LEPR as the two main loci influencing intramuscular fat content and fatty acid composition in Duroc pigs. PLoS One. 2016;11(3):e0152496.  https://doi.org/10.1371/journal.pone.0152496.CrossRefPubMedPubMedCentralGoogle Scholar
  130. Rothhammer S, Seichter D, Forster M, Medugorac I. A genome-wide scan for signatures of differential artificial selection in ten cattle breeds. BMC Genomics. 2013;14(1):908.  https://doi.org/10.1186/1471-2164-14-908.CrossRefGoogle Scholar
  131. Rubin C-J, Zody MC, Eriksson J, Meadows JRS, Sherwood E, Webster MT, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature. 2010;464(7288):587–91.  https://doi.org/10.1038/nature08832.CrossRefPubMedGoogle Scholar
  132. Rubin C-J, Megens H-J, Martinez Barrio A, Maqbool K, Sayyab S, Schwochow D, et al. Strong signatures of selection in the domestic pig genome. Proc Natl Acad Sci U S A. 2012;109(48):19529–36.  https://doi.org/10.1073/pnas.1217149109.CrossRefPubMedPubMedCentralGoogle Scholar
  133. Sabeti PC, Reich DE, Higgins JM, Levine HZP, Richter DJ, Schaffner SF, et al. Detecting recent positive selection in the human genome from haplotype structure. Nature. 2002;419(6909):832–7.  https://doi.org/10.1038/nature01140.CrossRefPubMedGoogle Scholar
  134. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, et al. Genome-wide detection and characterization of positive selection in human populations. Nature. 2007;449(7164):913–8.  https://doi.org/10.1038/nature06250.CrossRefPubMedPubMedCentralGoogle Scholar
  135. Schennink A, Stoop WM, Visker MHPW, Heck JML, Bovenhuis H, Van der Poel JJ, et al. DGAT1 underlies large genetic variation in milk-fat composition of dairy cows. Anim Genet. 2007;38(5):467–73.  https://doi.org/10.1111/j.1365-2052.2007.01635.x.CrossRefPubMedGoogle Scholar
  136. Schoenenbeck JJ, Ostrander EA. The genetics of skull shape variation. Genetics. 2013;193(2):317–25.  https://doi.org/10.1534/genetics.112.145284.CrossRefGoogle Scholar
  137. Schoenebeck JJ, Hutchinson SA, Byers A, Beale HC, Carrington B, Faden DL, et al. Variation of BMP3 contributes to dog breed skull diversity. PLoS Genet. 2012;8(8):e1002849.  https://doi.org/10.1371/journal.pgen.1002849.CrossRefPubMedPubMedCentralGoogle Scholar
  138. Stainton JJ, Charlesworth B, Haley CS, Kranis A, Watson K, Wiener P. Detecting signatures of selection in nine distinct lines of broiler chickens. Anim Genet. 2015;46(1):37–49.  https://doi.org/10.1111/age.12252.CrossRefPubMedGoogle Scholar
  139. Stainton JJ, Charlesworth B, Haley CS, Kranis A, Watson K, Wiener P. Use of high-density SNP data to identify patterns of diversity and signatures of selection in broiler chickens. J Anim Breed Genet. 2017;134(2):87–97.  https://doi.org/10.1111/jbg.12228.CrossRefPubMedGoogle Scholar
  140. Stern JA, White SN, Meurs KM. Extent of linkage disequilibrium in large-breed dogs: chromosomal and breed variation. Mamm Genome. 2013;24(9-10):409–15.  https://doi.org/10.1007/s00335-013-9474-y.CrossRefPubMedGoogle Scholar
  141. Sun D, Jia J, Ma Y, Zhang Y, Wang Y, Yu Y, Zhang Y. Effects of DGAT1 and GHR on milk yield and milk composition in the Chinese dairy population. Anim Genet. 2009;40(6):997–1000.  https://doi.org/10.1111/j.1365-2052.2009.01945.x.CrossRefPubMedGoogle Scholar
  142. Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K, Zhu L, et al. A single IGF1 allele is a major determinant of small size in dogs. Science. 2007;316(5829):112–5.  https://doi.org/10.1126/science.1137045.CrossRefPubMedPubMedCentralGoogle Scholar
  143. Thaller G, Kramer W, Winter A, Kaupe B, Erhardt G, Fries R. Effects of DGAT1 variants on milk production traits in German cattle breeds. J Anim Sci. 2003;81(8):1911–8.CrossRefGoogle Scholar
  144. Tosser-Klopp G, Bardou P, Bouchez O, Cabau C, Crooijmans R, Dong Y, et al. Design and characterization of a 52K SNP chip for goats. PLoS One. 2014;9(1):e86227.  https://doi.org/10.1371/journal.pone.0086227.CrossRefPubMedPubMedCentralGoogle Scholar
  145. Uemoto Y, Soma Y, Sato S, Ishida M, Shibata T, Kadowaki H, et al. Genome-wide mapping for fatty acid composition and melting point of fat in a purebred Duroc pig population. Anim Genet. 2012;43(1):27–34.  https://doi.org/10.1111/j.1365-2052.2011.02218.x.CrossRefPubMedGoogle Scholar
  146. Uimari P, Tapio M. Extent of linkage disequilibrium and effective population size in Finnish Landrace and Finnish Yorkshire pig breeds. J Anim Sci. 2011;89(3):609–14.  https://doi.org/10.2527/jas.2010-3249.CrossRefPubMedGoogle Scholar
  147. Van Laere A-S, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature. 2003;425(6960):832–6.  https://doi.org/10.1038/nature02064.CrossRefPubMedGoogle Scholar
  148. Van Raden PM. Invited review: selection on net merit to improve lifetime profit. J Dairy Sci. 2004;87(10):3125–31.  https://doi.org/10.3168/jds.S0022-0302(04)73447-5.CrossRefGoogle Scholar
  149. Vaysse A, Ratnakumar A, Derrien T, Axelsson E, Rosengren Pielberg G, Sigurdsson S, et al. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet. 2011;7(10):e1002316.  https://doi.org/10.1371/journal.pgen.1002316.CrossRefPubMedPubMedCentralGoogle Scholar
  150. Voight BF, Kudaravalli S, Wen XQ, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol. 2006;4(3):446–58.  https://doi.org/10.1371/journal.pbio.0040072.CrossRefGoogle Scholar
  151. Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, et al. Genome sequence, comparative analysis and population genetics of the domestic horse (Equus caballus). Science. 2009;326(5924):865–7.  https://doi.org/10.1126/science.1178158.CrossRefPubMedPubMedCentralGoogle Scholar
  152. Wall E, Brotherstone S, Woolliams JA, Banos G, Coffey MP. Genetic evaluation of fertility using direct and correlated traits. J Dairy Sci. 2003;86(12):4093–102.  https://doi.org/10.3168/jds.S0022-0302(03)74023-5.CrossRefPubMedGoogle Scholar
  153. Walsh SW, Williams EJ, Evans ACO. A review of the causes of poor fertility in high milk producing dairy cows. Anim Reprod Sci. 2011;123(3-4):127–38.  https://doi.org/10.1016/j.anireprosci.2010.12.001.CrossRefPubMedGoogle Scholar
  154. Wang C, Wang H, Zhang Y, Tang Z, Li K, Liu B. Genome-wide analysis reveals artificial selection on coat colour and reproductive traits in Chinese domestic pigs. Mol Ecol Resour. 2015;15:414–24.  https://doi.org/10.1111/1755-0998.12311.CrossRefPubMedGoogle Scholar
  155. Warriss PD, Kestin SC, Brown SN, Nute GR. The quality of pork from traditional pig breeds. Meat Focus Int. 1996;5:179–82.Google Scholar
  156. Webster MT, Kamgari N, Perloski M, Hoeppner MP, Axelsson E, Hedhammar Å, et al. Linked genetic variants on chromosome 10 control ear morphology and body mass among dog breeds. BMC Genomics. 2015;16:474.  https://doi.org/10.1186/s12864-015-1702-2.CrossRefPubMedPubMedCentralGoogle Scholar
  157. Wei WH, de Koning DJ, Penman JC, Finlayson HA, Archibald AL, Haley CS. QTL modulating ear size and erectness in pigs. Anim Genet. 2007;38(3):222–6.  https://doi.org/10.1111/j.1365-2052.2007.01591.x.CrossRefPubMedGoogle Scholar
  158. Weir BS, Cardon LR, Anderson AD, Nielsen DM, Hill WG. Measures of human population structure show heterogeneity among genomic regions. Genome Res. 2005;15(11):1468–76.  https://doi.org/10.1101/gr.4398405.CrossRefPubMedPubMedCentralGoogle Scholar
  159. Wiedemar N, Drögemüller C. A 1.8-kb insertion in the 3′-UTR of RXFP2 is associated with polledness in sheep. Anim Genet 2015;46(4):457–61.  https://doi.org/10.1111/age.12309.CrossRefGoogle Scholar
  160. Wiener P, Gutierrez-Gil B. Assessment of selection mapping near the myostatin gene (GDF-8) in cattle. Anim Genet. 2009;40(5):598–608.  https://doi.org/10.1111/j.1365-2052.2009.01886.x.CrossRefPubMedGoogle Scholar
  161. Wiener P, Pong-Wong R. A regression-based approach to selection mapping. J Hered. 2011;102(3):294–305.  https://doi.org/10.1093/jhered/esr014.CrossRefPubMedGoogle Scholar
  162. Wiener P, Wilkinson S. Deciphering the genetic basis of animal domestication. Proc Biol Sci. 2011;278(1722):3161–70.  https://doi.org/10.1098/rspb.2011.1376.CrossRefPubMedPubMedCentralGoogle Scholar
  163. Wiener P, Burton D, Ajmone-Marsan P, Dunner S, Mommens G, Nijman IJ, et al. Signatures of selection? Patterns of microsatellite diversity on a chromosome containing a selected locus. Heredity. 2003;90(5):350–8.  https://doi.org/10.1038/sj.hdy.6800257.CrossRefPubMedGoogle Scholar
  164. Wiener P, Edriss MA, Williams JL, Waddington D, Law A, Woolliams J, Gutierrez-Gil B. Information content in genome-wide scans: concordance between patterns of genetic differentiation and linkage mapping associations. BMC Genomics. 2011;12:65.  https://doi.org/10.1186/1471-2164-12-65.CrossRefPubMedPubMedCentralGoogle Scholar
  165. Wilkinson S, Wiener P, Teverson D, Haley CS, Hocking PM. Characterization of the genetic diversity, structure and admixture of British chicken breeds. Anim Genet. 2012;43(5):552–63.  https://doi.org/10.1111/j.1365-2052.2011.02296.x.CrossRefPubMedGoogle Scholar
  166. Wilkinson S, Lu ZH, Megens H-J, Archibald AL, Haley C, Jackson IJ, et al. Signatures of diversifying selection in European pig breeds. PLoS Genet. 2013;9(4):e1003453.  https://doi.org/10.1371/journal.pgen.1003453.CrossRefPubMedPubMedCentralGoogle Scholar
  167. Wright S. Color inheritance in mammals: cattle. J Hered. 1917;8:521–7.CrossRefGoogle Scholar
  168. Wright S. The genetical structure of populations. Ann Eugen. 1951;15:323–54.CrossRefGoogle Scholar
  169. Wutke S, Benecke N, Sandoval-Castellanos E, Döhle HJ, Friederich S, Gonzalez J, et al. Spotted phenotypes in horses lost attractiveness in the Middle Ages. Sci Rep. 2016;6:38548.  https://doi.org/10.1038/srep38548.CrossRefPubMedPubMedCentralGoogle Scholar
  170. Zeder MA. Pathways to animal domestication. In: Gepts P, Famula TR, Bettinger RL, Brush SP, Damania AB, McGuire PE, Qualset CO, editors. Biodiversity in agriculture: domestication, evolution and sustainability. Cambridge: Cambridge University Press; 2012. p. 227–59.CrossRefGoogle Scholar
  171. Zhang Y, Liang J, Zhang L, Wang L, Liu X, Yen H, et al. Porcine methionine sulfoxide reductase B3: molecular cloning, tissue-specific expression profiles, and polymorphisms associated with ear size in Sus scrofa. J Anim Sci Biotech. 2015;6:60.  https://doi.org/10.1186/s40104-015-0060-x.CrossRefGoogle Scholar
  172. Zhao F, McParland S, Kearney F, Du L, Berry DP. Detection of selection signatures in dairy and beef cattle using high-density genomic information. Genet Sel Evol. 2015;47:49.  https://doi.org/10.1186/s12711-015-0127-3.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK

Personalised recommendations