Paleogenomics: Genome-Scale Analysis of Ancient DNA and Population and Evolutionary Genomic Inferences

  • Tianying Lan
  • Charlotte LindqvistEmail author
Part of the Population Genomics book series (POGE)


Ancient DNA analysis has in the last 30 years grown into a compelling research tool that has radically transformed many scientific fields. In particular, methods of extracting ancient DNA that is often highly degraded and advances in genome sequencing technologies within the last decade have revolutionized genetic research of extinct and ancient lineages. Insights into ancient genomes, and their links to modern ones, hold unparalleled promise to capture the numerous processes of organismal evolution and their responses to a changing world. Hence, genomic-scale sequencing of up to several-thousand-year-old remains has contributed substantially to our understanding of the impacts of Pleistocene glaciations in shaping the Earth’s biodiversity and organismal distributions, the process of domestication, the history of diseases, and our own history as humans. In this chapter, we review some of the advances in ancient DNA sequencing and give examples of recent case studies in paleogenomic research.


Ancient DNA DNA degradation Domestication Genomics Metagenomics Next-generation sequencing Targeted enrichment 


  1. Adler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW, Haak W, et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet. 2013;45:450–5.PubMedPubMedCentralGoogle Scholar
  2. Allentoft ME, Sikora M, Sjogren KG, Rasmussen S, Rasmussen M, Stenderup J, et al. Population genomics of Bronze Age Eurasia. Nature. 2015;522:167–72.PubMedGoogle Scholar
  3. Alsos IG, Sjogren P, Edwards ME, Landvik JY, Gielly L, Forwick M, et al. Sedimentary ancient DNA from Lake Skartjorna, Svalbard: assessing the resilience of arctic flora to Holocene climate change. Holocene. 2016;26:627–42.Google Scholar
  4. Asara JM, Schweitzer MH, Freimark LM, Phillips M, Cantley LC. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science. 2007;316:280–5.PubMedGoogle Scholar
  5. Avci R, Schweitzer M, Boyd R, Wittmeyer J, Terán Arce F, Calvo J. Preservation of bone collagen from the late Cretaceous period studied by immunological techniques and atomic force microscopy. Langmuir. 2005;21:3584–90.PubMedGoogle Scholar
  6. Avila-Arcos MC, Cappellini E, Romero-Navarro JA, Wales N, Moreno-Mayar JV, Rasmussen M, et al. Application and comparison of large-scale solution-based DNA capture-enrichment methods on ancient DNA. Sci Rep. 2011;1(74)Google Scholar
  7. Babkin IV, Babkina IN. The origin of the variola virus. Virus. 2015;7:1100–12.Google Scholar
  8. Barta JL, Monroe C, Teisberg JE, Winters M, Flanigan K, Kemp BM. One of the key characteristics of ancient DNA, low copy number, may be a product of its extraction. J Archaeol Sci. 2014;46:281–9.Google Scholar
  9. Bennett EA, Massilani D, Lizzo G, Daligault J, Geigl EM, Grange T. Library construction for ancient genomics: single strand or double strand? Biotechniques. 2014;56:289–300.PubMedGoogle Scholar
  10. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–9.PubMedPubMedCentralGoogle Scholar
  11. Bi K, Vanderpool D, Singhal S, Linderoth T, Moritz C, Good JM. Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales. BMC Genomics. 2012;13:403.PubMedPubMedCentralGoogle Scholar
  12. Bilgic H, Hakki EE, Pandey A, Khan MK, Akkaya MS. Ancient DNA from 8400 Year-Old Çatalhöyük wheat: implications for the origin of neolithic agriculture. PLoS One. 2016;11:e0151974.PubMedPubMedCentralGoogle Scholar
  13. Birks HJB, Birks HH. How have studies of ancient DNA from sediments contributed to the reconstruction of Quaternary floras? New Phytol. 2016;209:499–506.PubMedGoogle Scholar
  14. Bodi K, Perera A, Adams P, Bintzler D, Dewar K, Grove D, et al. Comparison of commercially available target enrichment methods for next-generation sequencing. J Biomol Tech. 2013;24:73–86.PubMedPubMedCentralGoogle Scholar
  15. Boessenkool S, Mcglynn G, Epp LS, Taylor D, Pimentel M, Gizaw A, et al. Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity. Conserv Biol. 2014;28:446–55.PubMedGoogle Scholar
  16. Boessenkool S, Hanghoj K, Nistelberger HM, Der Sarkissian C, Gondek A, Orlando L, et al. Combining bleach and mild pre-digestion improves ancient DNA recovery from bones. Mol Ecol Resour. 2016;17(4):742–51.PubMedGoogle Scholar
  17. Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N, Coombes BK, et al. A draft genome of Yersinia pestis from victims of the Black Death. Nature. 2011;478:506–10.PubMedPubMedCentralGoogle Scholar
  18. Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I, et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature. 2014;514:494–7.PubMedPubMedCentralGoogle Scholar
  19. Bos KI, Herbig A, Sahl J, Waglechner N, Fourment M, Forrest SA, et al. Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus. Elife. 2016;5:e12994.PubMedPubMedCentralGoogle Scholar
  20. Botigue L, Song S, Scheu A, Gopalan S, Pendleton A, Oetjens M, et al. Ancient European dog genomes reveal continuity since the early Neolithic. BioRxiv. 2016:68189/68181–68189/68130Google Scholar
  21. Brandt E, Wiechmann I, Grupe G. How reliable are immunological tools for the detection of ancient proteins in fossil bones? Int J Osteoarchaeol. 2002;12:307–16.Google Scholar
  22. Bramanti B, Thomas MG, Haak W, Unterländer M, Jores P, Tambets K, et al. Genetic discontinuity between local hunter-gatherers and central Europe’s first farmers. Science. 2009;326(5949):137–40.PubMedGoogle Scholar
  23. Briggs AW, Heyn P. Preparation of next-generation sequencing libraries from damaged DNA. Methods Mol Biol. 2012;840:143–54.PubMedGoogle Scholar
  24. Briggs AW, Good JM, Green RE, Krause J, Maricic T, Stenzel U, et al. Targeted retrieval and analysis of five neandertal mtDNA genomes. Science. 2009;325:318–21.PubMedGoogle Scholar
  25. Briggs AW, Stenzel U, Meyer M, Krause J, Kircher M, Paabo S. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 2010;38:E87.PubMedGoogle Scholar
  26. Buckley M. Ancient collagen reveals evolutionary history of the endemic South American “ungulates”. Proc Biol Sci. 2015;282(1806):20142671.PubMedPubMedCentralGoogle Scholar
  27. Buckley M, Collins MJ. Collagen survival and its use for species identification in Holocene-lower Pleistocene bone fragments from British archaeological and paleontological sites. Antiqua. 2011;1:1.Google Scholar
  28. Buckley M, Farina RA, Lawless C, Tambusso PS, Varela L, Carlini AA, et al. Collagen sequence analysis of the extinct giant ground sloths Lestodon and Megatherium. PLoS One. 2015;10(12):e0144793.PubMedPubMedCentralGoogle Scholar
  29. Burbano HA, Hodges E, Green RE, Briggs AW, Krause J, Meyer M, et al. Targeted investigation of the Neandertal genome by array-based sequence capture. Science. 2010;328:723–5.PubMedPubMedCentralGoogle Scholar
  30. Cano RJ, Borucki MK. Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science. 1995;268:1060–4.PubMedGoogle Scholar
  31. Cano RJ, Poinar HN, Roubik DW, Poinar GO Jr. Enzymatic amplification and nucleotide sequencing of portions of the 18s rRNA gene of the bee Proplebeia dominicana (Apidae: Hymenoptera) isolated from 25-40 million year old Dominican amber. Med Sci Res. 1992;20:619–22.Google Scholar
  32. Cano RJ, Poinar HN, Pieniezak NS, Poinar GO Jr. Enzymatic amplification and nucleotide sequencing of DNA from 120-135 million year old weevil. Nature. 1993;363:536–8.PubMedGoogle Scholar
  33. Cappellini E, Jensen LJ, Szklarczyk D, Ginolhac A, da Fonseca RAR, Stafford TW, et al. Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins. J Proteome Res. 2012;11:917–26.PubMedGoogle Scholar
  34. Carpenter ML, Buenrostro JD, Valdiosera C, Schroeder H, Allentoft ME, Sikora M, et al. Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am J Hum Genet. 2013;93:852–64.PubMedPubMedCentralGoogle Scholar
  35. Castellano S, Parra G, Sanchez-Quinto FA, Racimo F, Kuhlwilm M, Kircher M, et al. Patterns of coding variation in the complete exomes of three Neandertals. Proc Natl Acad Sci U S A. 2014;111:6666–71.PubMedPubMedCentralGoogle Scholar
  36. Collins MJ, Nielsen-Marsh CM, Hiller J, Smith C, Roberts J, Prigodich R, et al. The survival of organic matter in bone: a review. Archaeometry. 2002;44:383–94.Google Scholar
  37. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.PubMedPubMedCentralGoogle Scholar
  38. Cosart T, Beja-Pereira A, Chen S, Ng SB, Shendure J, Luikart G. Exome-wide DNA capture and next generation sequencing in domestic and wild species. BMC Genomics. 2011;12:347.PubMedPubMedCentralGoogle Scholar
  39. Cruz-Dávalos DI, Llamas B, Gaunitz C, Fages A, Gamba C, Soubrier J, et al. Experimental conditions improving in-solution target enrichment for ancient DNA. Mol Ecol Resour. 2017;17(3):508–22.PubMedGoogle Scholar
  40. Cui Y, Yu C, Yan Y, Li D, Li Y, Jombart T, et al. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc Natl Acad Sci. 2013;110:577–82.PubMedGoogle Scholar
  41. Dabney J, Knapp M, Glocke I, Gansauge M-T, Weihmann A, Nickel B, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci U S A. 2013;110:15758–63.PubMedPubMedCentralGoogle Scholar
  42. Damgaard PB, Margaryan A, Schroeder H, Orlando L, Willerslev E, Allentoft ME. Improving access to endogenous DNA in ancient bones and teeth. Sci Rep. 2015;5:11184.PubMedPubMedCentralGoogle Scholar
  43. Debruyne R, Chu G, King CE, Bos K, Kuch M, Schwarz C, et al. Out of America: ancient DNA evidence for a new world origin of late quaternary woolly mammoths. Curr Biol. 2008;18:1320–6.PubMedGoogle Scholar
  44. Der Sarkissian C, Ermini L, Jonsson H, Alekseev AN, Crubezy E, Shapiro B, Orlando L. Shotgun microbial profiling of fossil remains. Mol Ecol. 2014;23:1780–98.Google Scholar
  45. Der Sarkissian C, Ermini L, Schubert M, Yang MA, Librado P, Fumagalli M, et al. Evolutionary genomics and conservation of the endangered Przewalski’s horse. Curr Biol. 2015;25:2577–83.Google Scholar
  46. DeSalle R, Gatesy J, Wheeler W, Grimaldi D. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science. 1992;257:1933–6.PubMedGoogle Scholar
  47. Devault AM, Golding GB, Waglechner N, Enk JM, Kuch M, Tien JH, et al. Second-pandemic strain of Vibrio cholerae from the Philadelphia cholera outbreak of 1849. N Engl J Med. 2014a;370:334–40.PubMedGoogle Scholar
  48. Devault AM, McLoughlin K, Jaing C, Gardner S, Porter TM, Enk JM, et al. Ancient pathogen DNA in archaeological samples detected with a Microbial Detection Array. Sci Rep. 2014b;4:4245/4241–8.Google Scholar
  49. Duggan Ana T, Perdomo Maria F, Piombino-Mascali D, Jankauskas R, Marciniak S, Poinar D, et al. 17(th) century variola virus reveals the recent history of smallpox. Curr Biol. 2016;26(24):3407–12.PubMedPubMedCentralGoogle Scholar
  50. Elhaik E, Greenspan E, Staats S, Krahn T, Tyler-Smith C, Xue Y, et al. The GenoChip: a new tool for genetic anthropology. Genome Biol Evol. 2013;5:1021–31.PubMedPubMedCentralGoogle Scholar
  51. Enk J, Rouillard J-M, Poinar H. Quantitative PCR as a predictor of aligned ancient DNA read counts following targeted enrichment. Biotechniques. 2013;55:300–9.PubMedGoogle Scholar
  52. Enk JM, Devault AM, Kuch M, Murgha YE, Rouillard J-M, Poinar HN. Ancient whole genome enrichment using baits built from modern DNA. Mol Biol Evol. 2014;31:1292–4.PubMedGoogle Scholar
  53. Epp LS, Gussarova C, Boessenkool S, Olsen J, Haile J, Schroder-Nielsen A, et al. Lake sediment multi-taxon DNA from North Greenland records early post-glacial appearance of vascular plants and accurately tracks environmental changes. Quat Sci Rev. 2015;117:152–63.Google Scholar
  54. Feldman M, Harbeck M, Keller M, Spyrou MA, Rott A, Trautmann B, et al. A high-coverage Yersinia pestis genome from a sixth-century justinianic plague victim. Mol Biol Evol. 2016;33:2911–23.PubMedPubMedCentralGoogle Scholar
  55. da Fonseca RR, Smith BD, Wales N, Cappellini E, Skoglund P, Fumagalli M, et al. The origin and evolution of maize in the Southwestern United States. Nat Plants. 2015;1:14003.PubMedGoogle Scholar
  56. Fordyce SL, Avila-Arcos MC, Rasmussen M, Cappellini E, Romero-Navarro JA, Wales N, et al. Deep sequencing of RNA from ancient maize kernels. PLoS One. 2013;8:e50961.PubMedPubMedCentralGoogle Scholar
  57. Fortes GG, Paijmans JLA. Analysis of whole mitogenomes from ancient samples. Methods Mol Biol. 2015;1347:179–95.PubMedGoogle Scholar
  58. Frantz LAF, Mullin VE, Pionnier-Capitan M, Lebrasseur O, Ollivier M, Perri A, et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science. 2016;352:1228–31.PubMedGoogle Scholar
  59. Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchyo D, Han E, Silva PM, et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 2014;10:e1004016.PubMedPubMedCentralGoogle Scholar
  60. Fu QM, Meyer M, Gao X, Stenzel U, Burbano HA, Kelso J, Paabo S. DNA analysis of an early modern human from Tianyuan Cave, China. Proc Natl Acad Sci U S A. 2013;110:2223–7.PubMedPubMedCentralGoogle Scholar
  61. Fu Q, Li H, Moorjani P, Jay F, Slepchenko SM, Bondarev AA, et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature. 2014;514:445–9.PubMedPubMedCentralGoogle Scholar
  62. Fu Q, Posth C, Hajdinjak M, Petr M, Mallick S, Fernandes D, et al. The genetic history of Ice Age Europe. Nature. 2016;534:200–5.PubMedPubMedCentralGoogle Scholar
  63. Gamba C, Hanghoj K, Gaunitz C, Alfarhan AH, Alquraishi SA, Al-Rasheid KAS, et al. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Mol Ecol Resour. 2016;16:459–69.PubMedGoogle Scholar
  64. Gansauge M-T, Meyer M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat Protoc. 2013;8:737–48.PubMedGoogle Scholar
  65. Gilbert MTP, Tomsho LP, Rendulic S, Packard M, Drautz DI, Sher A, et al. Whole-genome shotgun sequencing of mitochondria from ancient hair shafts. Science. 2007;317:1927–30.PubMedGoogle Scholar
  66. Gilbert MTP, Drautz DI, Lesk AM, Ho SYW, Qi J, Ratan A, et al. Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes. Proc Natl Acad Sci U S A. 2008;105:8327–32.PubMedPubMedCentralGoogle Scholar
  67. Ginolhac A, Vilstrup J, Stenderup J, Rasmussen M, Stiller M, Shapiro B, et al. Improving the performance of true single molecule sequencing for ancient DNA. BMC Genomics. 2012;13:177.PubMedPubMedCentralGoogle Scholar
  68. Gokhman D, Lavi E, Prufer K, Fraga MF, Riancho JA, Kelso J, et al. Reconstructing the DNA methylation maps of the Neandertal and the Denisovan. Science. 2014;344:523–7.PubMedGoogle Scholar
  69. Golenberg EM, Giannasi DE, Clegg MT, Smiley CJ, Durbin M, Henderson D, Zurawski G. Chloroplast DNA sequence from a miocene Magnolia species. Nature. 1990;344:656–8.PubMedGoogle Scholar
  70. Green RE, Krause J, Ptak SE, Briggs AW, Ronan MT, Simons JF, et al. Analysis of one million base pairs of Neanderthal DNA. Nature. 2006;444:330–6.PubMedGoogle Scholar
  71. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence of the neandertal genome. Science. 2010;328:710–22.PubMedPubMedCentralGoogle Scholar
  72. Guy PL. Ancient RNA? RT-PCR of 50-year-old RNA identifies peach latent mosaic viroid. Arch Virol. 2013;158:691–4.PubMedGoogle Scholar
  73. Guy P, Gerard P. White clover cryptic virus-1 in New Zealand and eastern Australia. Ann Appl Biol. 2016;168:225–31.Google Scholar
  74. Haak W, Lazaridis I, Patterson N, Rohland N, Mallick S, Llamas B, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207–11.PubMedPubMedCentralGoogle Scholar
  75. Haile J, Holdaway R, Oliver K, Bunce M, Gilbert MTP, Nielsen R, et al. Ancient DNA chronology within sediment deposits: are paleobiological reconstructions possible and is DNA leaching a factor? Mol Biol Evol. 2007;24:982–9.PubMedGoogle Scholar
  76. Hanghoj K, Seguin-Orlando A, Schubert M, Madsen T, Pedersen JS, Willerslev E, Orlando L. Fast, accurate and automatic ancient nucleosome and methylation maps with epiPALEOMIX. Mol Biol Evol. 2016;33:3284–98.PubMedPubMedCentralGoogle Scholar
  77. Harkins KM, Stone AC. Ancient pathogen genomics: insights into timing and adaptation. J Hum Evol. 2015;79:137–49.PubMedGoogle Scholar
  78. Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC. DNA sequences from the quagga, an extinct member of the horse family. Nature. 1984;312:282–4.PubMedGoogle Scholar
  79. Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, Smith SW, et al. Genome-wide in situ exon capture for selective resequencing. Nat Genet. 2007;39:1522–7.PubMedGoogle Scholar
  80. Hofmanova Z, Kreutzer S, Hellenthal G, Sell C, Diekmann Y, Diez-del-Molino D, et al. Early farmers from across Europe directly descended from Neolithic Aegeans. Proc Natl Acad Sci U S A. 2016;113:6886–91.PubMedPubMedCentralGoogle Scholar
  81. Hofreiter M, Serre D, Poinar HN, Kuch M, Paabo S. Ancient DNA. Nat Rev Genet. 2001;2:353–9.PubMedGoogle Scholar
  82. Hofreiter M, Paijmans JLA, Goodchild H, Speller CF, Barlow A, Fortes GG, et al. The future of ancient DNA: technical advances and conceptual shifts. Bioessays. 2015;37:284–93.PubMedGoogle Scholar
  83. Jaenicke-Despres V, Buckler ES, Smith BD, Gilbert MTP, Cooper A, Doebley J, Paabo S. Early allelic selection in maize as revealed by ancient DNA. Science. 2003;302:1206–8.PubMedGoogle Scholar
  84. Jeong C, Ozga AT, Witonsky DB, Malmstrom H, Edlund H, Hofman CA, et al. Long-term genetic stability and a high-altitude East Asian origin for the peoples of the high valleys of the Himalayan arc. Proc Natl Acad Sci U S A. 2016;113:7485–90.PubMedPubMedCentralGoogle Scholar
  85. Keller A, Graefen A, Ball M, Matzas M, Boisguerin V, Maixner F, et al. New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat Commun. 2012;3:698.PubMedGoogle Scholar
  86. Kim BY, Lohmueller KE. Selection and reduced population size cannot explain higher amounts of Neandertal ancestry in East Asian than in European human populations. Am J Hum Genet. 2015;96:454–61.PubMedPubMedCentralGoogle Scholar
  87. Kistler L. Ancient DNA extraction from plants. Methods Mol Biol. 2012;840:71–9.PubMedGoogle Scholar
  88. Korlevic P, Gerber T, Gansauge MT, Hajdinjak M, Nagel S, Aximu-Petri A, Meyer M. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques. 2015;59:87–93.PubMedGoogle Scholar
  89. Krause J, Dear PH, Pollack JL, Slatkin M, Spriggs H, Barnes I, et al. Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature. 2006;439:724–7.PubMedGoogle Scholar
  90. Krause J, Briggs AW, Kircher M, Maricic T, Zwyns N, Derevianko A, Paabo S. A complete mtDNA genome of an early modern human from Kostenki, Russia. Curr Biol. 2010;20:231–6.PubMedGoogle Scholar
  91. Lan T, Cheng J, Ratan A, Miller W, Schuster S, Farley S, et al. Genome-wide evidence for a hybrid origin of modern polar bears. BioRxiv. 2016:047498.Google Scholar
  92. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.PubMedGoogle Scholar
  93. Lazaridis I, Patterson N, Mittnik A, Renaud G, Mallick S, Kirsanow K, et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature. 2014;513:409–13.PubMedPubMedCentralGoogle Scholar
  94. Lazaridis I, Nadel D, Rollefson G, Merrett DC, Rohland N, Mallick S, et al. Genomic insights into the origin of farming in the ancient Near East. Nature. 2016;536:419–24.PubMedPubMedCentralGoogle Scholar
  95. Li Y, Carroll DS, Gardner SN, Walsh MC, Vitalis EA, Damon IK. On the origin of smallpox: correlating variola phylogenics with historical smallpox records. Proc Natl Acad Sci. 2007;104:15787–92.PubMedGoogle Scholar
  96. Li CX, Lister DL, Li HJ, Xu Y, Cui YQ, Bower MA, et al. Ancient DNA analysis of desiccated wheat grains excavated from a Bronze Age cemetery in Xinjiang. J Archaeol Sci. 2011;38:115–9.Google Scholar
  97. Li C, Hofreiter M, Straube N, Corrigan S, Naylor GJ. Capturing protein-coding genes across highly divergent species. Biotechniques. 2013;54:321–6.PubMedGoogle Scholar
  98. Librado P, Sarkissian CD, Ermini L, Schubert M, Jonsson H, Albrechtsen A, et al. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proc Natl Acad Sci U S A. 2015;112:E6889–97.PubMedPubMedCentralGoogle Scholar
  99. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993a;362:709–15.PubMedGoogle Scholar
  100. Lindahl T. Recovery of antediluvian DNA. Nature. 1993b;365:700.PubMedGoogle Scholar
  101. Llamas B, Holland ML, Chen K, Cropley JE, Cooper A, Suter CM. High-resolution analysis of cytosine methylation in ancient DNA. PLoS One. 2012;7:e30226.PubMedPubMedCentralGoogle Scholar
  102. Llorente MG, Jones ER, Eriksson A, Siska V, Arthur KW, Arthur JW, et al. Ancient Ethiopian genome reveals extensive Eurasian admixture throughout the African continent. Science. 2015;350:820–2.Google Scholar
  103. Lowenstein JM. Species-specific proteins in fossils. Naturwissenschaften. 1980;67:343–6.PubMedGoogle Scholar
  104. Lynch VJ, Bedoya-Reina OC, Ratan A, Sulak M, Drautz-Moses DI, Perry GH, et al. Elephantid genomes reveal the molecular bases of woolly mammoth adaptations to the arctic. Cell Rep. 2015;12:217–28.PubMedGoogle Scholar
  105. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.PubMedPubMedCentralGoogle Scholar
  106. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–80.PubMedPubMedCentralGoogle Scholar
  107. Maricic T, Paabo S. Optimization of 454 sequencing library preparation from small amounts of DNA permits sequence determination of both DNA strands. Biotechniques. 2009;46:51–52, 54–57.PubMedGoogle Scholar
  108. Maricic T, Whitten M, Paabo S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS One. 2010;5:e14004.PubMedPubMedCentralGoogle Scholar
  109. Martin MD, Cappellini E, Samaniego JA, Zepeda ML, Campos PF, Seguin-Orlando A, et al. Reconstructing genome evolution in historic samples of the Irish potato famine pathogen. Nat Commun. 2013;4:2172.PubMedPubMedCentralGoogle Scholar
  110. Mascher M, Schuenemann VJ, Davidovich U, Marom N, Himmelbach A, Hubner S, et al. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat Genet. 2016;48:1089–93.PubMedGoogle Scholar
  111. Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N, Roodenberg SA, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528:499–503.PubMedPubMedCentralGoogle Scholar
  112. Mendum TA, Schuenemann VJ, Roffey S, Taylor GM, Wu HH, Singh P, et al. Mycobacterium leprae genomes from a British medieval leprosy hospital: towards understanding an ancient epidemic. BMC Genomics. 2014;15:270.PubMedPubMedCentralGoogle Scholar
  113. Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc. 2010;2010(6):pdb.prot5448.PubMedGoogle Scholar
  114. Meyer M, Kircher M, Gansauge M-T, Li H, Racimo F, Mallick S, et al. A high-coverage genome sequence from an archaic denisovan individual. Science. 2012;338:222–6.PubMedPubMedCentralGoogle Scholar
  115. Meyer M, Fu Q, Aximu-Petri A, Glocke I, Nickel B, Arsuaga J-L, et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature. 2014;505:403–6.PubMedGoogle Scholar
  116. Miller W, Drautz DI, Ratan A, Pusey B, Qi J, Lesk AM, et al. Sequencing the nuclear genome of the extinct woolly mammoth. Nature. 2008;456:387–90.PubMedGoogle Scholar
  117. Miller W, Schuster SC, Welch AJ, Ratan A, Bedoya-Reina OC, Zhao F, et al. Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change. Proc Natl Acad Sci. 2012;109:E2382–90.PubMedGoogle Scholar
  118. Mohandesan E, Speller CF, Peters J, Uerpmann HP, Uerpmann M, De Cupere B, et al. Combined hybridization capture and shotgun sequencing for ancient DNA analysis of extinct wild and domestic dromedary camel. Mol Ecol Resour. 2016;17(2):300–13.PubMedPubMedCentralGoogle Scholar
  119. Ng TFF, Chen LF, Zhou YC, Shapiro B, Stiller M, Heintzman PD, et al. Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch. Proc Natl Acad Sci U S A. 2014;111:16842–7.PubMedPubMedCentralGoogle Scholar
  120. Nielsen-Marsh CM, Richards MP, Hauschka PV, Thomas-Oates JE, Trinkaus E, Pettitt PB, et al. Osteocalcin protein sequences of Neanderthals and modern primates. Proc Natl Acad Sci U S A. 2005;102:4409–13.PubMedPubMedCentralGoogle Scholar
  121. Noonan JP, Hofreiter M, Smith D, Priest JR, Rohland N, Rabeder G, et al. Genomic sequencing of pleistocene cave bears. Science. 2005;309:597–9.PubMedGoogle Scholar
  122. Noonan JP, Coop G, Kudaravalli S, Smith D, Krause J, Alessi J, et al. Sequencing and analysis of Neanderthal genomic DNA. Science. 2006;314:1113–8.PubMedPubMedCentralGoogle Scholar
  123. Okello JB, Zurek J, Devault AM, Kuch M, Okwi AL, Sewankambo NK, et al. Comparison of methods in the recovery of nucleic acids from archival formalin-fixed paraffin-embedded autopsy tissues. Anal Biochem. 2010;400:110–7.PubMedGoogle Scholar
  124. Organ CL, Schweitzer MH, Zheng W, Freimark LM, Cantley LC, Asara JM. Molecular phylogenetics of mastodon and Tyrannosaurus rex. Science. 2008;320:499.PubMedGoogle Scholar
  125. Orlando L, Ginolhac A, Raghavan M, Vilstrup J, Rasmussen M, Magnussen K, et al. True single-molecule DNA sequencing of a pleistocene horse bone. Genome Res. 2011;21:1705–19.PubMedPubMedCentralGoogle Scholar
  126. Orlando L, Ginolhac A, Zhang GJ, Froese D, Albrechtsen A, Stiller M, et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature. 2013;499:74–8.PubMedGoogle Scholar
  127. Orlando L, Gilbert MTP, Willerslev E. Reconstructing ancient genomes and epigenomes. Nat Rev Genet. 2015;16:395–408.PubMedGoogle Scholar
  128. Ostrom PH, Gandhi H, Strahler JR, Walker AK, Andrews PC, Leykam J, et al. Unraveling the sequence and structure of the protein osteocalcin from a 42 ka fossil horse. Geochim Cosmochim Acta. 2006;70:2034–44.Google Scholar
  129. Pääbo S. Molecular cloning of ancient Egyptian mummy DNA. Nature. 1985;314:644–5.PubMedGoogle Scholar
  130. Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, et al. Genetic analyses from ancient DNA. Annu Rev Genet. 2004;38:645–79.PubMedGoogle Scholar
  131. Paijmans JLA, Fickel J, Courtiol A, Hofreiter M, Forster DW. Impact of enrichment conditions on cross-species capture of fresh and degraded DNA. Mol Ecol Resour. 2016;16:42–55.PubMedGoogle Scholar
  132. Palkopoulou E, Mallick S, Skoglund P, Enk J, Rohland N, Li H, et al. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr Biol. 2015;25:1395–400.PubMedPubMedCentralGoogle Scholar
  133. Palmer SA, Moore JD, Clapham AJ, Rose P, Allaby RG. Archaeogenetic evidence of ancient nubian barley evolution from six to two-row indicates local adaptation. PLoS One. 2009;4:e6301.PubMedPubMedCentralGoogle Scholar
  134. Palmer SA, Clapham AJ, Rose P, Freitas FO, Owen BD, Beresford-Jones D, et al. Archaeogenomic evidence of punctuated genome evolution in gossypium. Mol Biol Evol. 2012;29:2031–8.PubMedGoogle Scholar
  135. Palmqvist P, Gröcke DR, Arribas A, Fariña RA. Paleoecological reconstruction of a lower Pleistocene large mammal community using biogeochemical (δ13C, δ15N, δ18O, Sr: Zn) and ecomorphological approaches. Paleobiology. 2003;29:205–29.Google Scholar
  136. Parducci L, Jorgensen T, Tollefsrud MM, Elverland E, Alm T, Fontana SL, et al. Glacial survival of boreal trees in northern Scandinavia. Science. 2012;335:1083–6.PubMedGoogle Scholar
  137. Parducci L, Valiranta M, Salonen JS, Ronkainen T, Matetovici I, Fontana SL, et al. Proxy comparison in ancient peat sediments: pollen, macrofossil and plant DNA. Philos Trans R Soc Lond B Biol Sci. 2015;370:20130382.PubMedPubMedCentralGoogle Scholar
  138. Park SDE, Magee DA, McGettigan PA, Teasdale MD, Edwards CJ, Lohan AJ, et al. Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle. Genome Biol. 2015;16:234.PubMedPubMedCentralGoogle Scholar
  139. Pedersen JS, Valen E, Velazquez AMV, Parker BJ, Rasmussen M, Lindgreen S, et al. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome. Genome Res. 2014;24:454–66.PubMedPubMedCentralGoogle Scholar
  140. Pedersen MW, Overballe-Petersen S, Ermini L, Sarkissian CD, Haile J, Hellstrom M, et al. Ancient and modern environmental DNA. Philos Trans R Soc Lond B Biol Sci. 2015;370(0130383)Google Scholar
  141. Pilot M, Malewski T, Moura AE, Grzybowski T, Olenski K, Rusc A, et al. On the origin of mongrels: evolutionary history of free-breeding dogs in Eurasia. Proc Biol Sci. 2015;282:20152189.PubMedPubMedCentralGoogle Scholar
  142. Pinhasi R, Fernandes D, Sirak K, Novak M, Connell S, Alpaslan-Roodenberg S, et al. Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS One. 2015;10(6):e0129102.PubMedPubMedCentralGoogle Scholar
  143. Poinar HN, Stankiewicz BA. Protein preservation and DNA retrieval from ancient tissues. Proc Natl Acad Sci U S A. 1999;96:8426–31.PubMedPubMedCentralGoogle Scholar
  144. Poinar HN, Hofreiter M, Spaulding WG, Martin PS, Stankiewicz BA, Bland H, et al. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science. 1998;281:402–6.PubMedGoogle Scholar
  145. Poinar HN, Schwarz C, Qi J, Shapiro B, MacPhee RDE, Buigues B, et al. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science. 2006;311:392–4.PubMedGoogle Scholar
  146. Prufer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature. 2014;505:43–9.PubMedGoogle Scholar
  147. Raghavan M, DeGiorgio M, Albrechtsen A, Moltke I, Skoglund P, Korneliussen TS, et al. The genetic prehistory of the New World Arctic. Science. 2014a;345(6200):1255832.PubMedGoogle Scholar
  148. Raghavan M, Skoglund P, Graf KE, Metspalu M, Albrechtsen A, Moltke I, et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature. 2014b;505:87–91.PubMedGoogle Scholar
  149. Raghavan M, Steinrücken M, Harris K, Schiffels S, Rasmussen S, DeGiorgio M, et al. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science. 2015;349:aab3884.PubMedPubMedCentralGoogle Scholar
  150. Ramos-Madrigal J, Smith BD, Moreno-Mayar JV, Gopalakrishnan S, Ross-Ibarra J, Gilbert MTP, Wales N. Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication. Curr Biol. 2016;26(23):3195–201.PubMedGoogle Scholar
  151. Rasmussen M, Li Y, Lindgreen S, Pedersen JS, Albrechtsen A, Moltke I, et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature. 2010;463:757–62.PubMedPubMedCentralGoogle Scholar
  152. Rasmussen M, Anzick SL, Waters MR, Skoglund P, DeGiorgio M, Stafford TW Jr, et al. The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature. 2014;506:225–9.PubMedPubMedCentralGoogle Scholar
  153. Rasmussen M, Sikora M, Albrechtsen A, Korneliussen TS, Moreno-Mayar JV, Poznik GD, et al. The ancestry and affiliations of Kennewick Man. Nature. 2015a;523(7561):455–8.PubMedPubMedCentralGoogle Scholar
  154. Rasmussen S, Allentoft ME, Nielsen K, Orlando L, Sikora M, Sjogren K-G, et al. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell. 2015b;163:571–82.PubMedPubMedCentralGoogle Scholar
  155. Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY, et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature. 2010;468:1053–60.PubMedPubMedCentralGoogle Scholar
  156. Reich D, Patterson N, Kircher M, Delfin F, Nandineni MR, Pugach I, et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am J Hum Genet. 2011;89:516–28.PubMedPubMedCentralGoogle Scholar
  157. Ristaino JB, Groves CT, Parra GR. PCR amplification of the Irish potato famine pathogen from historic specimens. Nature. 2001;411:695–7.PubMedGoogle Scholar
  158. Roberts CA. Buikstra JE. The bioarchaeology of tuberculosis: a global view on a reemerging disease. Gainesville: University Press of Florida; 2003Google Scholar
  159. Rogaev EI, Moliaka YK, Malyarchuk BA, Kondrashov FA, Derenko MV, Chumakov I, Grigorenko AP. Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius. PLoS Biol. 2006;4:e73.PubMedPubMedCentralGoogle Scholar
  160. Rogers RL, Slatkin M. Genomic disintegration in woolly mammoths on Wrangel island., e-Print Arch., Quant Biol. 2016:1–32
  161. Rohland N, Hofreiter M. Ancient DNA extraction from bones and teeth. Nat Protoc. 2007;2:1756–62.PubMedGoogle Scholar
  162. Rohland N, Siedel H, Hofreiter M. A rapid column-based ancient DNA extraction method for increased sample throughput. Mol Ecol Resour. 2010;10:677–83.PubMedGoogle Scholar
  163. Rohland N, Harney E, Mallick S, Nordenfelt S, Reich D. Partial uracil—DNA—glycosylase treatment for screening of ancient DNA. Philos Trans R Soc Lond B Biol Sci. 2015;370(1660):20130624.PubMedPubMedCentralGoogle Scholar
  164. Saiki R, Scharf S, Faloona F, Mullis K, Horn G, Erlich H, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230:1350–4.PubMedGoogle Scholar
  165. Sandler R. The ethics of reviving long extinct species. Conserv Biol. 2014;28:354–60.PubMedGoogle Scholar
  166. Sankararaman S, Patterson N, Li H, Pääbo S, Reich D. The date of interbreeding between Neandertals and modern humans. PLoS Genet. 2012;8:e1002947.PubMedPubMedCentralGoogle Scholar
  167. Sankararaman S, Mallick S, Patterson N, Reich D. The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr Biol. 2016;26:1241–7.PubMedPubMedCentralGoogle Scholar
  168. Schlumbaum A, Tensen M, Jaenicke-Despres V. Ancient plant DNA in archaeobotany. Veg Hist Archaeobotany. 2008;17:233–44.Google Scholar
  169. Schubert M, Jonsson H, Chang D, Der Sarkissian C, Ermini L, Ginolhac A, et al. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc Natl Acad Sci U S A. 2014;111:E5661–9.PubMedPubMedCentralGoogle Scholar
  170. Schuenemann VJ, Singh P, Mendum TA, Krause-Kyora B, Jager G, Bos KI, et al. Genome-wide comparison of medieval and modern Mycobacterium leprae. Science. 2013;341:179–83.PubMedGoogle Scholar
  171. Schurr TG, Sherry ST. Mitochondrial DNA and Y chromosome diversity and the peopling of the Americas: evolutionary and demographic evidence. Am J Hum Biol. 2004;16:420–39.PubMedGoogle Scholar
  172. Schweitzer MH, Suo Z, Avci R, Asara JM, Allen MA, Arce FT, Horner JR. Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein. Science. 2007;316:277–80.PubMedGoogle Scholar
  173. Schweitzer MH, Zheng W, Organ CL, Avci R, Suo Z, Freimark LM, et al. Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis. Science. 2009;324:626–31.PubMedGoogle Scholar
  174. Schweitzer MH, Zheng WX, Cleland TP, Bern M. Molecular analyses of dinosaur osteocytes support the presence of endogenous molecules. Bone. 2013;52:414–23.PubMedGoogle Scholar
  175. Seguin-Orlando A, Korneliussen TS, Sikora M, Malaspinas AS, Manica A, Moltke I, et al. Genomic structure in Europeans dating back at least 36,200 years. Science. 2014;346:1113–8.PubMedGoogle Scholar
  176. Seguin-Orlando A, Gamba C, Der Sarkissian C, Ermini L, Louvel G, Boulygina E, et al. Pros and cons of methylation-based enrichment methods for ancient DNA. Sci Rep. 2015;5:11826.PubMedPubMedCentralGoogle Scholar
  177. Shannon LM, Boyko RH, Castelhano M, Corey E, Hayward JJ, McLean C, et al. Genetic structure in village dogs reveals a Central Asian domestication origin. Proc Natl Acad Sci. 2015;112:13639–44.PubMedGoogle Scholar
  178. Sherkow JS, Greely HT. What if extinction is not forever? Science. 2013;340:32–3.PubMedGoogle Scholar
  179. Shoshani J, Lowenstein JM, Walz DA, Goodman M. Proboscidean origins of mastodon and woolly mammoth demonstrated immunologically. Paleobiology. 1985;11:429–37.Google Scholar
  180. Simonti CN, Vernot B, Bastarache L, Bottinger E, Carrell DS, Chisholm RL, et al. The phenotypic legacy of admixture between modern humans and Neandertals. Science. 2016;351:737–41.PubMedPubMedCentralGoogle Scholar
  181. Skoglund P, Malmstroem H, Raghavan M, Stora J, Hall P, Willerslev E, et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science. 2012;336:466–9.PubMedGoogle Scholar
  182. Smith CI, Chamberlain AT, Riley MS, Cooper A, Stringer CB, Collins MJ. Neanderthal DNA: not just old but old and cold? Nature. 2001;410:771–2.PubMedGoogle Scholar
  183. Smith O, Clapham AJ, Rose P, Liu Y, Wang J, Allaby RG. Genomic methylation patterns in archaeological barley show de-methylation as a time-dependent diagenetic process. Sci Rep. 2014;4:5559.PubMedPubMedCentralGoogle Scholar
  184. Smith O, Momber G, Bates R, Garwood P, Fitch S, Pallen M, et al. Sedimentary DNA from a submerged site reveals wheat in the British Isles 8000 years ago. Science. 2015;347:998–1001.PubMedGoogle Scholar
  185. Soltis PS, Soltis DE, Smiley CJ. An rbcL sequence from a Miocene Taxodium (bald cypress). Proc Natl Acad Sci U S A. 1992;89:449–51.PubMedPubMedCentralGoogle Scholar
  186. Spigelman M, Donoghue HD, Abdeen Z, Ereqat S, Sarie I, Greenblatt CL, et al. Evolutionary changes in the genome of Mycobacterium tuberculosis and the human genome from 9000 years BP until modern times. Tuberculosis. 2015;95:S145–9.PubMedGoogle Scholar
  187. Spyrou MA, Tukhbatova RI, Feldman M, Drath J, Kacki S, Beltran de Heredia J, et al. Historical Y. pestis genomes reveal the European Black Death as the source of ancient and modern plague pandemics. Cell Host Microbe. 2016;19:874–81.PubMedGoogle Scholar
  188. Stringer C. Human evolution: small remains still pose big problems. Nature. 2014;514:427–9.PubMedGoogle Scholar
  189. Stuart AJ, Kosintsev P, Higham T, Lister AM. Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth. Nature. 2004;431:684–9.PubMedGoogle Scholar
  190. Thomas M, Gilbert P. Postmortem damage of mitochondrial DNA. Nucleic Acids Mol Biol. 2006;18:91–115.Google Scholar
  191. Thomsen PF, Willerslev E. Environmental DNA—an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv. 2015;183:4–18.Google Scholar
  192. Torres JM, Borja C, Olivares EG. Immunoglobulin G in 1.6 million-year-old fossil bones from Venta Micena (Granada, Spain). J Archaeol Sci. 2002;29:167–75.Google Scholar
  193. Vartanyan SL, Arslanov KA, Karhu JA, Possnert G, Sulerzhitsky LD. Collection of radiocarbon dates on the mammoths (Mammuthus primigenius) and other genera of Wrangel Island, northeast Siberia, Russia. Quatern Res. 2008;70:51–9.Google Scholar
  194. Vernot B, Akey JM. Complex history of admixture between modern humans and Neandertals. Am J Hum Genet. 2015;96:448–53.PubMedPubMedCentralGoogle Scholar
  195. Wadsworth C, Buckley M. Proteome degradation in fossils: investigating the longevity of protein survival in ancient bone. Rapid Commun Mass Spectrom. 2014;28:605–15.PubMedPubMedCentralGoogle Scholar
  196. Wagner DM, Klunk J, Harbeck M, Devault A, Waglechner N, Sahl JW, et al. Yersinia pestis and the Plague of Justinian 541–543 AD: a genomic analysis. Lancet Infect Dis. 2014;14:319–26.PubMedGoogle Scholar
  197. Wall JD, Yang MA, Jay F, Kim SK, Durand EY, Stevison LS, et al. Higher levels of neanderthal ancestry in East Asians than in Europeans. Genetics. 2013;194(1):199–209.PubMedPubMedCentralGoogle Scholar
  198. Warinner C, Rodrigues JFM, Vyas R, Trachsel C, Shved N, Grossmann J, et al. Pathogens and host immunity in the ancient human oral cavity. Nat Genet. 2014;46:336–44.PubMedPubMedCentralGoogle Scholar
  199. Warinner C, Speller C, Collins MJ. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philos Trans R Soc Lond B Biol Sci. 2015;370(1660):20130376.PubMedPubMedCentralGoogle Scholar
  200. Welker F, Collins MJ, Thomas JA, Wadsley M, Brace S, Cappellini E, et al. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates. Nature. 2015;522:81–U192.PubMedGoogle Scholar
  201. Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MTP, Shapiro B, et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science. 2003;300:791–5.PubMedGoogle Scholar
  202. Willerslev E, Hansen AJ, Poinar HN. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol. 2004;19:141–7.PubMedGoogle Scholar
  203. Willerslev E, Cappellini E, Boomsma W, Nielsen R, Hebsgaard MB, Brand TB, et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science. 2007;317:111–4.PubMedPubMedCentralGoogle Scholar
  204. Willerslev E, Davison J, Moora M, Zobel M, Coissac E, Edwards ME, et al. Fifty thousand years of arctic vegetation and megafaunal diet. Nature. 2014;506:47–51.PubMedGoogle Scholar
  205. Woodward NW, Bunnell M. DNA sequence from Cretaceous period bone fragments. Science. 1994;266:1229–32.PubMedGoogle Scholar
  206. Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, et al. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. Elife. 2013;2:e00731.PubMedPubMedCentralGoogle Scholar
  207. Zhang HC, Paijmans JLA, Chang FQ, Wu XH, Chen GJ, Lei CZ, et al. Morphological and genetic evidence for early Holocene cattle management in northeastern China. Nat Commun. 2013;4:2755.PubMedGoogle Scholar
  208. Zohary D, Hopf M, Weiss E. Domestication of Plants in the Old World. The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford University Press on Demand; 2012Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity at Buffalo (SUNY)BuffaloUSA
  2. 2.School of Biological SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations