Multi-Mission Cross-Calibration of Satellite Altimeters

Systematic Differences Between Sentinel-3A and Jason-3
  • Denise DettmeringEmail author
  • Christian Schwatke
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 150)


The inter-mission cross-calibration is a basic prerequisite for long-term sea level change studies on all spatial scales. Especially, for climate studies the consistent combination of successive missions is essential. This study uses a global multi-mission crossover analysis in order to investigate the performance of the Copernicus Sentinel-3A altimetry mission and its consistency to consecutive missions such as Jason-3. The first 1.5 years of data show an inter-mission bias of 3.6 cm with respect to Jason-3 with a linear trend of 4.0 mm/year. When using Pseudo Low Resolution Mode (PLRM) instead of Delay-Doppler data the bias increases whereas the trend decreases. Given the short time period under investigation these numbers should not be overrated, however, a careful future monitoring is necessary.


Cross-calibration GCE Range bias drift Sentinel-3A 



We kindly thank the institutions in charge of mission operation and maintenance (ESA, EUMETSAT, NASA, CNES) as well as the data providers (EUMETSAT, AVISO). Special thank goes to EUMETSAT for supporting the participation at the International Review Workshop On Satellite Altimetry Cal/Val Activities and Applications, Chania, Greece, April 2018.


  1. Boehm J, Kouba J, Schuh H (2009) Forecast vienna mapping functions 1 for real-time analysis of space geodetic observations. J Geodesy 83(5):397–401. CrossRefGoogle Scholar
  2. Bonnefond P, Laurain O, Exertier P, Boy F, Guinle T, Picot N, Labroue S, Raynal M, Donlon C, Fmnias P, Parrinello T, Dinardo S (2018) Calibrating the SAR SSH of Sentinel-3A and CryoSat-2 over the corsica facilities. Remote Sensing 10(1):92. CrossRefGoogle Scholar
  3. Bosch W (2007) Discrete crossover analysis. In: Tregoning P, Rizos C (eds) Dynamic planet - monitoring and understanding a dynamic planet with geodetic and oceanographic tools, IAG Symposium, vol 130. Springer, BerlinGoogle Scholar
  4. Bosch W, Dettmering D, Schwatke C (2014) Multi-mission cross-calibration of satellite altimeters: constructing a long-term data record for global and regional sea level change studies. Remote Sensing 6(3):2255–2281. CrossRefGoogle Scholar
  5. Boy F (2016) Continuity of the altimetry constellation: JASON-3 first year of observations over ocean. In: AGU Fall Meeting Abstracts G21A-0977Google Scholar
  6. Dettmering D, Bosch W (2010) Global calibration of jason-2 by multi-mission crossover analysis. Marine Geodesy CrossRefGoogle Scholar
  7. Dettmering D, Schwatke C, Bosch W (2015) Global calibration of saral/altika using multi-mission sea surface height crossovers. Mar Geodesy 38(suppl 1):206–218. CrossRefGoogle Scholar
  8. Dinardo S, Scharroo R, Lucas B, Martin-Puig C, Nogueira-Loddo C (2018) Impact of the Sentinel-3A SRAL PTR width drift on the L2 marine measurement. Poster presented at OSTST 2018, Ponta Delgada, AzoresGoogle Scholar
  9. Dorandeu J, Ablain M, Faugère Y, Mertz F, Soussi B, Vincent P (2004) Jason-1 global statistical evaluation and performance assessment: calibration and cross-calibration results. Mar Geodesy 27(3–4):345–372. CrossRefGoogle Scholar
  10. EUMETSAT Sentinel-3A Product Notice - STM L2 Marine. Product Notice ID: EUM/OPS-SEN3/ DOC/ 16/893228Google Scholar
  11. Haines BJ, Desai SD, Born GH (2010) The harvest experiment: calibration of the climate data record from topex/poseidon, jason-1 and the ocean surface topography mission. Mar Geodesy 33(suppl 1):91–113. CrossRefGoogle Scholar
  12. Mertikas SP, Zhou X, Qiao F, Daskalakis A, Lin M, Peng H, Tziavos IN, Vergos G, Tripolitsiotis A, Frantzis X (2016) First preliminary results for the absolute calibration of the Chinese HY-2 altimetric mission using the CRS1 calibration facilities in West Crete, Greece. Adv Space Res 57(1):78–95. CrossRefGoogle Scholar
  13. Mitchum GT (2000) An improved calibration of satellite altimetric heights using tide gauge sea levels with adjustment for land motion. Mar Geodesy 23:145. CrossRefGoogle Scholar
  14. OSTST (2017) Report of the Ocean Surface Topography Science Team Meeting, Miami, FL, USA, October 23–27, 2017. Tech. rep., OSTST.
  15. Passaro M, Dinardo S, Quartly GD, Snaith HM, Benveniste J, Cipollini P, Lucas B (2016) Cross-calibrating ALES Envisat and CryoSat-2 Delay-Doppler: a coastal altimetry study in the Indonesian Seas. Adv Space Res 58(3):289–303. CrossRefGoogle Scholar
  16. Rosborough G (1986) Satellite Orbit perturbations due to the Geopotential. Report csr-86-1, Center of Space Research, University of Texas, AustinGoogle Scholar
  17. Rudenko S, Dettmering D, Esselborn S, Schöne T, Förste C, Lemoine JM, Ablain M, Alexandre D, Neumayer KH (2014) Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends. Adv Space Res 54(1):92–118. CrossRefGoogle Scholar
  18. Rudenko S, Bloßfeld M, Müller H, Dettmering D, Angermann D, Seitz M (2018) Evaluation of DTRF2014, ITRF2014, and JTRF2014 by precise orbit determination of SLR satellites. IEEE Trans Geosci Remote Sensing 56(6):3148–3158. CrossRefGoogle Scholar
  19. Savcenko R, Bosch W (2008) EOT08a - empirical ocean tide model from multi-mission satellite altimetry. Report no. 81, Deutsches Geodätisches Forschungsinstitut, MünchenGoogle Scholar
  20. Scharroo R, Smith WHF (2010) A global positioning system-based climatology for the total electron content in the ionosphere. J Geophys Res 115(A10318):16 pp. CrossRefGoogle Scholar
  21. Watson C, White N, Church J, Burgette R, Tregoning P, Coleman R (2011) Absolute Calibration in Bass Strait, Australia: TOPEX, Jason-1 and OSTM/Jason-2. Mar Geodesy 34(3–4):242–260. CrossRefGoogle Scholar
  22. Watson C, Legresy B, Beardsley J, King M, Deane A (2018) Absolute altimeter bias results from Bass Strait, Australia. presented at OSTST 2018, Ponta Delgada, AzoresGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM)MünchenGermany

Personalised recommendations