NAC Transcription Factors in Woody Plants

  • Mª Belén PascualEmail author
  • Fernando de la Torre
  • Rafael A. Cañas
  • Francisco M. Cánovas
  • Concepción Ávila
Part of the Progress in Botany book series (BOTANY, volume 80)


NAC proteins are a family of plant-specific transcription factors (TFs) that are involved in the regulation of diverse biological processes, including stress tolerance, the formation and differentiation of vascular tissues and wood formation, the last of which is particularly important in trees. Evolutionary studies conducted on NAC proteins suggest a prominent role of these regulatory proteins in the adaptation and survival of plants to land habitats. The characterization of this family of TFs in trees is scarce, and the function of most of the family members remains unknown. However, current advances in sequencing technology, genomic analysis and expression studies from different woody plants have provided novel insights into the role of some of these TFs in trees. Recent research activity has mostly focused on the NAC proteins involved in processes related to improving plant biomass production, which is strongly affected by environmental conditions and has important ecological and economic implications. Studies performed in angiosperm and gymnosperm woody plants suggest that the regulatory network involved in stress responses and wood formation could be conserved.



Research work in the authors’s laboratory was supported by grants from “Ministerio de Economía y Competitividad” (BIO2015–69285-R) and the European Union (FP7-KBBE-289841).


  1. Aida M, Tetsuya I, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aida M, Ishida T, Tasaka M (1999) Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126:1563–1570PubMedGoogle Scholar
  3. Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19:1750–1769PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barah P, Naika MBN, Jayavelu ND, Sowdhamini R, Shameer K, Bones AM (2016) Transcriptional regulatory networks in Arabidopsis thaliana during single and combined stresses. Nucleic Acids Res 44:3147–3164PubMedCrossRefGoogle Scholar
  5. Bedon F, Bomal C, Caron S, Levasseur C, Boyle B, Mansfield SD, Schmidt A et al (2010) Subgroup 4R2R3-MYBs in conifer trees: gene family expansion and contribution to the isoprenoid- and flavonoid-oriented responses. J Exp Bot 61:3847–3864PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bennett T, van den Toorn A, Sanchez-Perez GF, Campilho A, Willemsen V, Snel B, Scheres B (2010) SOMBRERO, BEARSKIN1, and BEARSKIN2 regulate root cap maturation in Arabidopsis. Plant Cell 22:640–654PubMedPubMedCentralCrossRefGoogle Scholar
  7. Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez JP, Zinder M, Samach A, Eshed Y, Ori N (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136:823–832PubMedCrossRefGoogle Scholar
  8. Bomal C, Bedon F, Caron S, Mansfield SD, Levasseur C, Cooke JEK, Blais S et al (2008) Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparative in planta analysis. J Exp Bot 59:3925–3939PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bu Q, Jiang H, Li CB, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 18:756–767PubMedCrossRefGoogle Scholar
  10. Canales J, Bautista R, Label P, Gómez-Maldonado J, Lesur I, Fernández-Pozo N et al (2014) De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology. Plant Biotechnol J 12:286–299PubMedCrossRefGoogle Scholar
  11. Cañas RA, Li Z, Pascual MB, Castro-Rodríguez V, Ávila C, Sterck L, Van de Peer Y, Cánovas FM (2017) The gene expression landscape of pine seedling tissues. Plant J 91:1064–1087PubMedCrossRefGoogle Scholar
  12. Chen Q, Wang Q, Xiong L, Lou Z (2011) A structural view of the conserved domain of rice stress-responsive NAC1. Protein Cell 2:55–63PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chen Z, Ji L, Wang J, Jin J, Yang X, Rao P, Gao K, Liao W, Ye M, An X (2017) Dynamic changes in the transcriptome of Populus hopeiensis in response to abscisic acid. Sci Rep 7:42708PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cheng X, Peng J, Ma J, Tang Y, Chen R, Mysore KS, Wen J (2012) No apical meristem (MtNAM) regulates floral organ identity and lateral organ separation in Medicago truncatula. New Phytol 195:71–84PubMedCrossRefGoogle Scholar
  15. Chi YH, Melencion SMB, Alinapon CV, Kim MJ, Lee ES, Paeng SK, Park JH, Nawkar GM, Jung YJ, Chae HB et al (2017) The membrane-tethered NAC transcription factor, AtNTL7, contributes to ER-stress resistance in Arabidopsis. Biochem Biophys Res Commun 488:641–647PubMedCrossRefGoogle Scholar
  16. Craven-Bartle B, Pascual MB, Cánovas FM, Ávila C (2013) A Myb transcription factor regulates genes of the phenylalanine pathway in maritime pine. Plant J 74:755–766PubMedCrossRefGoogle Scholar
  17. Dalman K, Wind JJ, Nemesio-Gorriz M, Hammerbacher A, Lundén K, Ezcurra I, Elfstrand M (2017) Overexpression of PaNAC03, a stress induced NAC gene family transcription factor in Norway spruce leads to reduced flavonol biosynthesis and aberrant embryo development. BMC Plant Biol 17:6PubMedPubMedCentralCrossRefGoogle Scholar
  18. Danielsson M, Lunden K, Elfstrand M, Hu J, Zhao T, Arnerup J, Ihrmark K, Swedjemark G, Borg-Karlson AK, Stenlid J (2011) Chemical and transcriptional responses of Norway spruce genotypes with different susceptibility to Heterobasidion spp. infection. BMC Plant Biol 11:154PubMedPubMedCentralCrossRefGoogle Scholar
  19. De La Torre A, Birol I, Bousquet J, Ingvarsson PK, Jansson S, Jones SJM, Keeling CI, Mackay J, Nilsson O, Ritland K et al (2014) Insights into conifer giga-genomes. Plant Physiol 166:1724–1732CrossRefGoogle Scholar
  20. de Oliveira TM, Cidade LC, Gesteira AS, Coelho Filho MA, Soares Filho WS, Costa MGC (2011) Analysis of the NAC transcription factor gene family in citrus reveals a novel member involved in multiple abiotic stress responses. Tree Genet Genomes 7:1123–1134CrossRefGoogle Scholar
  21. Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES et al (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43:745–757PubMedCrossRefGoogle Scholar
  22. Duval I, Lachance D, Giguère I, Bomal C, Morency MJ, Pelletier G, Boyle B et al (2014) Large-scale screening of transcription factor-promoter interactions in spruce reveals a transcriptional network involved in vascular development. J Exp Bot 65:2319–2333PubMedPubMedCentralCrossRefGoogle Scholar
  23. Ernst HA, Olsen AN, Larsen S, Lo Leggio L (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep 5:297–303PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ettl H, Gärtner G (2014) Syllabous der Boden-, Luft- und Flechtenalgen, 2nd edn. Berlin, Springer Spektrum, p 773CrossRefGoogle Scholar
  25. Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 8:4689–4699CrossRefGoogle Scholar
  26. Grant EH, Fujino T, Beers EP, Brunner AM (2010) Characterization of NAC domain transcription factors implicated in control of vascular cell differentiation in Arabidopsis and Populus. Planta 232:337–352PubMedCrossRefGoogle Scholar
  27. Guan Q, Yue X, Zeng H, Zhu J (2014) The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis. Plant Cell 26:438–453PubMedPubMedCentralCrossRefGoogle Scholar
  28. Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612PubMedCrossRefGoogle Scholar
  29. Guo H, Wang Y, Liu H, Hu P, Jia Y, Zhang C, Wang Y, Gu S, Yang C, Wang C (2015) Exogenous GA3 application enhances xylem development and induces the expression of secondary wall biosynthesis related genes in Betula platyphylla. Int J Mol Sci 16:22960–22975PubMedPubMedCentralCrossRefGoogle Scholar
  30. Guo H, Cui Z, Zhang Y, Wang C (2017) Sequence characterization and expression analysis of NAC genes from Betula platyphylla. Trees 31:1919–1931CrossRefGoogle Scholar
  31. Hammonds AS, Bristow CA, Fisher WW, Weiszmann R, Wu S, Hartenstein V, Kellis M, Yu B, Frise E, Celniker SE (2013) Spatial expression of transcription factors in Drosophila embryonic organ development. Genome Biol 14:R140PubMedPubMedCentralCrossRefGoogle Scholar
  32. Harfouche A, Meilan R, Altman A (2014) Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiol 34:1181–1198PubMedCrossRefGoogle Scholar
  33. Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D (2003) Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol 53:383–397PubMedCrossRefGoogle Scholar
  34. Hernández Y, Sanan-Mishra N (2017) miRNA mediated regulation of NAC transcription factors in plant development and environment stress response. Plant Gene 11:190–198CrossRefGoogle Scholar
  35. Hobert O (2008) Gene regulation by transcription factors and microRNAs. Science 319:1785PubMedCrossRefGoogle Scholar
  36. Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G (2010) Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. Plant Biol 10:145Google Scholar
  37. Hussey SG, Mizrachi E, Spokevicius AV, Bossinger G, Berger DK, Myburg AA (2011) SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biol 11:173PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hussey SG, Saïdi MN, Hefer CA, Myburg AA, Grima-Pettenati J (2015) Structural, evolutionary and functional analysis of the NAC domain protein family in Eucalyptus. New Phytol 206:1337–1350PubMedCrossRefGoogle Scholar
  39. Jensen MK, Skriver K (2014) NAC transcription factor gene regulatory and protein-protein interaction networks in plant stress responses and senescence. IUBMB Life 66:156–166PubMedCrossRefGoogle Scholar
  40. Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB et al (2008) Transcriptional regulation by an NAC (NAM–ATAF1, 2–CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 56:867–880PubMedCrossRefGoogle Scholar
  41. Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, O’Shea C, Skriver K (2010) The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochem J 426:183–196PubMedCrossRefGoogle Scholar
  42. Jeong JS, Park YT, Jung H, Park SH, Kim JK (2009) Rice NAC proteins act as homodimers and heterodimers. Plant Biotechnol Rep 3:127–134CrossRefGoogle Scholar
  43. Jin SJ, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197CrossRefGoogle Scholar
  44. Jin J, Zhang H, Kong L, Gao G, Luo J (2013) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:D1182–D1187PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jin C, Li KQ, Xu XY, Zhang HP, Chen HX, Chen YH, Hao J, Wang Y, Huang XS, Zhang SL (2017a) A novel NAC transcription factor, PbeNAC1, of Pyrus betulifolia confers cold and drought tolerance via interacting with PbeDREBs and activating the expression of stress-responsive genes. Front Plant Sci 8:1049PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J et al (2017b) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:D1040–D1045PubMedCrossRefGoogle Scholar
  47. Jokipii-Lukkari S, Sundell D, Nilsson O, Hvidsten TR, Street NR, Tuominen H (2017) NorWood: a gene expression resource for evo-devo studies of conifer wood development. New Phytol 216:482–494PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kim HS, Park BO, Yoo JH, Jung MS, Lee SM, Han HJ et al (2007a) Identification of a calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis. J Biol Chem 282:36292–36302PubMedCrossRefGoogle Scholar
  49. Kim SY, Kim SG, Kim YS, Seo PJ, Bae M, Yoon HK, Park CM (2007b) Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res 35:203–213PubMedCrossRefGoogle Scholar
  50. Kim MJ, Park MJ, Seo PJ, Song JS, Kim HJ, Park CM (2012) Controlled nuclear import of the transcription factor NTL6 reveals a cytoplasmic role of SnRK2.8 in the drought-stress response. Biochem J 448:353–363PubMedCrossRefGoogle Scholar
  51. Kjaersgaard T, Jensen MK, Christiansen MW, Gregersen P, Kragelund BB, Skriver K (2011) Senescence-associated barley NAC (NAM, ATAF1,2, CUC) transcription factor interacts with radical-induced cell death 1 through a disordered regulatory domain. J Biol Chem 14:35418–35429CrossRefGoogle Scholar
  52. Lamara M, Raherison E, Lenz P, Beaulieu J, Bousquet J, Mackay J (2016) Genetic architecture of wood properties based on association analysis and co-expression networks in white spruce. New Phytol 210:240–255PubMedCrossRefGoogle Scholar
  53. Larsson E, Sundström JF, Sitbon F, von Arnold S (2012) Expression of PaNAC01, a Picea abies CUP-SHAPED COTYLEDON orthologue, is regulated by polar auxin transport and associated with differentiation of the shoot apical meristem and formation of separated cotyledons. Ann Bot 110:923–934PubMedPubMedCentralCrossRefGoogle Scholar
  54. Li Q, Lin Y-C, Sun Y-H, Song J, Chen H, Zhang XH, Sederoff RR, Chiang VL (2012) Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa. Proc Natl Acad Sci U S A 109:14699–14704PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lin YC, Li W, Sun YH, Kumari S, Wei H, Li Q, Tunlaya-Anukit S, Sederoff RR, Chiang VL (2013) SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa. Plant Cell 25:4324–4441PubMedPubMedCentralCrossRefGoogle Scholar
  56. Liu C, Zhang X, Zhang K, An H, Hu K, Wen J, Shen J, Ma C, Yi B, Tu J, Fu T (2015) Comparative analysis of the Brassica napus root and leaf transcript profiling in response to drought stress. Int J Mol Sci 16:18752–18777PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lunden K, Danielsson M, Durling MB, Ihrmark K, Nemesio-Gorriz M, Stenlid J, Asiegbu FO, Elfstrand M (2015) Transcriptional responses associated with virulence and defence in the interaction between Heterobasidion annosum s. s. and Norway spruce. PLoS One 10:e0131182PubMedPubMedCentralCrossRefGoogle Scholar
  58. Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410PubMedCrossRefGoogle Scholar
  59. Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R (2012) TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 63:2933–2946PubMedPubMedCentralCrossRefGoogle Scholar
  60. Maugarny A, Goncalves B, Arnaud N, Laufs P (2015) CUC transcription factors: to the meristem and beyond. In: Gonzalez DH (ed) Plant transcription factors. Academic Press, Boston, MA, pp 229–247Google Scholar
  61. Maugarny-Calès A, Gonçalves B, Jouannic S, Melkonian M, Wong GKS, Laufs P (2016) Apparition of the NAC transcription factors predates de emergence of land plants. Mol Plant 9:1345–1348PubMedCrossRefGoogle Scholar
  62. McAdam SA, Brodribb TJ, Ross JJ (2016) Shoot-derived abscisic acid promotes root growth. Plant Cell Environ 39:652–659PubMedCrossRefGoogle Scholar
  63. Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mizrachi E, Mansfield SD, Myburg AA (2012) Cellulose factories: advancing bioenergy production from forest trees. New Phytol 194:54–62PubMedCrossRefGoogle Scholar
  65. Nagata T, Hosaka-Sasaki A, Kikuchi S (2015) The evolutionary diversification of genes that encode transcription factor proteins in plants. In: Gonzalez DH (ed) Plant transcription factors. Academic Press, Boston, MA, pp 73–97Google Scholar
  66. Nakano Y, Yamaguchi M, Endo H, Rejab NA, Ohtani M (2015) NAC MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. Front Plant Sci 6:288PubMedPubMedCentralCrossRefGoogle Scholar
  67. Niu F, Wang B, Wu F, Yan J, Li L, Wang C, Wang Y, Yang B, Jiang YQ (2014) Canola (Brassica napus L.) NAC103 transcription factor gene is a novel player inducing reactive oxygen species accumulation and cell death in plants. Biochem Biophys Res Commun 454:30–35PubMedCrossRefGoogle Scholar
  68. Nuruzzaman M, Sharoni AM, Satoh K, Kondoh H, Hosaka A, Kikuchi S (2012) A genome-wide survey of the NAC transcription factor family in monocots and eudicots. In: Introduction to genetics – DNA methylation, histone modification and gene regulation. iConcept Press, Hong Kong. ISBN 978-14775549-4-4Google Scholar
  69. Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248PubMedPubMedCentralCrossRefGoogle Scholar
  70. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584PubMedCrossRefGoogle Scholar
  71. Ogo Y, Kobayashi T, Nakanishi Itai R, Nakanishi H, Kakei Y, Takahashi M et al (2008) A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J Biol Chem 283:13407–13417PubMedCrossRefGoogle Scholar
  72. Ohtani M, Nishikubo N, Xu B, Yamaguchi M, Mitsuda N, Goue N, Shi F, Ohme-Takagi M, Demura T (2011) A NAC domain protein family contributing to the regulation of wood formation in poplar. Plant J 67:499–512PubMedCrossRefGoogle Scholar
  73. Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87PubMedCrossRefGoogle Scholar
  74. Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K et al (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247PubMedCrossRefGoogle Scholar
  75. Ouyang K, Li J, Zhao X, Que Q, Li P, Juang H, Deng X, Singh SK, Wu AM, Chen X (2016) Transcriptomic analysis of multipurpose timber yielding tree Neolamarckia cadamba during xylogenesis using RNA-Seq. PLoS One 11:e0159407PubMedPubMedCentralCrossRefGoogle Scholar
  76. Panchy N, Lehti-Shiu M, Shiu SH (2016) Evolution of gene duplication in plants. Plant Physiol 171:2294–2316PubMedPubMedCentralGoogle Scholar
  77. Pascual MB, Cánovas FM, Ávila C (2015) The NAC transcription factor family in maritime pine (Pinus pinaster): molecular regulation of two genes involved in stress responses. BMC Plant Biol 15:254PubMedPubMedCentralCrossRefGoogle Scholar
  78. Pascual MB, El-Azaz J, de la Torre F, Cañas RA, Ávila C, Cánovas FM (2016) Biosynthesis and metabolic fate of phenylalanine in conifers. Front Plant Sci 7:1030PubMedPubMedCentralCrossRefGoogle Scholar
  79. Pascual MB, Llebrés-Ávila MT, Craven-Bartle B, Cañas AR, Cánovas FM, Ávila C (2017) PpNAC1, a main regulator of phenylalanine biosynthesis and utilization in maritime pine. Plant Biotechnol J.
  80. Patzlaff A, McInnis S, Courtenay A, Surman S, Newman LJ, Smith C, Bevan MW et al (2003a) Characterisation of a pine MYB that regulates lignification. Plant J 36:743–754PubMedCrossRefGoogle Scholar
  81. Patzlaff A, Newman LJ, Dubos C, Whetten RW, Smith C, McInnis S, Bevan MW et al (2003b) Characterization of PtMYB1, an R2R3-MYB from pine xylem. Plant Mol Biol 53:597–608PubMedCrossRefGoogle Scholar
  82. Pinheiro GL, Marques CS, Costa MDBL, Reis PAB, Alves MS, Carvalho CM, Fietto LG, Fontes EPB (2009) Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 444:10–23PubMedCrossRefGoogle Scholar
  83. Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381PubMedCrossRefGoogle Scholar
  84. Puranik S, Sahu PP, Mandal SN, Suresh VB, Parida SK, Prasad M (2013) Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). PLoS One 8:e64594PubMedPubMedCentralCrossRefGoogle Scholar
  85. Qin X, Zheng X, Huang X, Lii Y, Shao C, Xu Y, Chen F (2014) A novel transcription factor JcNAC1 response to stress in new model woody plant Jatropha curcas. Planta 239:511–520PubMedCrossRefGoogle Scholar
  86. Raherison ES, Giguère I, Caron S, Lamara M, MacKay JJ (2015) Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures. New Phytol 207:172–187PubMedPubMedCentralCrossRefGoogle Scholar
  87. Rauf M, Arif M, Fisahn J, Xue GP, Balazadeh S, Mueller-Roeber B (2013) NAC transcription factor speedy hyponastic growth regulates flooding-induced leaf movement in Arabidopsis. Plant Cell 25:4941–4955PubMedPubMedCentralCrossRefGoogle Scholar
  88. Reece-Hoyes JS, Deplancke B, Shingles J, Grove CA, Hope IA, Walhout AJ (2005) A compendium of Caenorhabditis elegans regulatory transcription factors: a resource for mapping transcription regulatory networks. Genome Biol 6:R110PubMedPubMedCentralCrossRefGoogle Scholar
  89. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam K, Pineda O et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110PubMedCrossRefGoogle Scholar
  90. Rueda-López M, García-Gutiérrez A, Cánovas FM, Ávila C (2013) The family of Dof transcription factors in pine. Trees 27:1547–1557CrossRefGoogle Scholar
  91. Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:5690–5700PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rushton PJ, Bokowiec MT, Han S, Zhang H, Brannock JF, Chen X, Laudeman TW, Timko MP (2008) Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant Physiol 147:280–295PubMedPubMedCentralCrossRefGoogle Scholar
  93. Scofield S, Dewitte W, Nieuwland J, Murray JAH (2013) The Arabidopsis homeobox gene SHOOT MERISTEMLESS has cellular and meristem-organisational roles with differential requirements for cytokinin and CYCD3 activity. Plant J 75:53–66PubMedCrossRefGoogle Scholar
  94. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high salinity stresses using a full-length cDNA microarray. Plant J 31:279–292PubMedCrossRefGoogle Scholar
  95. Seo PJ, Kim SG, Park CM (2008) Membrane-bound transcription factors in plants. Trends Plant Sci 13:550–556PubMedCrossRefGoogle Scholar
  96. Seo PJ, Kim MJ, Park JY, Kim SY, Jeon J, Lee YH, Kim J, Park CM (2010) Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant J 61:661–671PubMedCrossRefGoogle Scholar
  97. Shang H, Li W, Zou C, Yuan Y (2013) Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.: chromosomal location, structure, phylogeny, and expression patterns. J Integr Plant Biol 55:663–676PubMedCrossRefGoogle Scholar
  98. Shao H, Wang H, Tang X (2015) NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci 6:902PubMedPubMedCentralCrossRefGoogle Scholar
  99. Shen H, Yin Y, Chen F, Xu Y, Dixon RA (2009) A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. Bioenerg Res 2:217–232CrossRefGoogle Scholar
  100. Shen H, Liu C, Zhang Y, Meng X, Zhou X, Chu C et al (2012) OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol Biol 80:241–253PubMedCrossRefGoogle Scholar
  101. Shiu SH, Shih MC, Li WH (2005) Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiol 139:18–26PubMedPubMedCentralCrossRefGoogle Scholar
  102. Silva PA, Silva JCF, Caetan HDN, Machado JPB, Mendes GC, Reis PAB et al (2015) Comprehensive analysis of the endoplasmic reticulum stress response in the soybean genome: conserved and plant-specific features. BMC Genomics 16:783PubMedPubMedCentralCrossRefGoogle Scholar
  103. Singh AK, Sharma V, Pal AK, Acharya V, Ahuja PS (2013) Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.). DNA Res 20:403–423PubMedPubMedCentralCrossRefGoogle Scholar
  104. Sjostrom E (1993) Wood chemistry. Academic Press, San DiegoGoogle Scholar
  105. Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170PubMedCrossRefGoogle Scholar
  106. Stender EG, O’Shea C, Skriver K (2015) Subgroup-specific intrinsic disorder profiles of Arabidopsis NAC transcription factors: identification of functional hotspots. Plant Signal Behav 10:e1010967PubMedPubMedCentralCrossRefGoogle Scholar
  107. Takada S, Hibara K-i, Ishida T, Tasaka M (2001) The CUC-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128:1127–1135PubMedGoogle Scholar
  108. Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K et al (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498PubMedPubMedCentralCrossRefGoogle Scholar
  109. Wan T, Liu ZM, Li LF, Leitch AR, Leitch IJ, Lohaus R, Liu ZJ, Xin HP et al (2018) A genome for gnetophytes and early evolution of seed plants. Nat Plants 4:82–89PubMedCrossRefGoogle Scholar
  110. Wang X, Goregaoker SP, Culver JN (2009) Interaction of the tobacco mosaic virus replicase protein with a NAC domain transcription factor is associated with the suppression of systemic host defenses. J Virol 83:9720–9730PubMedPubMedCentralCrossRefGoogle Scholar
  111. Wang H, Zhao Q, Chen F, Wang M, Dixon RA (2011) NAC domain function and transcriptional control of a secondary cell wall master switch. Plant J 68:1104–1114PubMedCrossRefGoogle Scholar
  112. Wang JY, Wang JP, He-Yuan (2013a) A Populus euphratica NAC protein regulating Na+/K+ homeostasis improves salt tolerance in Arabidopsis thaliana. Gene 521:265–273PubMedCrossRefGoogle Scholar
  113. Wang N, Zheng Y, Xin H, Fang L, Li S (2013b) Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. Plant Cell Rep 32:61–75PubMedCrossRefGoogle Scholar
  114. Wang L, Wang C, Wang D, Wang Y (2014) Molecular characterization and transcript profiling of NAC genes in response to abiotic stress in Tamarix hispida. Tree Genet Genomes 10:157–171CrossRefGoogle Scholar
  115. Wang L, Li Z, Lu M, Wang Y (2017) ThNAC13, a NAC transcription factor from Tamarix hispida, confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis. Front Plant Sci 8:635PubMedPubMedCentralCrossRefGoogle Scholar
  116. Weir I, Lu JP, Cook H, Causier B, Schwarz-Sommer Z, Davies B (2004) CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development 131:915–922PubMedCrossRefGoogle Scholar
  117. Welner DH, Lindemose S, Grossman GJ, Mollegaard NE, Olsen AN, Helgstrand C, Skriver K, Lo Leggio L (2012) DNA binding by plant NAC proteins: a firm link to WRKY and mammalian GCM transcription factors. Biochem J 444:395–404PubMedCrossRefGoogle Scholar
  118. Welner DH, Deeba F, Lo Leggio L, Skriver K (2016) NAC transcription factors: from structure to function in stress-associated networks. In: Gonzalez DH (ed) Plant transcription factors: evolutionary, structural and functional aspects. Academic Press, San Diego, CA, pp 199–212CrossRefGoogle Scholar
  119. Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA et al (2014) Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci U S A 111:E4859–E4868PubMedPubMedCentralCrossRefGoogle Scholar
  120. Willemsen V, Bauch M, Bennett T, Campilho A, Wolkenfelt H, Xu J et al (2008) The NAC domain transcription factors FEZ and SOMBRERO control the orientation of cell division plane in Arabidopsis root stem cells. Dev Cell 15:913–922PubMedCrossRefGoogle Scholar
  121. Wray GA, Hahn MW, Abouheif E, Balhoff JP, Margaret P, Rockman MV, Romano LA (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20:1377–1419PubMedCrossRefGoogle Scholar
  122. Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C et al (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290PubMedCrossRefGoogle Scholar
  123. Xie Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036PubMedPubMedCentralCrossRefGoogle Scholar
  124. Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, Chua NH (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419:167–170PubMedCrossRefGoogle Scholar
  125. Xu B, Ohtani M, Yamaguchi M, Toyooka K, Wakazaki M, Sato M et al (2014) Contribution of NAC transcription factors of plant adaptation to land. Science 343:1505–1508PubMedCrossRefGoogle Scholar
  126. Xu L, Wang J, Lei M, Li L, Fu Y, Wang Z, Ao M, Li Z (2016) Transcriptome analysis of storage roots and fibrous roots of the traditional medicinal herb Callerya speciosa (Champ.) Schot. PLoS One 11:e0160338PubMedPubMedCentralCrossRefGoogle Scholar
  127. Yoshiyama KO (2016) SOG1: a master regulator of the DNA damage response in plants. Genes Genet Syst 90:209–216PubMedCrossRefGoogle Scholar
  128. Yoshiyama K, Conklin PA, Huefner ND, Britt AB (2009) Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage. Proc Natl Acad Sci U S A 106:12843–12848PubMedPubMedCentralCrossRefGoogle Scholar
  129. You J, Zhang L, Song B, Qi X, Chan Z (2015) Systematic analysis and identification of stress-responsive genes of the NAC gene family in Brachypodium distachyon. PLoS One 10:e0122027PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zhao Z, Li Y, Liu H, Zhai X, Deng M, Dong Y, Fan G (2017) Genome-wide expression analysis of salt-stressed diploid and autotetraploid Paulownia tomentosa. PLoS One 12:e0185455PubMedPubMedCentralCrossRefGoogle Scholar
  131. Zhong R, Ye ZH (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10:564–572PubMedCrossRefGoogle Scholar
  132. Zhong R, Ye ZH (2010) The poplar PtrWNDs are transcriptional activators of secondary cell wall biosynthesis. Plant Signal Behav 5:469–472PubMedPubMedCentralCrossRefGoogle Scholar
  133. Zhong R, Demura T, Ye ZH (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18:3158–3170PubMedPubMedCentralCrossRefGoogle Scholar
  134. Zhong R, Richardson EA, Ye ZH (2007) The MYB46 transcription factor is a direct target of SND1 and regulates secondary cell wall biosynthesis in Arabidopsis. Plant Cell 19:2776–2791PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zhong R, Lee C, Ye ZH (2010a) Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends Plant Sci 15:625–632PubMedCrossRefGoogle Scholar
  136. Zhong R, Lee C, Ye ZH (2010b) Functional characterization of poplar wood associated NAC domain transcription factors. Plant Physiol 152:1044–1055PubMedPubMedCentralCrossRefGoogle Scholar
  137. Zhong R, McCarthy RL, Lee C, Ye ZH (2011a) Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar. Plant Physiol 157:1452–1468PubMedPubMedCentralCrossRefGoogle Scholar
  138. Zhong R, Lee C, McCarthy RL, Reeves CK, Jones EG, Ye ZH (2011b) Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors. Plant Cell Physiol 52:1856–1871PubMedCrossRefGoogle Scholar
  139. Zhong H, Guo QQ, Chen L, Ren F, Wang QQ, Zheng Y, Li XB (2012) Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress. Plant Cell Rep 31:1991–2003PubMedCrossRefGoogle Scholar
  140. Zhong R, McCarthy RL, Haghighat M, Ye ZH (2013) The poplar MYB master switches bind to the SMRE site and activate the secondary wall biosynthetic program during wood formation. PLoS One 8:e69219PubMedPubMedCentralCrossRefGoogle Scholar
  141. Zhu T, Nevo E, Sun D, Peng J (2012) Phylogenic analyses unravel the evolutionary of NAC proteins in plants. Evolution 66:1833–1848PubMedCrossRefGoogle Scholar
  142. Zhu Q, Zou J, Zhu M, Liu Z, Feng P, Fan G, Wang W, Liao H (2014) In silico analysis on structure and DNA binding mode of AtNAC1, a NAC transcription factor from Arabidopsis thaliana. J Mol Model 20:2117PubMedCrossRefGoogle Scholar
  143. Zimmermann R, Werr W (2005) Pattern formation in the monocot embryo as revealed by NAM and CUC3 orthologues from Zea mays L. Plant Mol Biol 58:669–685PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mª Belén Pascual
    • 1
    Email author
  • Fernando de la Torre
    • 1
  • Rafael A. Cañas
    • 1
  • Francisco M. Cánovas
    • 1
  • Concepción Ávila
    • 1
  1. 1.Departamento de Biología Molecular y Bioquímica, Facultad de CienciasUniversidad de MálagaMálagaSpain

Personalised recommendations