Advertisement

Engineering Plants for the Future: Farming with Value-Added Harvest

  • Silvia Massa
  • Ombretta Presenti
  • Eugenio BenvenutoEmail author
Chapter
Part of the Progress in Botany book series (BOTANY, volume 80)

Abstract

Plants and their rich variety of natural compounds are used to maintain and to improve health since the earliest stages of civilization. Despite great advances in synthetic organic chemistry, one fourth of present-day drugs have still a botanical origin, and we are currently living a revival of interest in new pharmaceuticals from plant sources.

Modern biotechnology has defined the potential of plants to be systems able to manufacture not only molecules naturally occurring in plants but also newly engineered compounds, from small to complex protein molecules, which may originate even from non-plant sources. Among these compounds, pharmaceuticals such as vaccines, antibodies and other therapeutic or prophylactic entities can be listed. For this technology, the term plant molecular farming has been coined with reference to agricultural applications due to the use of crops as biofactories for the production of high-added value molecules. In this perspective, edible plants have also been thought as a tool to deliver by the oral route recombinant compounds of medical significance for new therapeutic strategies. Despite many hurdles in establishing regulatory paths for this “novel” biotechnology, plants as bioreactors deserve more attention when considering their intrinsic advantages, such as the quality and safety of the recombinant molecules that can be produced and their potential for large-scale and low-cost production, despite worrying issues (e.g. amplification and diffusion of transgenes) that are mainly addressed by regulations, if not already tackled by the plant-made products already commercialized. The huge benefits generated by these valuable products, synthesized through one of the safest, cheapest and most efficient method, speak for themselves.

Milestone for plant-based recombinant protein production for human health use was the approval in 2012 by the US Food and Drug Administration of plant-made taliglucerase alfa, a therapeutic enzyme for the treatment of Gaucher’s disease, synthesized in carrot suspension cultures by Protalix BioTherapeutics.

In this review, we will go through the various approaches and results for plant-based production of proteins and recent progress in the development of plant-made pharmaceuticals (PMPs) for the prevention and treatment of human diseases. An analysis on acceptance of these products by public opinion is also tempted.

Keywords

Plant molecular farming Plant-derived antibodies Plant-derived vaccines Responsible research and innovation 

Notes

Acknowledgments

Silvia Massa is the recipient of the special Grant from MIUR (Italian Ministry of University and Research) “ENEA 5 x Mille” (Young investigator Project: New therapeutic strategies for the treatment of cancer).

References

  1. Barta A, Sommergruber K, Thompson D, Hartmuth K, Matzke MA, Matzke AJ (1986) The expression of a nopaline synthase - human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol 6(5):347–357.  https://doi.org/10.1007/BF00034942 CrossRefPubMedGoogle Scholar
  2. Binder A, Lambert J, Morbitzer R, Popp C, Ott T, Lahaye T, Parniske M (2014) A modular plasmid assembly kit for multigene expression, gene silencing and silencing rescue in plants. PLoS One 9(2):e88218.  https://doi.org/10.1371/journal.pone.0088218 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52.  https://doi.org/10.1016/j.biotechadv.2014.12.006 CrossRefPubMedGoogle Scholar
  4. Capodicasa C, Chiani P, Bromuro C, De Bernardis F, Catellani M, Palma AS, Liu Y, Feizi T, Cassone A, Benvenuto E, Torosantucci A (2011) Plant production of anti-β-glucan antibodies for immunotherapy of fungal infections in humans. Plant Biotechnol J 9:776–787.  https://doi.org/10.1111/j.1467-7652.2010.00586.x CrossRefPubMedGoogle Scholar
  5. Capodicasa C, Catellani M, Moscetti I, Bromuro C, Chiani P, Torosantucci A, Benvenuto E (2017) Comparative analysis of plant-produced, recombinant dimeric IgA against cell wall β-glucan of pathogenic fungi. Biotechnol Bioeng 114(12):2729–2738.  https://doi.org/10.1002/bit.26403 CrossRefPubMedGoogle Scholar
  6. Cardi T, Lenzi P, Maliga P (2010) Chloroplasts as expression platforms for plant-produced vaccines. Expert Rev Vaccines 9(8):893–911.  https://doi.org/10.1586/erv.10.78 CrossRefPubMedGoogle Scholar
  7. Castle D, Dalgleish J (2005) Cultivating fertile ground for the introduction of plant-derived vaccines in developing countries. Vaccine 23(15):1881–1885.  https://doi.org/10.1016/j.vaccine.2004.11.022 CrossRefPubMedGoogle Scholar
  8. Chichester JA, Manceva SD, Rhee A, Coffin MV, Musiychuk K, Mett V, Shamloul M, Norikane J, Streatfield SJ, Yusibov V (2013) A plant-produced protective antigen vaccine confers protection in rabbits against a lethal aerosolized challenge with Bacillus anthracis Ames spores. Hum Vaccin Immunother 9(3):544–552CrossRefGoogle Scholar
  9. Cho SW, Lee J, Carroll D, Kim JS, Lee J (2013) Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics 195(3):1177–1180.  https://doi.org/10.1534/genetics.113.155853 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Clarke JL, Waheed MT, Lössl AG, Martinussen I, Daniell H (2013) How can plant genetic engineering contribute to cost-effective fish vaccine development for promoting sustainable aquaculture? Plant Mol Biol 83(1–2):33–40.  https://doi.org/10.1007/s11103-013-0081-9 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK, Peele CG, Black A, Passmore D, Moldovan-Loomis C, Srinivasan M, Cuison S, Cardarelli PM, Dickey LF (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24:1591–1597.  https://doi.org/10.1038/nbt1260 CrossRefPubMedGoogle Scholar
  12. Czyż M, Dembczyński R, Marecik R, Wojas-Turek J, Milczarek M, Pajtasz-Piasecka E, Wietrzyk J, Pniewski T (2014) Freeze-drying of plant tissue containing HBV surface antigen for the oral vaccine against hepatitis B. Biomed Res Int 2014:485689.  https://doi.org/10.1155/2014/485689 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dafny-Yelin M, Tzfira T (2007) Delivery of multiple transgenes to plant cells. Plant Physiol 145(4):1118–1128CrossRefGoogle Scholar
  14. Daniell H (2003) Medical molecular pharming: expression of antibodies, biopharmaceuticals and edible vaccines via the chloroplast genome. In: Plant biotechnology and beyond 2002. Springer, Dordrecht, pp 371–376.  https://doi.org/10.1007/978-94-017-2679-5_76
  15. D'Aoust MA, Couture MM, Charland N, Trépanier S, Landry N, Ors F, Vézina LP (2010) The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol J 8(5):607–619.  https://doi.org/10.1111/j.1467-7652.2009.00496.x CrossRefPubMedGoogle Scholar
  16. Davey RT Jr, Dodd L, Proschan MA, Neaton J, Nordwall JN, Koopmeiners JS, Beigel J, Tierney J, Lane HC, Fauci AS, Massaquoi MBF, Sahr F, Malvy D (2016) A randomized, controlled trial of ZMapp for Ebola virus infection. N Engl J Med 375:1448–1456.  https://doi.org/10.1056/NEJMoa1604330 CrossRefPubMedGoogle Scholar
  17. Davies HM (2010) Commercialization of whole-plant systems for biomanufacturing of protein products: evolution and prospects. Plant Biotechnol J 8(8):845–861.  https://doi.org/10.1111/j.1467-7652.2010.00550.x CrossRefPubMedGoogle Scholar
  18. Davis BTA, Grillo-Lopez AJ, White CA, Mclaughlin P, Czuczman MS, Link BK, Maloney DG, Weaver RL, Rosenberg J, Levy R (2014) Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin’s lymphoma: safety and efficacy of re-treatment. J Clin Oncol 18:3135–3143.  https://doi.org/10.1200/JCO.2000.18.17.3135 CrossRefGoogle Scholar
  19. De Muynck B, Navarre C, Boutry M (2010) Production of antibodies in plants: status after twenty years. Plant Biotechnol J 8:529–563.  https://doi.org/10.1111/j.1467-7652.2009.00494.x CrossRefPubMedGoogle Scholar
  20. Demurtas OC, Massa S, Ferrante P, Venuti A, Franconi R, Giuliano G (2013) A Chlamydomonas-derived human papillomavirus 16 E7 vaccine induces specific tumor protection. PLoS One 8(4):e61473.  https://doi.org/10.1371/journal.pone.0061473 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Demurtas OC, Massa S, Illiano E, De Martinis D, Chan PK, Di Bonito P, Franconi R (2016) Antigen production in plant to tackle infectious diseases flare up: the case of SARS. Front Plant Sci 7:54–66.  https://doi.org/10.3389/fpls.2016.00054 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Drake PM, de Moraes ML, Szeto TH, Ma JK (2013) Transformation of Althaea officinalis L. by Agrobacterium rhizogenes for the production of transgenic roots expressing the anti-HIV microbicide cyanovirin-N. Transgenic Res 22(6):1225–1229.  https://doi.org/10.1007/s11248-013-9730-7 CrossRefPubMedGoogle Scholar
  23. Drake PM, Szeto TH, Paul MJ, Teh AY, Ma JK (2017) Recombinant biologic products versus nutraceuticals from plants - a regulatory choice? Br J Clin Pharmacol 83(1):82–87.  https://doi.org/10.1111/bcp.13041 CrossRefPubMedGoogle Scholar
  24. Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. MAbs 7(1):9–14.  https://doi.org/10.4161/19420862.2015.989042 CrossRefPubMedGoogle Scholar
  25. European Medicines Agency (EMA) (2008) Guideline on the quality of biological active substances produced by stable transgene expression in higher plants (EMEA/CHMP/BWP/48316/2006). European Medicines Agency, LondonGoogle Scholar
  26. Fox JL (2012) First plant-made biologic approved. Nat Biotechnol 30:472 https://www.nature.com/articles/nbt0612-472 CrossRefGoogle Scholar
  27. Franconi R, Demurtas OC, Massa S (2010) Plant-derived vaccines and other therapeutics produced in contained systems. Expert Rev Vaccines 9(8):877–892.  https://doi.org/10.1586/erv.10.91 CrossRefPubMedGoogle Scholar
  28. Gasdaska JR, Sherwood S, Regan JT, Dickey LF (2012) An afucosylated anti-CD20 monoclonal antibody with greater antibody-dependent cellular cytotoxicity and B-cell depletion and lower complement dependent cytotoxicity than rituximab. Mol Immunol 50:134–141.  https://doi.org/10.1016/j.molimm.2012.01.001 CrossRefPubMedGoogle Scholar
  29. Gaughan CL (2016) The present state of the art in expression, production and characterization of monoclonal antibodies. Mol Divers 20(1):255–270.  https://doi.org/10.1007/s11030-015-9625-z CrossRefPubMedGoogle Scholar
  30. Giritch A, Marillonnet S, Engler C, van Eldik G, Botterman J, Klimyuk V, Gleba Y (2006) Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. PNAS 103(40):14701–14706.  https://doi.org/10.1073/pnas.0606631103 CrossRefPubMedGoogle Scholar
  31. Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection: a new platform for expressing recombinant vaccines in plants. Vaccine 23:2042–2048.  https://doi.org/10.1016/j.vaccine.2005.01.006 CrossRefPubMedGoogle Scholar
  32. Goodin MM, Zaitlin D, Naidu RA, Lommel SA (2008) Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol Plant Microbe Interact 21(8):1015–1026.  https://doi.org/10.1094/MPMI-21-8-1015 CrossRefPubMedGoogle Scholar
  33. Gorantala J, Grover S, Rahi A, Chaudhary P, Rajwanshi R, Sarin NB, Bhatnagar R (2014) Generation of protective immune response against anthrax by oral immunization with protective antigen plant-based vaccine. J Biotechnol 176:1–10.  https://doi.org/10.1016/j.jbiotec.2014.01.033 CrossRefPubMedGoogle Scholar
  34. Govea-Alonso DO, Rubio-Infante N, García-Hernández AL, Varona-Santos JT, Korban SS, Moreno-Fierros L, Rosales-Mendoza S (2013) Immunogenic properties of a lettuce-derived C4(V3)6 multiepitopic HIV protein. Planta 238(4):785–792.  https://doi.org/10.1007/s00425-013-1932-y CrossRefPubMedGoogle Scholar
  35. Grohs BM, Niu Y, Veldhuis LJ, Trabelsi S, Garabagi F, Hassell JA, McLean MD, Hall JC (2010) Plant-produced trastuzumab inhibits the growth of HER2 positive cancer cells. J Agric Food Chem 58(18):10056–10063.  https://doi.org/10.1021/jf102284f CrossRefPubMedGoogle Scholar
  36. Guerrero-Andrade O, Loza-Rubio E, Olivera-Flores T, Fehérvári-Bone T, Gómez-Lim M (2006) Expression of the Newcastle disease virus fusion protein in transgenic maize and immunological studies. Transgenic Res 15:455–463.  https://doi.org/10.1007/s11248-006-0017-0 CrossRefPubMedGoogle Scholar
  37. Guillon S, Trémouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9(3):341–346.  https://doi.org/10.1016/j.pbi.2006.03.008 CrossRefPubMedGoogle Scholar
  38. Haq TA, Mason HS, Clements JD, Arntzen CJ (1995) Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268(5211):714–716CrossRefGoogle Scholar
  39. Havenith H, Raven N, Di Fiore S, Fischer R, Schillberg S (2014) Image-based analysis of cell-specific productivity for plant cell suspension cultures. Plant Cell Tissue Organ Cult 117:393–399.  https://doi.org/10.1007/s11240-014-0448-x CrossRefGoogle Scholar
  40. He J, Lai H, Engle M, Gorlatov S, Gruber C, Steinkellner H, Diamond MS, Chen Q (2014) Generation and analysis of novel plant-derived antibody-based therapeutic molecules against West Nile virus. PLoS One 9:e93541.  https://doi.org/10.1371/journal.pone.0093541 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22(11):1415–1422.  https://doi.org/10.1038/nbt1027 CrossRefPubMedGoogle Scholar
  42. Hessell AJ, Rakasz EG, Poignard P, Hangartner L, Landucci G, Forthal DN, Koff WC, Watkins DI, Burton DR (2009) Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers. PLoS Pathog 5:e1000433.  https://doi.org/10.1371/journal.ppat.1000433 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342(6245):76–78.  https://doi.org/10.1038/342076a0 CrossRefPubMedGoogle Scholar
  44. Hiatt A, Bohorova N, Bohorov O, Goodman C, Kim D, Pauly MH, Velasco J, Whaley KJ, Piedra PA, Gilbert BE, Zeitlin L (2014) Glycan variants of a respiratory syncytial virus antibody with enhanced effector function and in vivo efficacy. PNAS 111:5992–5997.  https://doi.org/10.1073/pnas.1402458111 CrossRefPubMedGoogle Scholar
  45. Hongli L, Xukui L, Ting L, Wensheng L, Lusheng S, Jin Z (2013) Transgenic tobacco expressed HPV16-L1 and LT-B combined immunization induces strong mucosal and systemic immune responses in mice. Hum Vaccin Immunother 9:83–89.  https://doi.org/10.4161/hv.22292 CrossRefPubMedGoogle Scholar
  46. Huang Z, Santi L, LePore K, Kilbourne J, Arntzen CJ, Mason HS (2006) Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine 24(14):2506–2513.  https://doi.org/10.1016/j.vaccine.2005.12.024 CrossRefPubMedGoogle Scholar
  47. Huang Z, Phoolcharoen W, Lai H, Piensook K, Cardineau G, Zeitlin L, Whaley KJ, Arntzen CJ, Mason HS, Chen Q (2010) High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system. Biotechnol Bioeng 106(1):9–17.  https://doi.org/10.1002/bit.22652 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Joensuu JJ, Verdonck F, Ehrström A, Peltola M, Siljander-Rasi H, Nuutila AM, Oksman-Caldentey KM, Teeri TH, Cox E, Goddeeris BM, Niklander-Teeri V (2006) F4 (K88) fimbrial adhesin FaeG expressed in alfalfa reduces F4+ enterotoxigenic Escherichia coli excretion in weaned piglets. Vaccine 24(13):2387–2394.  https://doi.org/10.1016/j.vaccine.2005.11.056 CrossRefPubMedGoogle Scholar
  49. Kapusta J, Modelska A, Figlerowicz M, Pniewski T, Letellier M, Lisowa O, Yusibov V, Koprowski H, Plucienniczak A, Legocki AB (1999) A plant-derived edible vaccine against hepatitis B virus. FASEB J 13(13):1796–1799 Erratum in: FASEB J 1999 13(15):2339CrossRefGoogle Scholar
  50. Katsnelson A, Ransom J, Vermij P, Waltz E (2006) News in brief: USDA approves the first plant-based vaccine. Nat Biotechnol 24(3):233–234 http://www.nature.com/articles/nbt0306-233#t1 CrossRefGoogle Scholar
  51. Kessans SA, Linhart MD, Meador LR, Kilbourne J, Hogue BG, Fromme P, Matoba N, Mor TS (2016) Immunological characterization of plant-based HIV-1 Gag/Dgp41 virus-like particles. PLoS One 11(3):e0151842.  https://doi.org/10.1371/journal.pone.0151842 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Khandelwal A, Lakshmi Sita G, Shaila MS (2003) Oral immunization of cattle with hemagglutinin protein of rinderpest virus expressed in transgenic peanut induces specific immune responses. Vaccine 21(23):3282–3289CrossRefGoogle Scholar
  53. Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24(6):1012–1019.  https://doi.org/10.1101/gr.171322.113 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kim MY, Reljic R, Kilbourne J, Ceballos-Olvera I, Yang MS, Reyes-Del Valle J, Mason HS (2015) Novel vaccination approach for dengue infection based on recombinant immune complex universal platform. Vaccine 33:1830–1880.  https://doi.org/10.1016/j.vaccine.2015.02.036 CrossRefPubMedGoogle Scholar
  55. Klein C, Lammens A, Schäfer W, Georges G, Schwaiger M, Mössner E, Hopfner KP, Umaña P, Niederfellner G (2013) MAbs 5(1):22–33.  https://doi.org/10.4161/mabs.22771 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ko K, Steplewski Z, Glogowska M, Koprowski H (2005) Inhibition of tumor growth by plant-derived mAb. Proc Natl Acad Sci U S A 102(19):7026–7030.  https://doi.org/10.1073/pnas.0502533102 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kolotilin I, Kaldis A, Devriendt B, Joensuu J, Cox E, Menassa R (2012) Production of a subunit vaccine candidate against porcine postweaning diarrhea in high-biomass transplastomic tobacco. PLoS One 7:e42405.  https://doi.org/10.1371/journal.pone.0042405 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Komarova TV, Baschieri S, Donini M, Marusic C, Benvenuto E, Dorokhov YL (2010) Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines 9(8):859–876.  https://doi.org/10.1586/erv.10.85 CrossRefPubMedGoogle Scholar
  59. Komarova TV, Kosorukov VS, Frolova OY, Petrunia IV, Skrypnik KA, Gleba YY, Dorokhov YL (2011) Plant-made trastuzumab (herceptin) inhibits HER2/Neu+ cell proliferation and retards tumor growth. PLoS One 6(3):e17541.  https://doi.org/10.1371/journal.pone.0017541 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kushnir N, Streatfield SJ, Yusibov V (2012) Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 31(1):58–83.  https://doi.org/10.1016/j.vaccine.2012.10.083 CrossRefPubMedGoogle Scholar
  61. Lai H, Engle M, Fuchs A, Keller T, Johnson S, Gorlatov S, Diamond MS, Chen Q (2010) Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice. Proc Natl Acad Sci U S A 107(6):2419–2424.  https://doi.org/10.1073/pnas.0914503107 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lai H, He J, Engle M, Diamond MS, Chen Q (2012) Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant Biotechnol J 10:95–104.  https://doi.org/10.1111/j.1467-7652.2011.00649.x CrossRefPubMedGoogle Scholar
  63. Lai H, He J, Hurtado J, Stahnke J, Fuchs A, Mehlhop E, Gorlatov S, Loos A, Diamond MS, Chen Q (2014) Structural and functional characterization of an anti-West Nile virus monoclonal antibody and its single-chain variant produced in glycoengineered plants. Plant Biotechnol J 12:1098–1107.  https://doi.org/10.1111/pbi.12217 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Landry N, Ward BJ, Trépanier S, Montomoli E, Dargis M, Lapini G, Vézina LP (2010) Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS One 5(12):e15559.  https://doi.org/10.1371/journal.pone.0015559 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Landry N, Pillet S, Favre D, Poulin JF, Trépanier S, Yassine-Diab B, Ward BJ (2012) Influenza virus-like particle vaccines made in Nicotiana benthamiana elicit durable, poly-functional and cross-reactive T cell responses to influenza HA antigens. Clin Immunol 154(2):164–177.  https://doi.org/10.1016/j.clim.2014.08.003 CrossRefGoogle Scholar
  66. Lee JE, FuscoML HAJ, Oswald WB, Burton DR, Saphire EO (2008) Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454:177–182.  https://doi.org/10.1038/nature07082 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Lee JW, Heo W, Lee J, Jin N, Yoon SM, Park KY, Kim EY, Kim WT, Kim JY (2018) The B cell death function of obinutuzumab-HDEL produced in plant (Nicotiana benthamiana L.) is equivalent to obinutuzumab produced in CHO cells. PLoS One 13(1):e0191075.  https://doi.org/10.1371/journal.pone.0191075 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691.  https://doi.org/10.1038/nbt.2654 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Lienard D, Sourrouille C, Gomord V, Faye L (2007) Pharming and transgenic plants. Biotechnol Annu Rev 13:115–147.  https://doi.org/10.1016/S1387-2656(07)13006-4 CrossRefPubMedGoogle Scholar
  70. List T, Neri D (2013) Immunocytokines: a review of molecules in clinical development for cancer therapy. Clin Pharmacol 5:29–45.  https://doi.org/10.2147/CPAA.S49231 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Loh HS, Green BJ, Yusibov V (2017) Using transgenic plants and modified plant viruses for the development of treatments for human diseases. Curr Opin Virol 26:81–89.  https://doi.org/10.1016/j.coviro.2017.07.019 CrossRefPubMedGoogle Scholar
  72. Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K, Lehner T (1995) Generation and assembly of secretory antibodies in plants. Science 268(5211):716–719CrossRefGoogle Scholar
  73. Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4(10):794–805.  https://doi.org/10.1038/nrg1177 CrossRefPubMedGoogle Scholar
  74. Ma JK, Drossard J, Lewis D, Altmann F, Boyle J, Christou P, Cole T, Dale P, van Dolleweerd CJ, Isitt V, Katinger D, Lobedan M, Mertens H, Paul MJ, Rademacher T, Sack M, Hundleby PA, Stiegler G, Stoger E, Twyman RM, Vcelar B, Fischer R (2015) Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnol J 13(8):1106–1120.  https://doi.org/10.1111/pbi.12416 CrossRefPubMedGoogle Scholar
  75. Marcus R, Davies A, Ando K, Klapper W, Opat S, Owen C, Phillips E, Sangha R, Schlag R, Seymour JF, Townsend W, Trněný M, Wenger M, Fingerle-Rowson G, Rufibach K, Moore T, Herold M, Hiddemann W (2017) Obinutuzumab for the first-line treatment of follicular lymphoma. N Engl J 377(14):1331–1344.  https://doi.org/10.1056/NEJMoa1614598 CrossRefGoogle Scholar
  76. Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. PNAS 101:6852–6857CrossRefGoogle Scholar
  77. Marusic C, Novelli F, Salzano AM, Scaloni A, Benvenuto E, Pioli C, Donini M (2016) Production of an active anti-CD20-hIL-2 immunocytokine in Nicotiana benthamiana. Plant Biotechnol J 14(1):240–251.  https://doi.org/10.1111/pbi.12378 CrossRefPubMedGoogle Scholar
  78. Marusic C, Pioli C, Stelter S, Novelli F, Lonoce C, Morrocchi E, Benvenuto E, Salzano AM, Scaloni A, Donini M (2018) N-glycan engineering of a plant-produced anti-CD20-hIL-2 immunocytokine significantly enhances its effector functions. Biotechnol Bioeng 115(3):565–576.  https://doi.org/10.1002/bit.26503 CrossRefPubMedGoogle Scholar
  79. Mason HS, Lam DM, Arntzen CJ (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci U S A 89(24):11745–11749CrossRefGoogle Scholar
  80. Massa S, Franconi R, Brandi R, Muller A, Mett V, Yusibov V, Venuti A (2007) Anti-cancer activity of plant-produced HPV16 E7 vaccine. Vaccine 25(16):3018–3021.  https://doi.org/10.1016/j.vaccine.2007.01.018 CrossRefPubMedGoogle Scholar
  81. Massa S, Paolini F, Spanò L, Franconi R, Venuti A (2011) Mutants of plant genes for developing cancer vaccines. Hum Vaccin 7(Suppl):147–155CrossRefGoogle Scholar
  82. Massa S, Paolini F, Curzio G, Cordeiro MN, Illiano E, Demurtas OC, Franconi R, Venuti A (2017) A plant protein signal sequence improved humoral immune response to HPV prophylactic and therapeutic DNA vaccines. Hum Vaccin Immunother 13(2):271–282.  https://doi.org/10.1080/21645515.2017.1264766 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci U S A 100:438–442.  https://doi.org/10.1073/pnas.0237108100 CrossRefPubMedPubMedCentralGoogle Scholar
  84. McCarthy M (2014) US signs contract with ZMapp maker to accelerate development of the Ebola drug. BMJ 349:g5488.  https://doi.org/10.1136/bmj.g5488 CrossRefPubMedGoogle Scholar
  85. McCormick AA, Reddy S, Reinl SJ, Cameron TI, Czerwinkski DK, Vojdani F, Hanley KM, Garger SJ, White EL, Novak J, Barrett J, Holtz RB, Tusé D, Levy R (2008) Plant-produced idiotype vaccines for the treatment of non-Hodgkin's lymphoma: safety and immunogenicity in a phase I clinical study. Proc Natl Acad Sci U S A 105(29):10131–10136.  https://doi.org/10.1073/pnas.0803636105 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Mett V, Chichester JA, Stewart ML, Musiychuk K, Bi H, Reifsnyder CJ, Hull AK, Albrecht MT, Goldman S, Baillie LW, Yusibov V (2011) A non-glycosylated, plant-produced human monoclonal antibody against anthrax protective antigen protects mice and non-human primates from B. anthracis spore challenge. Hum Vaccin 7:183–190CrossRefGoogle Scholar
  87. Meyers B, Zaltsman A, Lacroix B, Kozlovsky SV, Krichevsky A (2010) Nuclear and plastid genetic engineering of plants: Comparison of opportunities and challenges. Biotechnol Adv 28(6):747–756.  https://doi.org/10.1016/j.biotechadv.2010.05.022 CrossRefPubMedGoogle Scholar
  88. Monroy-García A, Gómez-Lim MA, Weiss-Steider B, Hernández-Montes J, Huerta-Yepez S, Rangel-Santiago JF, Santiago-Osorio E, Mora García Mde L (2014) Immunization with an HPV-16 L1-based chimeric virus-like particle containing HPV-16 E6 and E7 epitopes elicits long-lasting prophylactic and therapeutic efficacy in an HPV-16 tumor mice model. Arch Virol 159(2):291–305.  https://doi.org/10.1007/s00705-013-1819-z CrossRefPubMedGoogle Scholar
  89. Musiychuk K, Stephenson N, Bi H, Farrance CE, Orozovic G, Brodelius M, Brodelius P, Horsey A, Ugulava N, Shamloul AM, Mett V, Rabindran S, Streatfield SJ, Yusibov V (2007) A launch vector for the production of vaccine antigens in plants. Influenza Other Respir Viruses 1(1):19–25.  https://doi.org/10.1111/j.1750-2659.2006.00005.x CrossRefPubMedPubMedCentralGoogle Scholar
  90. Nahampun HN, Bosworth B, Cunnick J, Mogler M, Wang K (2015) Expression of H3N2 nucleoprotein in maize seeds and immunogenicity in mice. Plant Cell Rep 34:969–980.  https://doi.org/10.1007/s00299-015-1758-0 CrossRefPubMedGoogle Scholar
  91. Nandi S, Yalda D, Lu S, Nikolov Z, Misaki R, Fujiyama K, Huang N (2005) Process development and economic evaluation of recombinant human lactoferrin expressed in rice grain. Transgenic Res 14(3):237–249CrossRefGoogle Scholar
  92. Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31(8):691–693.  https://doi.org/10.1038/nbt.2655 CrossRefPubMedGoogle Scholar
  93. Oey M, Lohse M, Kreikemeyer B, Bock R (2009) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57(3):436–445CrossRefGoogle Scholar
  94. Olinger GG Jr, Pettitt J, Kim D, Working C, Bohorov O, Bratcher B, Hiatt E, Hume SD, Johnson AK, Morton J, Pauly M, Whaley KJ, Lear CM, Biggins JE, Scully C, Hensley L, Zeitlin L (2012) Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. PNAS 109:18030–18035.  https://doi.org/10.1073/pnas.1213709109 CrossRefPubMedGoogle Scholar
  95. Oliphant T, Engle M, Nybakken GE, Doane C, Johnson S, Huang L, Gorlatov S, Mehlhop E, Marri A, Chung KM, Ebel GD, Kramer LD, Fremont DH, Diamond MS (2005) Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11:522–530.  https://doi.org/10.1038/nm1240 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Paul M, Reljic R, Klein K, Drake PM, van Dolleweerd C, Pabst M, Windwarder M, Arcalis E, Stoger E, Altmann F, Cosgrove C, Bartolf A, Baden S, Ma JK (2014) Characterization of a plant-produced recombinant human secretory IgA with broad neutralizing activity against HIV. mAbs 6:1585–1597.  https://doi.org/10.4161/mabs.36336 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Pellegrino E, Bedini S, Nuti M, Ercoli L (2018) Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Sci Rep 8(1):3113–3124.  https://doi.org/10.1038/s41598-018-21284-2 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Peréz Aguirreburualde MS, Gómez MC, Ostachuk A, Wolman F, Albanesi G, Pecora A, Odeon A, Ardila F, Escribano JM, Dus Santos MJ, Wigdorovitz A (2013) Efficacy of a BVDV subunit vaccine produced in alfalfa transgenic plants. Vet Immunol Immunopathol 151(3–4):315–324.  https://doi.org/10.1016/j.vetimm.2012.12.004 CrossRefPubMedGoogle Scholar
  99. Pérez Filgueira D, Zamorano P, Domínguez M, Taboga O, Del Médico ZM, Puntel M, Romera SA, Morris TJ, Borca MV, Sadir AM (2003) Bovine herpes virus gD protein produced in plants using a recombinant tobacco mosaic virus (TMV) vector possesses authentic antigenicity. Vaccine 21:4201–4209CrossRefGoogle Scholar
  100. Peyret H, Lomonossoff GP (2015) When plant virology met Agrobacterium: the rise of the deconstructed clones. Plant Biotechnol J 13(8):1121–1135.  https://doi.org/10.1111/pbi.12412 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Phoolcharoen W, Bhoo SH, Lai H, Ma J, Arntzen CJ, Chen Q, Mason HS (2011) Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana. Plant Biotechnol J 9(7):807–816.  https://doi.org/10.1111/j.1467-7652.2011.00593.x CrossRefPubMedGoogle Scholar
  102. Pillet S, Aubin É, Trépanier S, Bussière D, Dargis M, Poulin JF, Yassine-Diab B, Ward BJ, Landry N (2016) A plant-derived quadrivalent virus like particle influenza vaccine induces cross-reactive antibody and T cell response in healthy adults. Clin Immunol 168:72–87.  https://doi.org/10.1016/j.clim.2016.03.008 CrossRefPubMedGoogle Scholar
  103. Plosker GL, Figgitt DP (2003) Rituximab: a review of its use in non-Hodgkin’s lymphoma and chronic lymphocytic leukaemia. Drugs 63:803–843CrossRefGoogle Scholar
  104. Pua TL, Chan XY, Loh HS, Omar AR, Yusibov V, Musiychuk K, Hall AC, Coffin MV, Shoji Y, Chichester JA, Bi H, Streatfield SJ (2017) Purification and immunogenicity of hemagglutinin from highly pathogenic avian influenza virus H5N1 expressed in Nicotiana benthamiana. Hum Vaccin Immunother 13:306–313.  https://doi.org/10.1080/21645515.2017.1264783 CrossRefPubMedGoogle Scholar
  105. Pujol M, Gavilondo J, Ayala M, Rodríguez M, González EM, Pérez L (2007) Fighting cancer with plant-expressed pharmaceuticals. Trends Biotechnol 25(10):455–459.  https://doi.org/10.1016/j.tibtech.2007.09.001 CrossRefPubMedGoogle Scholar
  106. Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti JB, Fausther-Bovendo H, Wei H, Aviles J, Hiatt E, Johnson A, Morton J, Swope K, Bohorov O, Bohorova N, Goodman C, Kim D, Pauly MH, Velasco J, Pettitt J, Olinger GG, Whaley K, Xu B, Strong JE, Zeitlin L, Kobinger GP (2014) Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514:47–53.  https://doi.org/10.1038/nature13777 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Rademacher T (2013) Method for the generation and cultivation of a plant cell pack. Patent WO 2013113504Google Scholar
  108. Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, Newman RA, Hanna N, Anderson DR (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83(2):435–445PubMedGoogle Scholar
  109. Reski R, Parsons J, Decker EL (2015) Moss-made pharmaceuticals: from bench to bedside. Plant Biotechnol J 13(8):1191–1198.  https://doi.org/10.1111/pbi.12401 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Rios-Huerta R, Monreal-Escalante E, Govea-Alonso DO, Angulo C, Rosales-Mendoza S (2017) Expression of an immunogenic LTB-based chimeric protein targeting Zaire ebolavirus epitopes from GP1 in plant cells. Plant Cell Rep 36:355–365.  https://doi.org/10.1007/s00299-016-2088-6 CrossRefPubMedGoogle Scholar
  111. Rodriguez M, Ramirez NI, Ayala M, Freyre F, Pérez L, Triguero A, Mateo C, Selman-Housein G, Gavilondo JV, Pujol M (2005) Transient expression in tobacco leaves of an aglycosylated recombinant antibody against the epidermal growth factor receptor. Biotechnol Bioeng 89(2):188–194.  https://doi.org/10.1002/bit.20333 CrossRefPubMedGoogle Scholar
  112. Rubio-Infante N, Govea-Alonso DO, Romero-Maldonado A, García-Hernández AL, Ilhuicatzi-Alvarado D, Salazar-González JA, Korban SS, Rosales-Mendoza S, Moreno-Fierros L (2015) A plant-derived multi-HIV antigen induces broad immune responses in orally immunized mice. Mol Biotechnol 57(7):662–674.  https://doi.org/10.1007/s12033-015-9856-3 CrossRefPubMedGoogle Scholar
  113. Rukavtsova EB, Rudenko NV, Puchko EN, Zakharchenko NS, Buryanov YI (2015) Study of the immunogenicity of hepatitis B surface antigen synthesized in transgenic potato plants with increased biosafety. J Biotechnol 203:84–88.  https://doi.org/10.1016/j.jbiotec.2015.03.019 CrossRefPubMedGoogle Scholar
  114. Rybicki EP (2010) Plant-made vaccines for humans and animals. Plant Biotechnol J 8(5):620–637.  https://doi.org/10.1111/j.1467-7652.2010.00507.x CrossRefPubMedGoogle Scholar
  115. Rybicki EP (2014) Plant-based vaccines against viruses. Virol J 11:205–225.  https://doi.org/10.1186/s12985-014-0205-0 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Sabalza M, Vamvaka E, Christou P, Capell T (2013) Seeds as a production system for molecular pharming applications: status and prospects. Curr Pharm Des 19(31):5543–5552CrossRefGoogle Scholar
  117. Sainsbury F, Thuenemann EC, Lomonossoff GP (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 7(7):682–693.  https://doi.org/10.1111/j.1467-7652.2009.00434.x CrossRefPubMedGoogle Scholar
  118. Sainsbury F, Sack M, Stadlmann J, Quendler H, Fischer R, Lomonossoff GP (2010) Rapid transient production in plants by replicating and non-replicating vectors yields high quality functional anti-HIV antibody. PLoS One 5(11):e13976.  https://doi.org/10.1371/journal.pone.0013976 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Salazar-González JA, Angulo C, Rosales-Mendoza S (2015) Chikungunya virus vaccines: current strategies and prospects for developing plant-made vaccines. Vaccine 33(31):3650–3658.  https://doi.org/10.1016/j.vaccine.2015.05.104 CrossRefPubMedGoogle Scholar
  120. Santos RB, Abranches R, Fischer R, Sack M, Holland T (2016) Putting the spotlight back on plant suspension cultures. Front Plant Sci 7:60–72.  https://doi.org/10.3389/fpls.2016.00297 CrossRefGoogle Scholar
  121. Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juárez P, Fernández-del-Carmen A, Granell A, Orzaez D (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6(7):e21622.  https://doi.org/10.1371/journal.pone.0021622 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Schillberg S, Raven N, Fischer R, Twyman RM, Schiermeyer A (2013) Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures. Curr Pharm Des 19(31):5531–5542CrossRefGoogle Scholar
  123. Scotti N, Rybicki EP (2013) Virus-like particles produced in plants as potential vaccines. Expert Rev Vaccines 12(2):211–224.  https://doi.org/10.1586/erv.12.147 CrossRefPubMedGoogle Scholar
  124. Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman I, Sussman JL, Futerman AH, Aviezer D (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher's disease using a plant cell system. Plant Biotechnol J 5(5):579–590.  https://doi.org/10.1111/j.1467-7652.2007.00263.x CrossRefPubMedGoogle Scholar
  125. Shaaltiel Y, Gingis-Velitski S, Tzaban S, Fiks N, Tekoah Y, Aviezer D (2015) Plant-based oral delivery of β-glucocerebrosidase as an enzyme replacement therapy for Gaucher's disease. Plant Biotechnol J 13(8):1033–1040.  https://doi.org/10.1111/pbi.12366 CrossRefPubMedGoogle Scholar
  126. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688.  https://doi.org/10.1038/nbt.2650 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Shoji Y, Chichester JA, Palmer GA, Farrance CE, Stevens R, Stewart MGoldschmidt L, Deyde V, Gubareva L, Klimov A, Mett V, Yusibov V (2011) An influenza N1 neuraminidase-specific monoclonal antibody with broad neuraminidase inhibition activity against H5N1 HPAI viruses. Hum Vaccin 7(Suppl):199–204CrossRefGoogle Scholar
  128. Shoji Y, Jones RM, Mett V, Chichester JA, Musiychuk K, Sun X, Tumpey TM, Green BJ, Shamloul M, Norikane J, Bi H, Hartman CE, Bottone C, Stewart M, Streatfield SJ, Yusibov V (2013) A plant-produced H1N1 trimeric hemagglutinin protects mice from a lethal influenza virus challenge. Hum Vaccin Immunother 9(3):553–560CrossRefGoogle Scholar
  129. Shoji Y, Prokhnevsky A, Leffet B, Vetter N, Tottey S, Satinover S, Musiychuk K, Shamloul M, Norikane J, Jones RM, Chichester JA, Green BJ, Streatfield SJ, Yusibov V (2015) Immunogenicity of H1N1 influenza virus-like particles produced in Nicotiana benthamiana. Hum Vaccin Immunother 11(1):118–123.  https://doi.org/10.4161/hv.34365 CrossRefPubMedGoogle Scholar
  130. Simmons G, Wool-Lewis RJ, Baribaud F, Netter RC, Bates P (2002) Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. J Virol 76:2518–2528CrossRefGoogle Scholar
  131. Singh A, Srivastava S, Chouksey A, Panwar BS, Verma PC, Roy S, Singh PK, Saxena G, Tuli R (2015) Expression of rabies glycoprotein and ricin toxin B chain (RGP-RTB) fusion protein in tomato hairy roots: a step towards oral vaccination for rabies. Mol Biotechnol 57(4):359–370.  https://doi.org/10.1007/s12033-014-9829-y CrossRefPubMedGoogle Scholar
  132. Skarjinskaia M, Ruby K, Araujo A, Taylor K, Gopalasamy-Raju V, Musiychuk K, Chichester JA, Palmer GA, de la Rosa P, Mett V, Ugulava N, Streatfield SJ, Yusibov V (2013) Hairy roots as a vaccine production and delivery system. Adv Biochem Eng Biotechnol 134:115–134.  https://doi.org/10.1007/10_2013_184 CrossRefPubMedGoogle Scholar
  133. Sparrow P, Broer I, Hood EE, Eversole K, Hartung F, Schiemann J (2013) Risk assessment and regulation of molecular farming - a comparison between Europe and US. Curr Pharm Des 19(31):5513–5530CrossRefGoogle Scholar
  134. Strasser R, Stadlmann J, Schahs M, Stiegler G, Quendler H, Mach L, Glössl J, Weterings K, Pabst M, Steinkellner H (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 6(4):392–402.  https://doi.org/10.1111/j.1467-7652.2008.00330.x CrossRefPubMedGoogle Scholar
  135. Streatfield SJ (2006) Mucosal immunization using recombinant plant-based oral vaccines. Methods 38(2):150–157.  https://doi.org/10.1016/j.ymeth.2005.09.013 CrossRefPubMedGoogle Scholar
  136. Tacket CO (2007) Plant-based vaccines against diarrheal diseases. Trans Am Clin Climatol Assoc 118:79–87PubMedPubMedCentralGoogle Scholar
  137. Tacket CO, Mason HS, Losonsky G, Clements JD, Levine MM, Arntzen CJ (1998) Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat Med 4(5):607–609CrossRefGoogle Scholar
  138. Tacket CO, Mason HS, Losonsky G, Estes MK, Levine MM, Arntzen CJ (2000) Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. J Infect Dis 182(1):302–305.  https://doi.org/10.1086/315653 CrossRefPubMedGoogle Scholar
  139. Takeyama N, Kiyono H, Yuki Y (2015a) Plant-based vaccines for animals and humans: recent advances in technology and clinical trials. Ther Adv Vaccin 3(5–6):139–154.  https://doi.org/10.1177/2051013615613272 CrossRefGoogle Scholar
  140. Takeyama N, Yuki Y, Tokuhara D, Oroku K, Mejima M, Kurokawa S, Kuroda M, Kodama T, Nagai S, Ueda S, Kiyono H (2015b) Oral rice-based vaccine induces passive and active immunity against enterotoxigenic E. coli-mediated diarrhea in pigs. Vaccine 33(39):5204–5211.  https://doi.org/10.1016/j.vaccine.2015.07.074 CrossRefPubMedGoogle Scholar
  141. Thanavala Y, Mahoney M, Pal S, Scott A, Richter L, Natarajan N, Goodwin P, Arntzen CJ, Mason HS (2005) Immunogenicity in humans of an edible vaccine for hepatitis B. Proc Natl Acad Sci U S A 102(9):3378–3382.  https://doi.org/10.1073/pnas.0409899102 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Tinland B, Hohn B (1995) Recombination between prokaryotic and eukaryotic DNA: integration of Agrobacterium tumefaciens T-DNA into the plant genome. Genet Eng (NY) 17:209–229Google Scholar
  143. Torosantucci A, Chiani P, Bromuro C, De Bernardis F, Palma AS, Liu Y, Mignogna G, Maras B, Colone M, Stringaro A, Zamboni S, Feizi T, Cassone A (2009) Protection by anti-beta-glucan antibodies is associated with restricted beta-1,3 glucan binding specificity and inhibition of fungal growth and adherence. PLoS One 4(4):e5392.  https://doi.org/10.1371/journal.pone.0005392 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Tremblay R, Wang D, Jevnikar AM, Ma S (2010) Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 28(2):214–221.  https://doi.org/10.1016/j.biotechadv.2009.11.008 CrossRefPubMedGoogle Scholar
  145. Tschofen M, Knopp D, Hood E, Stöger E (2016) Plant molecular farming: much more than medicines. Annu Rev Anal Chem (Palo Alto, Calif) 9(1):271–294.  https://doi.org/10.1146/annurev-anchem-071015-041706 CrossRefGoogle Scholar
  146. Tuboly T, Yu W, Bailey A, Degrandis S, Du S, Erickson L, Nagy E (2000) Immunogenicity of porcine transmissible gastroenteritis virus spike protein expressed in plants. Vaccine 18(19):2023–2028CrossRefGoogle Scholar
  147. Ullisch DA, Müller CA, Maibaum S, Kirchhoff J, Schiermeyer A, Schillberg S, Roberts JL, Treffenfeldt W, Büchs J (2012) Comprehensive characterization of two different Nicotiana tabacum cell lines leads to doubled GFP and HA protein production by media optimization. J Biosci Bioeng 113(2):242–248.  https://doi.org/10.1016/j.jbiosc.2011.09.022 CrossRefPubMedGoogle Scholar
  148. Vaquero C, Sack M, Schuster F, Finnern R, Drossard J, Schumann D, Reimann A, Fischer R (2002) A carcinoembryonic antigen-specific diabody produced in tobacco. FASEB J 16(3):408–410.  https://doi.org/10.1096/fj.01-0363fje CrossRefPubMedGoogle Scholar
  149. Venuti A, Massa S, Mett V, Vedova LD, Paolini F, Franconi R, Yusibov V (2009) An E7-based therapeutic vaccine protects mice against HPV16 associated cancer. Vaccine 27(25–26):3395–3397.  https://doi.org/10.1016/j.vaccine.2009.01.068 CrossRefPubMedGoogle Scholar
  150. von Schomberg R (2013) Prospects for technology assessment in a framework of responsible research and innovation. In: Dusseldorp M, Beecroft R (eds) Estimate technology consequences, educational potential of transdisciplinary methods. Wiley, London, pp 39–62. ISBN 978-3-531-17908-7. ISBN 978-3-531-93468-6 (eBook).  https://doi.org/10.1007/978-3-531-93468-6 CrossRefGoogle Scholar
  151. Ward BJ, Landry N, Trépanier S, Mercier G, Dargis M, Couture M, D'Aoust MA, Vézina LP (2014) Human antibody response to N-glycans present on plant-made influenza virus-like particle (VLP) vaccines. Vaccine 32(46):6098–6106.  https://doi.org/10.1016/j.vaccine.2014.08.079 CrossRefPubMedGoogle Scholar
  152. Whaley KJ, Morton J, Hume S, Hiatt E, Bratcher B, Klimyuk V, Hiatt A, Pauly M, Zeitlin L (2014) Emerging antibody-based products. Curr Top Microbiol Immunol 375:107–126.  https://doi.org/10.1007/82_2012_240 CrossRefPubMedGoogle Scholar
  153. Wilson JA, Hevey M, Bakken R, Guest S, Bray M, Schmaljohn AL, Hart MK (2000) Epitopes involved in antibody-mediated protection from Ebola virus. Science 287:1664–1666CrossRefGoogle Scholar
  154. Wongsamuth R, Doran PM (1997) Production of monoclonal antibodies by tobacco hairy roots. Biotechnol Bioeng 54(5):401–415.  https://doi.org/10.1002/(SICI)1097-0290(19970605)54:5<401::AID-BIT1>3.0.CO;2-I CrossRefPubMedGoogle Scholar
  155. Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33(11):1162–1164.  https://doi.org/10.1038/nbt.3389 CrossRefPubMedGoogle Scholar
  156. Woods RR, Geyer BC, Mor TS (2008) Hairy-root organ cultures for the production of human acetylcholinesterase. BMC Biotechnol 8:95102.  https://doi.org/10.1186/1472-6750-8-95 CrossRefGoogle Scholar
  157. Wu J, Yu L, Li L, Hu J, Zhou J, Zhou X (2007) Oral immunization with transgenic rice seeds expressing VP2 protein of infectious bursal disease virus induces protective immune responses in chickens. Plant Biotechnol J 5(5):570–578.  https://doi.org/10.1111/j.1467-7652.2007.00270.x CrossRefPubMedGoogle Scholar
  158. Xu J, Dolan MC, Medrano G, Cramer CL, Weathers PJ (2012) Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnol Adv 30(5):1171–1184.  https://doi.org/10.1016/j.biotechadv.2011.08.020 CrossRefPubMedGoogle Scholar
  159. Yang CD, Liao JT, Lai CY, Jong MH, Liang CM, Lin YL, Lin NS, Hsu YH, Liang SM (2007) Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes. BMC Biotechnol 7:62–73.  https://doi.org/10.1186/1472-6750-7-62 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Young JA, Collier RJ (2007) Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem 76:243–265.  https://doi.org/10.1146/annurev.biochem.75.103004.142728 CrossRefPubMedGoogle Scholar
  161. Yusibov V, Hooper DC, Spitsin SV, Fleysh N, Kean RB, Mikheeva T, Deka D, Karasev A, Cox S, Randall J, Koprowski H (2002) Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine 20(25–26):3155–3164CrossRefGoogle Scholar
  162. Zeitlin L, Pettitt J, Scully C, Bohorova N, Kim D, Pauly M, Hiatt A, Ngo L, Steinkellner H, Whaley KJ, Olinger GG (2011) Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. PNAS 108:20690–20694.  https://doi.org/10.1073/pnas.1108360108 CrossRefPubMedGoogle Scholar
  163. Zhou JY, Cheng LQ, Zheng XJ, Wu JX, Shang SB, Wang JY, Chen JG (2004) Generation of the transgenic potato expressing full-length spike protein of infectious bronchitis virus. J Biotechnol 111(2):121–130.  https://doi.org/10.1016/j.jbiotec.2004.03.012 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Silvia Massa
    • 1
  • Ombretta Presenti
    • 1
  • Eugenio Benvenuto
    • 1
    Email author
  1. 1.Department of Sustainability, Division of Biotechnology and Agroindustry, Laboratory of BiotechnologyENEA - Italian National Agency for New Technologies, Energy and the EnvironmentRomeItaly

Personalised recommendations