Advertisement

pp 1-5 | Cite as

The DTU17 Global Marine Gravity Field: First Validation Results

  • O. B. AndersenEmail author
  • P. Knudsen
Chapter
Part of the International Association of Geodesy Symposia book series

Abstract

The most recent released global marine gravity field from DTU Space takes into account the new SARAL/AltiKa geodetic mission initiated in 2016 along with new improved Arctic processing of the Cryosat-2 mission. With its 369 days repeat cycle, Cryosat-2 provides one repeat of geodetic mission data with 8 km global resolution each year since its launch in 2010. Together with the Jason-1 end-of-life geodetic mission in 2012 and 2013, we now have more than five times as many geodetic missions sea surface height observations compared with the old ERS-1 and Geosat geodetic missions.

The DTU17 has been derived focusing on improving the coastal and Arctic gravity field, enhancing the shorter wavelength of the gravity field (10–15 km). For DTU17, we find a substantial improvement in marine gravity mapping as shown through comparison with high quality airborne data flown north of Greenland in 2009.

Keywords

Arctic Ocean Free air gravity Satellite altimetry 

References

  1. Andersen OB, Scharroo R (2011) Range and geophysical corrections in coastal regions: and implications for mean sea surface determination. In: Vignudelli S et al (eds) Coastal altimetry. Springer, New York, pp 103–145.  https://doi.org/10.1007/978-3-642-12796-0_5 CrossRefGoogle Scholar
  2. Andersen OB, Knudsen P, Berry P (2010a) Recent development in high resolution global altimetric gravity field modeling. Lead Edge 29(5):540–545. ISSN: 1070-485XGoogle Scholar
  3. Andersen OB, Knudsen P, Berry PAM (2010b) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84:191–199.  https://doi.org/10.1007/s00190-009-0355-9 CrossRefGoogle Scholar
  4. Andersen OB, Knudsen P, Kenyon S, Factor JK, Holmes S (2017) Global gravity field from recent satellites (DTU15) – Arctic improvements. First Break 35(12):37–40.  https://doi.org/10.3997/1365-2397.2017022. ISSN: 0263-5046CrossRefGoogle Scholar
  5. Carrere L, Lyard F, Cancet M, Guillot A, Picot N, Dupuy S (2015) FES2014: a new global tidal model. Presented at the Ocean Surface Topography Science Team meeting, Reston. Description at https://datastore.cls.fr/catalogues/fes2014-tide-model/
  6. Chelton DB, Walsh EJ, MacArthur JL (1989) Pulse compression and sea level tracking in satellite altimetry. J Atmos Ocean Technol 6(1989):407–438.  https://doi.org/10.1175/1520-0426(1989)006 0407:PCASLT 2.0.CO;2 CrossRefGoogle Scholar
  7. Dibarboure G, Boy F, Desjonqueres JD, Labroue S, Lasne Y, Picot N, Poisson JC, Thibaut P (2014) Investigating short-wavelength correlated errors on low-resolution mode altimetry. AMS.  https://doi.org/10.1175/JTECH-D-13-00081.1 Google Scholar
  8. Fu L-L, Cazenave A (eds) (2001) Satellite altimetry and earth sciences: a handbook of techniques and applications, Int. Geophys. Ser., vol 69. Academic, San Diego. 469 pp, ISBN: 9780080516585 Google Scholar
  9. Jain M, Andersen OB, Dall J, Stenseng L (2015) Sea surface height determination in the Arctic using Cryosat-2 SAR data from primary peak empirical retrackers. Adv Space Res 55(1):40–50. ISSN: 0273-1177.  https://doi.org/10.1016/j.asr.2014.09.006 Google Scholar
  10. Olesen AV (2003) Improved airborne scalar gravimetry for regional gravity field mapping and geoid determination. Technical report, 24. National Survey and Cadastre, Copenhagen, 54 pp. ISBN: 87-7866-383-0Google Scholar
  11. Pavlis NK, Holmes S, Kenyon S, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res.  https://doi.org/10.1029/2011JB008916 Google Scholar
  12. Raney RK (1998) The delay Doppler radar altimeter. IEEE Trans Geosci Remote Sens 36:1578–1588Google Scholar
  13. Sandwell DT, Garcia E, Soofi K, Wessel P, Chandler M, Smith WHF (2013) Towards 1-mGal accuracy in global marine gravity from Cryosat-2, Envisat and Jason-1. Lead Edge 32(8):892–899Google Scholar
  14. Sandwell DT, Müller RD, Smith WH, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67.  https://doi.org/10.1126/science.1258213 CrossRefGoogle Scholar
  15. Stammer D, Ray RD, Andersen OB, Arbic BK, Bosch W, Carrère L, Cheng Y, Chinn DS, Dushaw BD, Egbert GD, Erofeeva SY, Fok HS, Green JAM, Griffiths S, King MA, Lapin V, Lemoine FG, Luthcke SB, Lyard F, Morison J, Müller M, Padman L, Richman JG, Shriver JF, Shum CK, Taguchi E, Yi Y (2014) Accuracy assessment of global barotropic ocean tide models. Rev Geophys 52(3):243–282.  https://doi.org/10.1002/2014rg000450. ISSN: 8755-1209CrossRefGoogle Scholar
  16. Stenseng L, Andersen OB (2012) Preliminary gravity recovery from CryoSat-2 data in the Baffin Bay. Adv Space Res 50(8):1158–1163Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.DTU SpaceCopenhagenDenmark

Personalised recommendations