Process Technology to Facilitate the Conduct of Science

  • Leon J. Osterweil
  • Alexander Wise
  • Lori A. Clarke
  • Aaron M. Ellison
  • Julian L. Hadley
  • Emery Boose
  • David R. Foster
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3840)

Abstract

This paper introduces the concept of an analytic web, a synthesis of three complementary views of a scientific process that is intended to facilitate the conduct of science. These three views support the clear, complete, and precise process documentation needed to enable the effective coordination of the activities of geographically dispersed scientists. An analytic web also supports automation of various scientific activities, education of young scientists, and reproducibility of scientific results. Of particular significance, an analytic web is intended to forestall the generation of scientific data that are erroneous or suspect, by using process definitions to prevent incorrect combinations of scientific results. The paper also describes experiences with a tool, SciWalker, designed to evaluate the efficacy of this approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Globus consortium description, http://www.globus.org/
  2. 2.
    GryPhyN project description, http://www.globus.org/about/news/GriPhyN.html
  3. 3.
    Dominici, F., McDermott, A., Hastie, T.J.: Improved Semi-parametric Time Series Models of Air Pollution and Mortality. Journal of the American Statistical Association (99), 938–948 (2004)Google Scholar
  4. 4.
    Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering, 2nd edn. Pearson Education, Inc., Upper Saddle River (2003)Google Scholar
  5. 5.
    Huet, S., et al.: Statistical Tools for Nonlinear Regression: A Practical Guide with S-Plus and R Examples, 2nd edn. Springer-Verlag, Inc., New York (2004)MATHGoogle Scholar
  6. 6.
    Wise, A.: Little-JIL 1.0 Language Report, in Computer Science Technical Report, University of Massachusetts: Amherst, MA (1998)Google Scholar
  7. 7.
    Baldocchi, D.D., Hicks, B.B., Myers, T.P.: Measuring Biosphere-Atmosphere Exchanges of Biologically Related Gases with Micrometeorological Methods. Ecology (69), 1331–1340 (1998)Google Scholar
  8. 8.
    Savage, K.E., Davidson, E.A.: Inter-annual Variation of Soil Respiration in Two New England Forests. Global Biogeochemical Cycles (15), 227–350 (2001)Google Scholar
  9. 9.
    Belkhatir, N., Estublier, J.: Software Management Constraints and Action Triggering in Adele Program Database. In: 1st European Software Engineering Conference, Strasbourg, France (1987)Google Scholar
  10. 10.
    Belkhatir, N., Estublier, J., Melo, W.L.: Software Process Modeling in Adele: The ISPW-7 Example. In: Proceedings of the 7th International Software Process Workshop. IEEE Computer Society Press, San Francisco (1991)Google Scholar
  11. 11.
    Hollinger, D.Y., et al.: Spatial and Temporal Variability in Forest-Atmosphere CO2 Exchange. Global Change Biology (2004)Google Scholar
  12. 12.
    Barford, C.C., et al.: Factors Controlling Long- and Short-term Sequestration of Atomspherics CO2 is a Mid-latitude Forest. Science (294), 1688–1691 (2001)Google Scholar
  13. 13.
    Saleska, S.R., et al.: Carbon in Amazon Forests: Unexpected Seasonal Fluxes and Disturbance-induced Losses. Science (302), 1554–1557 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Leon J. Osterweil
    • 1
  • Alexander Wise
    • 1
  • Lori A. Clarke
    • 1
  • Aaron M. Ellison
    • 2
  • Julian L. Hadley
    • 2
  • Emery Boose
    • 2
  • David R. Foster
    • 2
  1. 1.Department of Computer ScienceUniversity of MassachusettsAmherstUSA
  2. 2.Harvard UniversityPetershamUSA

Personalised recommendations