Advertisement

Inferring Demographic History Using Genomic Data

  • Jordi Salmona
  • Rasmus Heller
  • Martin Lascoux
  • Aaron Shafer
Chapter
Part of the Population Genomics book series (POGE)

Abstract

Characterizing population histories has been a major focus in evolutionary and conservation biology for decades. Driven by a desire to understand population histories, researchers have been modeling simple demographic scenarios with genetic data since the 1970s. In the last decade, the availability of genomic data and the number of demographic inference methods have dramatically increased and constitute a continuously evolving sub-discipline within population genetics. Genome sequences—both reduced representation and whole-genome sequencing and re-sequencing—contain a trove of information related to population histories and permit reconstructing complex demographic scenarios. In combination with new powerful and flexible analytical methods, population demographic inference from genomic data has revealed surprising, dynamic, and conservation-relevant histories. This chapter discusses recent advancements in demographic inference made possible by genome sequence and new analytical tools. As the theory and models of demographic inference have matured, and data sets have grown, likewise has the recognition of limitations and confounding effects. We caution that the increasing sophistication of methods should not override the critical evaluation of the researcher. Demographic inferences with genomic data offer powerful windows into the past but we encourage users to recognize inherent limitations of model assumptions, use simulations to identify potential biases, and include complementary and supporting analyses.

Keywords

Approximate-Bayesian computation Coalescent Effective population size Genealogy Haplotypes Migration 

Notes

Glossary

Approximate Bayesian computation (ABC)

compares summary statistics from observed and simulated data to make demographic and statistical inferences. ABC does not rely on computing a likelihood-function.

Bottleneck

a massive and temporary reduction in (effective) population size that results in an associated reduction of genetic diversity.

Genetic drift

changes in the frequency of alleles due to random mating (and allele segregation in diploids). Changes are more pronounced in small populations.

Coalescent theory

mathematical model governing the expected distribution of coalescence times back to a common ancestor in a population sample.

Diffusion approximation

approximation of the Wright-Fisher (WF) model that leads to a continuous time stochastic process that is easier to study mathematically. It is used to derive useful formulas such as the expected time to fixation of a mutation.

Divergence time (T)

estimated divergence time between two populations measured as the number of generations, typically divided by 2Ne.

Effective population size (Ne)

the size of an idealized (Wright-Fisher) population with the same amount of genetic drift as the given real population. In most organisms, effective size is less than census size because of factors such as overlapping generations, reproductive inequality, and sex bias.

Genealogy

the ancestral relationship, for a particular segment of the genome, among sampled chromosomes. This takes the form of a branching tree for non-recombining data, but becomes a tangled graph (the “ancestral recombination graph”) with recombination.

Generation time

is the average interval between identical life history stages across successive generations. Generation time is often expressed in years.

Migration (M)

is the average number of migrants entering each population per generation defined as 4Nem where m is the proportion of individuals per generation in each population that are immigrants.

Recombination

the process of exchanging genetic material between homologous chromosomes during meiosis resulting in new combinations of alleles in the resulting gametes.

Rho (ρ)

is the population-scaled recombination rate defined as 4Ner in diploid organisms.

Panmictic population

a population in which all pairs of individuals are equally likely to mate.

Site frequency spectrum (SFS)

also called the allele frequency spectrum, is the distribution of the allele frequencies of a given set of loci in a sample, and is often visualized as a histogram.

Tajima’s D

a summary statistic that compares two estimators of the population-scaled mutation rate Θ to detect departures from the standard coalescent model. Departures can reflect demography or selection.

Theta (Θ)

is the population-scaled mutation rate equal to 4Neμ in diploid organisms. It is the product of the Ne and mutation rate μ and measures the capacity of a population to maintain genetic variability. Among organisms of similar μ, it functions as a measure of relative effective population size.

Wright-Fisher model

is a discrete-time model of stochastic reproduction (see also genetic drift) that assumes a population of size N, random mating, and non-overlapping generations.

References

  1. Adams AM, Hudson RR. Maximum-likelihood estimation of demographic parameters using the frequency spectrum of unlinked single-nucleotide polymorphisms. Genetics. 2004;168:1699–712.PubMedPubMedCentralGoogle Scholar
  2. Allentoft ME, Sikora M, Sjögren K-G, Rasmussen S, Rasmussen M, et al. Population genomics of Bronze Age Eurasia. Nature. 2015;522:167–72.PubMedGoogle Scholar
  3. Arnold B, Kim S-T, Bomblies K. Single geographic origin of a widespread autotetraploid Arabidopsis arenosa lineage followed by interploidy admixture. Mol Biol Evol. 2015;32:1382–95.PubMedGoogle Scholar
  4. Barnosky AD, Koch PL, Feranec RS, Wing SL, Shabel AB. Assessing the causes of late Pleistocene extinctions on the continents. Science. 2004;306:70–5.PubMedGoogle Scholar
  5. Beaumont MA. Detecting population expansion and decline using microsatellites. Genetics. 1999;153:2013.PubMedPubMedCentralGoogle Scholar
  6. Beaumont MA. Estimation of population growth or decline in genetically monitored populations. Genetics. 2003;164:1139–60.PubMedPubMedCentralGoogle Scholar
  7. Beaumont MA. Approximate Bayesian computation in evolution and ecology. Annu Rev Ecol Evol Syst. 2010;41:379–406.Google Scholar
  8. Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian computation in population genetics. Genetics. 2002;162:2025–35.PubMedPubMedCentralGoogle Scholar
  9. Beerli P. Effect of unsampled populations on the estimation of population sizes and migration rates between sampled populations. Mol Ecol. 2004;13:827–36.PubMedGoogle Scholar
  10. Bertorelle G, Benazzo A, Mona S. ABC as a flexible framework to estimate demography over space and time: some cons, many pros. Mol Ecol. 2010;19:2609–25.PubMedGoogle Scholar
  11. Bhaskar A, Wang YXR, Song YS. Efficient inference of population size histories and locus-specific mutation rates from large-sample genomic variation data. Genome Res. 2015;25(2):268–79. doi: 10.1101/gr.178756.114.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bienvenu F, Demetrius L, Legendre S. A general formula for the generation time. ArXiv Prepr. 2013:ArXiv13076692.Google Scholar
  13. Boitard S, Rodriguez W, Jay F, Mona S, Austerlitz F. Inferring population size history from large samples of genome-wide molecular data-an approximate Bayesian computation approach. PLoS Genet. 2016;12:e1005877.PubMedPubMedCentralGoogle Scholar
  14. Box GE, Draper NR, et al. Empirical model-building and response surfaces. New York: Wiley; 1987.Google Scholar
  15. Burgarella C, Gayral P, Ballenghien M, Bernard A, David P, Jarne P, et al. Molecular evolution of freshwater snails with contrasting mating systems. Mol Biol Evol. 2015;32:2403–16.PubMedGoogle Scholar
  16. Carneiro M, Afonso S, Geraldes A, Garreau H, Bolet G, Boucher S, Tircazes A, Queney G, Nachman MW, Ferrand N. The genetic structure of domestic rabbits. Mol Biol Evol. 2011;28:1801–16.PubMedPubMedCentralGoogle Scholar
  17. Carvajal-Rodríguez A. GENOMEPOP: a program to simulate genomes in populations. BMC Bioinforma. 2008;9(1):223.Google Scholar
  18. Chen H, Hey J, Chen K. Inferring very recent population growth rate from population-scale sequencing data: using a large-sample coalescent estimator. Mol Biol Evol. 2015;32(11):2996–3011. doi: 10.1093/molbev/msv158.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chikhi L, Sousa VC, Luisi P, Goossens B, Beaumont MA. The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes. Genetics. 2010;186:983.PubMedPubMedCentralGoogle Scholar
  20. Cornuet J-M, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, Marin J-M, Estoup A. DIYABC v2. 0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics. 2014;30:1187–9.PubMedGoogle Scholar
  21. Csilléry K, Blum MG, Gaggiotti OE, François O. Approximate Bayesian computation (ABC) in practice. Trends Ecol Evol. 2010;25:410–8.PubMedGoogle Scholar
  22. Csilléry K, François O, Blum MG. abc: an R package for approximate Bayesian computation (ABC). Methods Ecol Evol. 2012;3:475–9.Google Scholar
  23. Drummond AJ, et al. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4(5):e88.PubMedPubMedCentralGoogle Scholar
  24. Evans SN, Shvets Y, Slatkin M. Non-equilibrium theory of the allele frequency spectrum. Theor Popul Biol. 2007;71:109–19.PubMedGoogle Scholar
  25. Ewens WJ. The sampling theory of selectively neutral alleles. Theor Popul Biol. 1972;3:87–112.PubMedGoogle Scholar
  26. Excoffier L, Foll M. fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics. 2011;27:1332–4.PubMedGoogle Scholar
  27. Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. Robust demographic inference from genomic and SNP data. PLoS Genet. 2013;9:e1003905.PubMedPubMedCentralGoogle Scholar
  28. Fahrig L. Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst. 2003;34:487–515.Google Scholar
  29. Fisher RA. The distribution of gene ratios for rare mutations. Proc Roy Soc Edinburgh. 1930;50:205–22.Google Scholar
  30. Foote AD, Vijay N, Ávila-Arcos MC, Baird RW, Durban JW, Fumagalli M, Gibbs RA, Hanson MB, Korneliussen TS, Martin MD, et al. Genome-culture coevolution promotes rapid divergence of killer whale ecotypes. Nat Commun. 2016;7:11693.PubMedPubMedCentralGoogle Scholar
  31. Fu Y-X. Statistical properties of segregating sites. Theor Popul Biol. 1995;48:172–97.PubMedGoogle Scholar
  32. Garza JC, Williamson EG. Detection of reduction in population size using data from microsatellite loci. Mol Ecol. 2001;10:305–18.PubMedGoogle Scholar
  33. Gravel S. Population genetics models of local ancestry. Genetics. 2012;191:607–19.PubMedPubMedCentralGoogle Scholar
  34. Griffiths RC. The frequency spectrum of a mutation, and its age, in a general diffusion model. Theor Popul Biol. 2003;64:241–51.PubMedGoogle Scholar
  35. Griffiths RC, Marjoram P. An ancestral recombination graph. In: Donnelly P, Tavar’e S, editors. Progress in population genetics and human evolution, IMA volumes in mathematics and its applications, vol 87. New York: Springer; 1997. p. 100–117.Google Scholar
  36. Griffiths RC, Tavaré S. The age of a mutation in a general coalescent tree. Stoch Models. 1998;14:273–95.Google Scholar
  37. Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 2009;5:e1000695.PubMedPubMedCentralGoogle Scholar
  38. Han E, Sinsheimer JS, Novembre J. Characterizing bias in population genetic inferences from low coverage sequencing data. Mol Biol Evol. 2013;31(3):723–35. doi: 10.1093/molbev/mst229.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Harris K, Nielsen R. Inferring demographic history from a spectrum of shared haplotype lengths. PLoS Genet. 2013;9:e1003521.PubMedPubMedCentralGoogle Scholar
  40. Hein J, Schierop MH, Wiuf C. Gene genealogies, variation and evolution. A primer in coalescent theory. Oxford, UK: Oxford University Press; 2005.Google Scholar
  41. Heled J, Drummond AJ. Bayesian inference of population size history from multiple loci. BMC Evol Biol. 2008;8:289.PubMedPubMedCentralGoogle Scholar
  42. Heller R, Bruniche-Olsen A, Siegismund HR. Cape buffalo mitogenomics reveals a Holocene shift in the African human–megafauna dynamics. Mol Ecol. 2012;21:3947–59.PubMedGoogle Scholar
  43. Heller R, Chikhi L, Siegismund HR. The confounding effect of population structure on Bayesian skyline plot inferences of demographic history. PLoS One. 2013;8:e62992.PubMedPubMedCentralGoogle Scholar
  44. Hernandez RD, Williamson SH, Bustamante CD. Context dependence, ancestral misidentification, and spurious signatures of natural selection. Mol Biol Evol. 2007;24:1792–800.PubMedGoogle Scholar
  45. Hey J, Nielsen R. Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics. 2004;167:747–60.PubMedPubMedCentralGoogle Scholar
  46. Hirschfeld L, Hirschfeld H. Serological differences between the blood of different races: the results of researches on the Macedonian front. Lancet. 1919;194:675–9.Google Scholar
  47. Ho SY. The changing face of the molecular evolutionary clock. Trends Ecol Evol. 2014;29:496–503.PubMedGoogle Scholar
  48. Hoban S, Arntzen JA, Bruford MW, Godoy JA, Rus Hoelzel A, Segelbacher G, Vilà C, Bertorelle G. Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evol Appl. 2014;7:984–98.PubMedPubMedCentralGoogle Scholar
  49. Hudson RR. Properties of a neutral allele model with intragenic recombination. Theor Popul Biol. 1983;23:183–201.PubMedGoogle Scholar
  50. Hudson RR. Gene genealogies and the coalescent process. Oxf Surv Evol Biol. 1990;7(1):44.Google Scholar
  51. Hudson RR. Generating samples under a Wright–Fisher neutral model of genetic 9variation. Bioinformatics. 2002;18:337–8.PubMedGoogle Scholar
  52. Hwang DG, Green P. Bayesian Markov chain Monte Carlo sequence analysis reveals varying neutral substitution patterns in mammalian evolution. Proc Natl Acad Sci U S A. 2004;101:13994–4001.PubMedPubMedCentralGoogle Scholar
  53. Kaj I, Krone SM, Lascoux M. Coalescent theory for seed bank models. J Appl Prob. 2001;38:285–300.Google Scholar
  54. Kardos M, Luikart G, Bunch R, Dewey S, Edwards W, McWilliam S, Stephenson J, Allendorf FW, Hogg JT, Kijas J. Whole-genome resequencing uncovers molecular signatures of natural and sexual selection in wild bighorn sheep. Mol Ecol. 2015;24:5616–32.PubMedGoogle Scholar
  55. Kardos M, Taylor HR, Ellegren H, Luikart G, Allendorf FW. Genomics advances the study of inbreeding depression in the wild. Evol Appl. 2016:n/a-n/a. doi:  10.1111/eva.12414.PubMedPubMedCentralGoogle Scholar
  56. Kern AD, Hey J. Exact calculation of the joint allele frequency spectrum for generalized isolation with migration models. BioRXiv. 2016. doi:  http://dx.doi.org/10.1101/065003.
  57. Kimura M. Solution of a process of random genetic drift with a continuous model. Proc Natl Acad Sci. 1955;41:144–50.PubMedGoogle Scholar
  58. Kimura M. Diffusion models in population genetics. J Appl Probab. 1964;1:177–232.Google Scholar
  59. Kingman JFC. The coalescent. Stoch Process Their Appl. 1982;13:235–48.Google Scholar
  60. Kirin M, McQuillan R, Franklin CS, Campbell H, McKeigue PM, Wilson JF. Genomic runs of homozygosity record population history and consanguinity. PLoS One. 2010;5:e13996.PubMedPubMedCentralGoogle Scholar
  61. Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15:356.PubMedPubMedCentralGoogle Scholar
  62. Krone SM, Neuhauser C. Ancestral processes with selection. Theor Popn Biol. 1997;51:210–37.Google Scholar
  63. Kuhner MK. LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics. 2006;22:768–70.PubMedGoogle Scholar
  64. Kuhner MK. Coalescent genealogy samplers: windows into population history. Trends Ecol Evol. 2009;24:86–93.PubMedGoogle Scholar
  65. Leblois R, Estoup A, Streiff R. Genetics of recent habitat contraction and reduction in population size: does isolation by distance matter? Mol Ecol. 2006;15:3601–15.PubMedGoogle Scholar
  66. Leblois R, Pudlo P, Néron J, Bertaux F, Beeravolu CR, Vitalis R, Rousset F. Maximum likelihood inference of population size contractions from microsatellite data. Mol Biol Evol. 2014;31(10):2805–23. doi: 10.1093/molbev/msu212.CrossRefPubMedGoogle Scholar
  67. Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475:493–6.PubMedPubMedCentralGoogle Scholar
  68. Li S, Jakobsson M. Estimating demographic parameters from large-scale population genomic data using approximate Bayesian computation. BMC Genet. 2012;13:22.PubMedPubMedCentralGoogle Scholar
  69. Liu X, Fu Y-X. Exploring population size changes using SNP frequency spectra. Nat Genet. 2015;47:555–9.PubMedPubMedCentralGoogle Scholar
  70. Lohse K, Chmelik M, Martin SH, Barton NH. Efficient strategies for calculating blockwise likelihoods under the coalescent. Genetics. 2016;202:775–86.PubMedGoogle Scholar
  71. Luikart G, Cornuet J-M. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol. 1998;12:228–37.Google Scholar
  72. MacLeod IM, Hayes BJ, Goddard ME, et al. A novel predictor of multilocus haplotype homozygosity: comparison with existing predictors. Genet Res. 2009;91:413–26.Google Scholar
  73. MacLeod IM, Larkin DM, Lewin HA, Hayes BJ, Goddard ME. Inferring demography from runs of homozygosity in whole genome sequence, with correction for sequence errors. Mol Biol Evol. 2013;30(9):2209–23. doi: 10.1093/molbev/mst125.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Malaspinas A-S, Westaway MC, Muller C, Sousa VC, Lao O, Alves I, et al. A genomic history of aboriginal Australia. Nature. 2016;538:207–14.PubMedGoogle Scholar
  75. Marjoram P, Joyce P. Practical implications of coalescent theory. Chapter 5. In: Heath LS, Ramakrishnan N, editors. Problem solving handbook in computational 63 biology and bioinformatics. New York: Springer; 2010.Google Scholar
  76. Marjoram P, Tavaré S. Modern computational approaches for analysing molecular genetic variation data. Nat Rev Genet. 2006;7:759–70.PubMedGoogle Scholar
  77. Marjoram P, Wall JD. Fast “coalescent” simulation. BMC Genet. 2006;7:16.PubMedPubMedCentralGoogle Scholar
  78. Matsumoto T, Akashi H, Yang Z. Evaluation of ancestral sequence reconstruction methods to infer nonstationary patterns of nucleotide substitution. Genetics. 2015;200:873–90.PubMedPubMedCentralGoogle Scholar
  79. Mazet O, Rodríguez W, Chikhi L. Demographic inference using genetic data from a single individual: separating population size variation from population structure. Theor Popul Biol. 2015;104:46–58.PubMedGoogle Scholar
  80. Mazet O, Rodriguez W, Grusea S, Boitard S, Chikhi L. On the importance of being structured: instantaneous coalescence rates and human evolution—lessons for ancestral population size inference. Heredity. 2016;116:362–71.PubMedGoogle Scholar
  81. McKee JK, Sciulli PW, Fooce CD, Waite TA. Forecasting global biodiversity threats associated with human population growth. Biol Conserv. 2004;115:161–4.Google Scholar
  82. McVean GAT, Cardin NJ. Approximating the coalescent with recombination. Philos Trans R Soc B. 2005;360:1387–93.Google Scholar
  83. Moorjani P, Gao Z, Przeworski M. Human germline mutation and the erratic evolutionary clock. PLoS Biol. 2016;14(10):e2000744. doi: 10.1371/journal.pbio.2000744.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Moran PAP. Random processes in genetics. In: Proceedings of the Cambridge Philosophical Society. 1958. p. 60.Google Scholar
  85. Nadachowska-Brzyska K, Li C, Smeds L, Zhang G, Ellegren H. Temporal dynamics of avian populations during pleistocene revealed by whole-genome sequences. Curr Biol. 2015;25:1375–80.PubMedPubMedCentralGoogle Scholar
  86. Nadachowska-Brzyska K, Burri R, Smeds L, Ellegren H. PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Mol Ecol. 2016;25:1058–72.PubMedPubMedCentralGoogle Scholar
  87. Naduvilezhath L, Rose LE, Metzler D. Jaatha: a fast composite-likelihood approach to estimate demographic parameters. MolEcol. 2011;20:2709–23.Google Scholar
  88. Nelson GC, Dobermann A, Nakicenovic N, O’Neill BC. Anthropogenic drivers of ecosystem change: an overview. Ecol Soc. 2006;11.Google Scholar
  89. Nielsen R, Beaumont MA. Statistical inferences in phylogeography. Mol Ecol. 2009;18:1034–47.PubMedGoogle Scholar
  90. Nielsen R, Slatkin M. An introduction to population genetics: theory and applications. Sunderland, MA: Sinauer Associates; 2013.Google Scholar
  91. Nielsen R, Hubisz MJ, Hellmann I, Torgerson D, Andrés AM, Albrechtsen A, Gutenkunst R, Adams MD, Cargill M, Boyko A, Indap A, Bustamante CD, Clark AG. Darwinian and demographic forces affecting human protein coding genes. Genome Res. 2009;19:838–49.PubMedPubMedCentralGoogle Scholar
  92. Nielsen R, Korneliussen TS, Albrechtsen A, Wang J. SNP calling, genotype calling, and sample allele frequency estimation from new-generation sequencing data. PLoS One. 2012;7(7):e37558.PubMedPubMedCentralGoogle Scholar
  93. Nikolic N, Chevalet C. Detecting past changes of effective population size. Evol Appl. 2014;7:663–81.PubMedPubMedCentralGoogle Scholar
  94. Nordborg M. Coalescent theory. In: Balding DJ, Bishop MJ, Cannings C, editors. Handbook of statistical genetics. New York: Wiley; 2001. p. 179–208Google Scholar
  95. Nordborg M, Donelly P. The coalescent process with selfing. Genetics. 1997;146(3):1185–95.PubMedPubMedCentralGoogle Scholar
  96. Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M, Schubert M, Cappellini E, Petersen B, Moltke I, et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature. 2013;499:744–8.Google Scholar
  97. Orozco-terWengel P. The devil is in the details: the effect of population structure on demographic inference. Heredity. 2016;116:349–50.PubMedPubMedCentralGoogle Scholar
  98. Palamara PF, Pe’er I. Inference of historical migration rates via haplotype sharing. Bioinformatics. 2013;8:i180–8.Google Scholar
  99. Palamara PF, Lencz T, Darvasi A, Pe’er I. Length distributions of identity by descent reveal fine-scale demographic history. Am J Hum Genet. 2012;91:1150.PubMedCentralGoogle Scholar
  100. Palkopoulou E, Mallick S, Skoglund P, Enk J, Rohland N, Li H, Omrak A, Vartanyan S, Poinar H, Götherström A, Reich D, Dalén L. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr Biol. 2015;25:1395–400.PubMedPubMedCentralGoogle Scholar
  101. Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37–42.PubMedPubMedCentralGoogle Scholar
  102. Paten B, Herrero J, Beal K, Fitzgerald S, Birney E. Enredo and Pecan: genome-wide mammalian consistency-based multiple alignment with paralogs. Genome Res. 2008a;18:1814–28.PubMedPubMedCentralGoogle Scholar
  103. Paten B, Herrero J, Fitzgerald S, Beal K, Flicek P, Holmes I, Birney E. Genome-wide nucleotide-level mammalian ancestor reconstruction. Genome Res. 2008b;18:1829–43.PubMedPubMedCentralGoogle Scholar
  104. Pavlidis P, Laurent S, Stephan W. msABC: a modification of Hudson’s ms to facilitate multi-locus ABC analysis. Mol Ecol Resour. 2010;10:723–7.PubMedGoogle Scholar
  105. Peery MZ, Kirby R, Reid BN, Stoelting R, Coucet-Beer E, Robinson S, Vasquez-Carillio C, Pauli JN, Palsboll PJ. Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol. 2012;21:3403–18.PubMedGoogle Scholar
  106. Peter BM, Wegmann D, Excoffier L. Distinguishing between population bottleneck and population subdivision by a Bayesian model choice procedure. Mol Ecol. 2010:4648–60.PubMedGoogle Scholar
  107. Polanski A, Bobrowski A, Kimmel M. A note on distributions of times to coalescence, under time-dependent population size. Theor Popul Biol. 2003;63:33–40.PubMedGoogle Scholar
  108. Posada D, Crandall KA. Modeltest: testing the model of DNA substitution. Bioinformatics. 1998;14:817–8.PubMedGoogle Scholar
  109. Prado-Martinez J, Sudmant PH, Kidd JM, Li H, Kelley JL, Lorente-Galdos B, Veeramah KR, Woerner AE, O’Connor TD, Santpere G, et al. Great ape genetic diversity and population history. Nature. 2013;499:471–5.PubMedPubMedCentralGoogle Scholar
  110. Qiu Q, Wang L, Wang K, Yang Y, Ma T, Wang Z, Zhang X, Ni Z, Hou F, Long R, et al. Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions. Nat Commun. 2015;6:10283.PubMedPubMedCentralGoogle Scholar
  111. Robert CP, Cornuet J-M, Marin J-M, Pillai NS. Lack of confidence in approximate Bayesian computation model choice. Proc Natl Acad Sci. 2011;108:15112–7.PubMedGoogle Scholar
  112. Robinson JD, Bunnefeld L, Hearn J, Stone GN, Hickerson MJ. ABC inference of multi-population divergence with admixture from unphased population genomic data. Mol Ecol. 2014;23(18):4458–71.PubMedPubMedCentralGoogle Scholar
  113. Schiffels S, Durbin R. Inferring human population size and separation history from multiple genome sequences. Nat Genet. 2014;46:919–25.PubMedPubMedCentralGoogle Scholar
  114. Schubert M, Jónsson H, Chang D, Der Sarkissian C, Ermini L, Ginolhac A, Albrechtsen A, Dupanloup I, Foucal A, Petersen B, et al. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc Natl Acad Sci. 2014;111:E5661–9.PubMedGoogle Scholar
  115. Shafer ABA, Gattepaille LM, Stewart REA, Wolf JBW. Demographic inferences using short-read genomic data in an approximate Bayesian computation framework: in silico evaluation of power, biases and proof of concept in Atlantic walrus. Mol Ecol. 2015;24:328–45.PubMedGoogle Scholar
  116. Shafer ABA, Miller JM, Kardos M. Cross-species application of SNP chips is not suitable for identifying runs of homozygosity. J Hered. 2016;107:193–5.PubMedPubMedCentralGoogle Scholar
  117. Shafer ABA, Peart CR, Tusso S, Maayan I, Brelsford A, Wheat CW, Wolf JBW. Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference. Methods Ecol Evol. 2017. doi:  10.1111/2041-210X.12700.Google Scholar
  118. Sheehan S, Harris K, Song YS. Estimating variable effective population sizes from multiple genomes: a sequentially Markov conditional sampling distribution approach. Genetics. 2013;194:647–62.PubMedPubMedCentralGoogle Scholar
  119. Sousa VM, Fritz M, Beaumont MA, Chikhi L. Approximate Bayesian computation (ABC) without summary statistics: the case of admixture. Genetics. 2009;181(4):1507–19.PubMedPubMedCentralGoogle Scholar
  120. Städler T, Haubold B, Merino C, Stephan W, Pfaffelhuber P. The impact of sampling schemes on the site frequency spectrum in nonequilibrium subdivided populations. Genetics. 2009;182:205–16.PubMedPubMedCentralGoogle Scholar
  121. Storz JF, Beaumont MA. Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution. 2002;56:154–66.PubMedGoogle Scholar
  122. Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983;105:437–60.PubMedPubMedCentralGoogle Scholar
  123. Tajima F. The effect of change in population size on DNA polymorphism. Genetics. 1989;123:597.PubMedPubMedCentralGoogle Scholar
  124. Thuiller W. Biodiversity: climate change and the ecologist. Nature. 2007;448:550–2.PubMedGoogle Scholar
  125. Veeramah KR, Woerner AE, Johnstone L, Gut I, Gut M, Marques-Bonet T, Carbone L, Wall JD, Hammer MF. Examining phylogenetic relationships among gibbon genera using whole genome sequence data using an approximate bayesian computation approach. Genetics. 2015;200:295–308.PubMedPubMedCentralGoogle Scholar
  126. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. Human domination of earth’s ecosystems. Science. 1997;277:494–9.Google Scholar
  127. Wakeley J. Nonequilibrium migration in human history. Genetics. 1999;153:1863.PubMedPubMedCentralGoogle Scholar
  128. Wakeley J. Coalescent theory: an introduction. San Francisco: W.H. Freeman; 2008.Google Scholar
  129. Wakeley J, Hey J. Estimating ancestral population parameters. Genetics. 1997;145:847–55.PubMedPubMedCentralGoogle Scholar
  130. Wang J, Street NR, Scofield DG, Ingvarsson PK. Variation in linked selection and recombination drive genomic divergence during allopatric speciation of European and American aspens. Mol Biol Evol. 2016;33(7):1754–67. doi: 10.1093/molbev/msw051.CrossRefPubMedPubMedCentralGoogle Scholar
  131. Waples RK, Larson WA, Waples RS. Estimating contemporary effective population size in non-model species using linkage disequilibrium across thousands of loci. Heredity. 2016;117(4):233–40.PubMedPubMedCentralGoogle Scholar
  132. Warren MJ, Thomas GWC, Hahn MW, Raney BJ, Aken B, Nag R, Schmitz J, Churakov G, Noll A, Stanyon R, Webb D, Thibaud-Nissen F, Nordborg M, Marques-Bonet T, Dewar K, Weinstock GM, Wilson RK, Freimer NB. The genome of the vervet (Chlorocebus aethiops sabaeus). Genome Res. 2015;25:1921–33.PubMedPubMedCentralGoogle Scholar
  133. Watterson GA. The sampling theory of selectively neutral alleles. Adv Appl Probab. 1974:463–88.Google Scholar
  134. Wegmann D, Leuenberger C, Neuenschwander S, Excoffier L. ABCtoolbox: a versatile toolkit for approximate Bayesian computations. BMC Bioinformatics. 2010;11:116.PubMedPubMedCentralGoogle Scholar
  135. Whitlock MC, McCauley DE. Indirect measures of gene flow and migration: FST|[ne]|1/(4Nm+1). Heredity. 1999;82:117–25.PubMedGoogle Scholar
  136. Wiuf C, Hein J. Recombination as a point process along sequences. Theor Popul Biol. 1999;(55):248–59.PubMedGoogle Scholar
  137. Wright S. The distribution of gene frequencies under irreversible mutation. Proc Natl Acad Sci. 1938;24:253–9.PubMedGoogle Scholar
  138. Wu C-H, Drummond AJ. Joint inference of microsatellite mutation models, population history and genealogies using transdimensional Markov Chain Monte Carlo. Genetics. 2011;188:151–64.PubMedPubMedCentralGoogle Scholar
  139. Xue AT, Hickerson MJ. The aggregate site frequency spectrum (aSFS) for comparative population genomic inference. Mol Ecol. 2015;24:6223–40.PubMedPubMedCentralGoogle Scholar
  140. Zhao S, Zheng P, Dong S, Zhan X, Wu Q, Guo X, Hu Y, He W, Zhang S, Fan W, et al. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nat Genet. 2013;45:67–71.PubMedGoogle Scholar
  141. Živković D, Stephan W. Analytical results on the neutral non-equilibrium allele frequency spectrum based on diffusion theory. Theor Popul Biol. 2011;79:184–91.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jordi Salmona
    • 1
    • 2
  • Rasmus Heller
    • 3
  • Martin Lascoux
    • 4
  • Aaron Shafer
    • 5
  1. 1.Laboratoire Evolution and Diversité Biologique, UMR 5174CNRS/Université Toulouse III Paul SabatierToulouse, Cedex 9France
  2. 2.Université de Toulouse, UMR 5174 EDBToulouseFrance
  3. 3.Department of BiologyUniversity of CopenhagenCopenhagen NDenmark
  4. 4.Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
  5. 5.Forensic Science and Environmental and Life SciencesTrent UniversityPeterboroughCanada

Personalised recommendations