Advertisement

More Than Meets the Eye: Volcanic Hazard Map Design and Visual Communication

  • Mary Anne Thompson
  • Jan M. Lindsay
  • Graham S. Leonard
Chapter
Part of the Advances in Volcanology book series (VOLCAN)

Abstract

Volcanic hazard maps depict areas that may be affected by dangerous volcanic processes, such as pyroclastic density currents, lava flows, lahars, and tephra fall. These visualisations of volcanic hazard information are used to communicate with a wide variety of audiences both during times of dormancy and volcanic crisis. Although most volcanic hazard maps show similar types of content, such as hazard footprints or zones, they vary greatly in communication style, appearance, and visual design. For example, maps for different volcanoes will use different combinations of graphics, symbols, colours, base maps, legends, and text. While this variety is a natural reflection of the diverse social, cultural, political, and volcanic settings in which the maps are created, crises and past work suggest that such visual design choices can potentially play an important role in volcanic crisis communication by influencing how people understand the hazard map and use it to make decisions. Map reading is a complex process, in which people construct meaning by interpreting the various visual representations within the context of their information needs, goals, knowledge, and experience. Visual design of the map and the characteristics of the hazard map audience can therefore influence how hazard maps are understood and applied. Here, we review case studies of volcanic crises and interdisciplinary research that addresses the relationship between hazard maps, visual design, and communication. Overall, this growing body of work suggests that volcanic hazard maps can be very useful visual tools for crisis communication if they are designed in a way that provides clear and useful information for the audience. Further, while it is important that each map is designed for its unique situation and setting, engaging with hazard map audiences to better understand their information needs and considering lessons learnt from interdisciplinary work on visual communication can help inform and guide knowledge exchange using maps.

Notes

Acknowledgements

The authors would like to acknowledge the many generations of volcanic hazard maps which have contributed valuable insight and knowledge regarding both the advantages and challenges of visually communicating volcanic hazard. The authors would also like to thank M Monsalve, H Murcia, and C Driedger for reviewing parts of this manuscript, and two anonymous reviewers for constructive and valuable comments on an earlier version of this chapter. MAT and JML gratefully acknowledge support from the New Zealand Earthquake Commission.

References

  1. Aerts J, Clarke K, Keuper A (2003) Testing popular visualization techniques for representing model uncertainty. Cartogr Geogr Inf Sci 30:249–261. doi: 10.1559/152304003100011180CrossRefGoogle Scholar
  2. Ash KD, Schumann RL III, Bowser GC (2014) Tornado warning trade-offs: evaluating choices for visually communicating risk. Weather Clim Soc 6:104–118. doi: 10.1175/WCAS-D-13-00021.1CrossRefGoogle Scholar
  3. Aspinall WP, Loughlin SC, Michael FV, Miller AD, Norton GE, Rowley KC, Sparks RSJ, Young SR (2002) The Montserrat Volcano observatory: its evolution, organization, role and activities. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geological Society of London Memoirs, vol 21, pp 71–91CrossRefGoogle Scholar
  4. Barclay J, Haynes K, Mitchell T, Solana C, Teeuw R, Darnell A, Crosweller S, Cole P, Pyle D, Lowe C, Fearnley C, Kelman I (2008) Framing volcanic risk communication within disaster risk reduction: finding ways for the social and physical sciences to work together. Geol Soc Lond Spec Publ 305:163–177. doi: 10.1144/SP305.14CrossRefGoogle Scholar
  5. Bertin J (1983) Semiology of graphics (trans: Berg WJ). University of Wisconsin Press, Madison, WIGoogle Scholar
  6. Bird D, Gisladottir G, Dominey-Howes D (2010) Volcanic risk and tourism in southern Iceland: implications for hazard, risk and emergency response education and training. J Volcanol Geoth Res 189:33–48. doi: 10.1016/j.jvolgeores.2009.09.020CrossRefGoogle Scholar
  7. Bostrom A, Löfstedt RE (2003) Communicating risk: wireless and hardwired. Risk Anal 23:241–248. doi: 10.1111/1539-6924.00304CrossRefGoogle Scholar
  8. Brewer CA (1994) Color use guidelines for mapping and visualization. In: MacEachren AM, Taylor DRF (eds) Visualization in modern cartography. Elsevier, Tarrytown, New York, pp 123–147CrossRefGoogle Scholar
  9. Broad K, Leiserowitz A, Weinkle J, Steketee M (2007) Misinterpretations of the “Cone of Uncertainty” in Florida during the 2004 hurricane season. Bull Am Meteorol Soc 88(5):651–667CrossRefGoogle Scholar
  10. Cadag J, Gaillard J (2012) Integrating knowledge and actions in disaster risk reduction: the contribution of participatory mapping. Area 44:100–109. doi: 10.1111/j.1475-4762.2011.01065.xCrossRefGoogle Scholar
  11. Calder ES, Wagner K, Ogburn SE (2015) Volcanic hazard maps. In: Loughlin SC, Sparks S, Brown SK, Jenkins SF, Vye-Brown C (eds) Global volcanic hazards and risk. Cambridge University Press, Cambridge UKGoogle Scholar
  12. Cao Y, Boruff B, McNeill I (2016) Is a picture worth a thousand words? Evaluating the effectiveness of maps for delivering wildfire warning information. Int J Disaster Risk Reduct 19:179–196. doi: 10.1016/j.ijdrr.2016.08.012CrossRefGoogle Scholar
  13. Carrasco M (2011) Visual attention: the past 25 years. Vis Res 51:1484–1525. doi: 10.1016/j.visres.2011.04.012CrossRefGoogle Scholar
  14. Chambers R (2008) Revolutions in development inquiry. Earthscan, LondonGoogle Scholar
  15. Cheong L, Bleisch S, Kealy A, Tolhurst K, Wilkening T, Duckham M (2016) Evaluating the impact of visualization of wildfire hazard upon decision-making under uncertainty. Int J Geogr Inf Sci 1–28. doi: 10.1080/13658816.2015.1131829CrossRefGoogle Scholar
  16. Çöltekin A, Heil B, Garlandini S, Fabrikant S (2009) Evaluating the effectiveness of interactive map interface designs: a case study integrating usability metrics with eye-movement analysis. Cartogr Geogr Inf Sci 36:5–17. doi: 10.1559/152304009787340197CrossRefGoogle Scholar
  17. Cronin S, Gaylord D, Charley D, Alloway BV, Wallez S, Esau JB (2004) Participatory methods of incorporating scientific with traditional knowledge for volcanic hazard management on Ambae Island, Vanuatu. Bull Volc 66:652–668. doi: 10.1007/s00445-004-0347-9CrossRefGoogle Scholar
  18. Daron J, Lorenz S, Wolski P, Blamey R, Jack C (2015) Interpreting climate data visualisations to inform adaptation decisions. Climate Risk Manage 10:17–26. doi: 10.1016/j.crm.2015.06.007CrossRefGoogle Scholar
  19. Delepero WT, O’Neill H, Casson E, Hovis J (2005) Aviation-relevant epidemiology of color vision deficiency. Aviat Space Eviron Med 76:127–133Google Scholar
  20. Domke D, Perimutter D, Spratt M (2002) The primes of our times? An examination of the “power” of visual images. Journalism 3:131–159. doi: 10.1177/146488490200300211CrossRefGoogle Scholar
  21. Doyle EE, McClure J, Johnston DM, Paton D (2014) Communicating likelihoods and probabilities in forecasts of volcanic eruptions. J Volcanol Geoth Res 272:1–15. doi: 10.1016/j.jvolgeores.2013.12.006CrossRefGoogle Scholar
  22. Driedger C, Ramsey D, Faust L (in preparation) Following the tug of the audience—from complex to simplified hazard maps at Cascade Range volcanoes. Front Volcanol Spec Issue Volc Hazard AssessGoogle Scholar
  23. Ekse W, Burkhardt F, Kloes D, Driedger CL, Faust L, Nelson D (2015) Are you ready for an eruption? Mount Baker and Glacier Peak. Accessed 24 Sept 2016 at: http://www.dnr.wa.gov/programs-and-services/geology/geologic-hazards/volcanoes-and-lahars#volcano-preparedness-posters
  24. Fabrikant SI, Hespanha SR, Hegarty M (2010) Cognitively inspired and perceptually salient graphic displays for efficient spatial inference making. Ann Assoc Am Geogr 100:13–29. doi: 10.1080/00045600903362378CrossRefGoogle Scholar
  25. Fearnley CJ, McGuire WJ, Davies G, Twigg J (2012) Standardisation of the USGS volcano alert level system (VALS): analysis and ramifications. Bull Volc 74(9):2023–2036. doi: 10.1007/s00445-012-0645-6CrossRefGoogle Scholar
  26. Finucane ML, Alhakami A, Slovic P, Johnson SM (2000) The affect heuristic in judgments of risks and benefits. J Behav Decis Mak 13(1):1–17CrossRefGoogle Scholar
  27. Gaillard J-C, Dibben C (2008) Volcanic risk perception and beyond. J Volcanol Geoth Res 172:163–169. doi: 10.1016/j.jvolgeores.2007.12.015CrossRefGoogle Scholar
  28. GNS Science (2005) Volcanic hazards at Tongariro (map). Wellington, NZ Google Scholar
  29. GNS Science (2012) Te Maari Eruption Phenomena (map). Wellington, NZGoogle Scholar
  30. Harrower M, Brewer CA (2003) ColorBrewer.org: an online tool for selecting colour schemes for maps. Cartogr J 40:27–37. doi: 10.1179/000870403235002042CrossRefGoogle Scholar
  31. Haynes K, Barclay J, Pidgeon N (2007) Volcanic hazard communication using maps: an evaluation of their effectiveness. Bull Volc 70:123–138. doi: 10.1007/s00445-007-0124-7CrossRefGoogle Scholar
  32. Haynes K, Barclay J, Pidgeon N (2008) The issue of trust and its influence on risk communication during a volcanic crisis. Bull Volc 70:605–621. doi: 10.1007/s00445-007-0156-zCrossRefGoogle Scholar
  33. Hegarty M (2011) The cognitive science of visual-spatial displays: implications for design. Top Cogn Sci 3:446–474. doi: 10.1111/j.1756-8765.2011.01150.xCrossRefGoogle Scholar
  34. Hegarty M, Smallman H, Stull A, Canham M (2009) Naïve cartography: how intuitions about display configuration can hurt performance. Cartographica 44(3):171–186. doi: 10.3138/carto.44.3.171CrossRefGoogle Scholar
  35. Hegarty M, Canham M, Fabrikant S (2010) Thinking about the weather: how display salience and knowledge affect performance in a graphic inference task. J Exp Psychol Learn Mem Cogn 36:37–53. doi: 10.1037/a0017683CrossRefGoogle Scholar
  36. Jenkins SF, Wilson TM, Magill CR, Miller V, Stewart C, Marzocchi W, Boulton M (2015) Volcanic ash fall hazard and risk: technical background paper for the UNISDR 2015 global assessment report on disaster risk reduction. Global Volcano Model and IAVCEIGoogle Scholar
  37. Jenny B, Kelso N (2007) Color design for the color vision impaired. Cartogr Perspect 61–67. doi: 10.14714/CP58.270
  38. Johnston DM, Lai MS, Houghton BF, Paton D (1999) Volcanic hazard perceptions: comparative shifts in knowledge and risk. Disaster Prev Manag 8:118–126. doi: 10.1108/09653569910266166CrossRefGoogle Scholar
  39. Jolly AD, Jousset P, Lyons JJ, Carniel R (2014a) Seismo-acoustic evidence for an avalanche driven phreatic eruption through a beheaded hydrothermal system: an example from the 2012 Tongariro eruption. J Volcanol Geoth Res 286:331–347. doi: 10.1016/j.jvolgeores.2014.04.007CrossRefGoogle Scholar
  40. Jolly GE, Keys H, Procter JN, Deligne NI (2014b) Overview of the co-ordinated risk-based approach to science and management response and recovery for the 2012 eruptions of Tongariro volcano, New Zealand. J Volcanol Geoth Res 286:184–207. doi: 10.1016/j.jvolgeores.2014.08.028CrossRefGoogle Scholar
  41. Kinkeldey C, MacEachren AM, Schiewe J (2014) How to assess visual communication of uncertainty? A systematic review of geospatial uncertainty visualisation user studies. Cartogr J 51:372–386. doi: 10.1179/1743277414Y.0000000099CrossRefGoogle Scholar
  42. Kokelaar BP (2002) Setting, chronology and consequences of the eruption of Soufrière Hills Volcano, Montserrat (1995–1999). In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geological Society of London Memoirs, vol 21, pp 1–44CrossRefGoogle Scholar
  43. Kosslyn SM (2006) Graph design for the eye and mind. Oxford University Press, New YorkCrossRefGoogle Scholar
  44. Leonard G, Johnston D, Paton D et al (2008) Developing effective warning systems: ongoing research at Ruapehu volcano, New Zealand. J Volcanol Geoth Res 172:199–215. doi: 10.1016/j.jvolgeores.2007.12.008CrossRefGoogle Scholar
  45. Leonard GS, Stewart C, Wilson TM, Procter JN, Scott BJ, Keys HJ, Jolly GE, Wardman JB, Cronin SJ, McBride SK (2014) Integrating multidisciplinary science, modelling and impact data into evolving, syn-event volcanic hazard mapping and communication: a case study from the 2012 Tongariro eruption crisis, New Zealand. J Volcanol Geoth Res 286:208–232. doi: 10.1016/j.jvolgeores.2014.08.018CrossRefGoogle Scholar
  46. Leone F, Lesales T (2009) The interest of cartography for a better perception and management of volcanic risk: from scientific to social representations: the case of Mt. Pelée volcano, Martinique (Lesser Antilles). J Volcanol Geoth Res 186:186–194. doi: 10.1016/j.jvolgeores.2008.12.020CrossRefGoogle Scholar
  47. Lester PM (2014) Visual communication: images with messages, 6th edn. Wadsworth, Cengage Learning, Boston, MAGoogle Scholar
  48. Lloyd R (2011) Understanding and learning maps. In: Dodge M, Kitchin R, Perkins C (eds) The map reader: theories of mapping practice and cartographic representation. Wiley, Hoboken, NJGoogle Scholar
  49. Lonergan C, Hedley N (2015) Navigating the future of tsunami risk communication: using dimensionality, interactivity and situatedness to interface with society. Nat Hazards 78:179–201. doi: 10.1007/s11069-015-1709-7CrossRefGoogle Scholar
  50. MacEachren A (1982) The role of complexity and symbolization method in thematic map effectiveness. Ann Assoc Am Geogr 72:495–513. doi: 10.1111/j.1467-8306.1982.tb01841.xCrossRefGoogle Scholar
  51. MacEachren A (1995) How maps work: representation, visualization, and design. Guilford Press, New YorkGoogle Scholar
  52. Mendonça A, Delazari L (2014) Testing subjective preference and map use performance: use of web maps for decision making in the public health sector. Cartographica 49:114–126. doi: 10.3138/carto.49.2.1455CrossRefGoogle Scholar
  53. Meyer V, Kuhlicke V, Luther J, Fuchs S, Priest S, Dorner W, Serrhini K, Pardoe J, McCarthy S, Seidel J, Palka G, Unnerstall H, Viavattene C, Scheuer S (2012) Recommendations for the user-specific enhancement of flood maps. Nat Hazards Earth Syst Sci 12:1701–1716. doi: 10.5194/nhess-12-1701-2012CrossRefGoogle Scholar
  54. Moebis A, Cronin SJ, Neall VE, Smith IE (2011) Unravelling a complex volcanic history from fine-grained, intricate holocene ash sequences at the Tongariro Volcanic Centre, New Zealand. Quatern Int 246:352–363. doi: 10.1016/j.quaint.2011.05.035CrossRefGoogle Scholar
  55. Monmonier M (1996) How to lie with maps. University of Chicago Press, ChicagoGoogle Scholar
  56. Monzier M, Robin C (1995) Volcanic hazard map for Aoba Island. ORSTOM (Institut de recherche pour le developpement) Google Scholar
  57. Mould D, Mandryk RL, Li H (2012) Emotional response and visual attention to non-photorealistic images. Comput Graph 36:658–672. doi: 10.1016/j.cag.2012.03.039CrossRefGoogle Scholar
  58. Nakamura Y, Fukushima K, Jin X, Ukawa M, Sato T, Hotta Q (2008) Mitigation systems by hazard maps, mitigation plans, and risk analyses regarding volcanic disasters in Japan. J Disaster Res 3(4):297–304CrossRefGoogle Scholar
  59. Nave R, Isaia R, Vilardo G, Barclay J (2010) Re-assessing volcanic hazard maps for improving volcanic risk communication: application to Stromboli Island, Italy. J Maps 6:260–269. doi: 10.4113/jom.2010.1061CrossRefGoogle Scholar
  60. Olson JM, Brewer CA (1997) An evaluation of color selections to accommodate map users with color-vision impairments. Ann Assoc Am Geogr 87:103–134CrossRefGoogle Scholar
  61. Palma J, Courtland L, Charbonnier S, Tortini R, Valentine GA (2014) Vhub: a knowledge management system to facilitate online collaborative volcano modeling and research. J Appl Volcanol 3:2. doi: 10.1186/2191-5040-3-2CrossRefGoogle Scholar
  62. Parra E, Cepeda H (1990) Volcanic hazard maps of the Nevado del Ruiz volcano, Colombia. J Volcanol Geoth Res 42:117–127. doi: 10.1016/0377-0273(90)90073-OCrossRefGoogle Scholar
  63. Paton D (2003) Disaster preparedness: a social-cognitive perspective. Disaster Prev Manag 12(3):210–216. doi: 10.1108/09653560310480686CrossRefGoogle Scholar
  64. Paton D, Smith L, Daly M, Johnston D (2008) Risk perception and volcanic hazard mitigation: individual and social perspectives. J Volcanol Geoth Res 172:179–188. doi: 10.1016/j.jvolgeores.2007.12.026CrossRefGoogle Scholar
  65. Patterson RE, Blaha LM, Grinstein GG et al (2014) A human cognition framework for information visualisation. Comput Graph 42:42–58CrossRefGoogle Scholar
  66. Perkins C, Kitchin R, Dodge M (2011) Introductory essay: cognition and cultures of mapping. In: Dodge M, Kitchin R, Perkins C (eds) The map reader: theories of mapping practice and cartographic representation. Wiley, West Sussex, UK, pp 298–303Google Scholar
  67. Perry SC, Blanpied ML, Burkett ER, Campbell NM, Carlson A, Cox DA, Driedger CL, Eisenman DP, Fox-Glassman KT, Hoffman S, Hoffman SM, Jaiswal KS, Jones LM, Luco N, Marx SM, McGowan SM, Mileti DS, Moschetti MP, Ozman D, Pastor E, Petersen MD, Porter KA, Ramsey DW, Ritchie LA, Fitzpatrick JK, Rukstales KS, Sellnow TL, Vaughon WL, Wald DJ, Wald LA, Wein A, Zarcadoolas C (2016) Get your science used—six guidelines to improve your products. USGS Circular 1419:37. doi: 10.3133/cir1419CrossRefGoogle Scholar
  68. Pierson TC, Janda RJ, Thouret JC, Borrero CA (1990) Perturbation and melting of snow and ice by the November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars. J Volcanol Geoth Res 41:17–66. doi: 10.1016/0377-0273(90)90082-QCrossRefGoogle Scholar
  69. Pierson TC, Wood NJ, Driedger CL (2014) Reducing risk from lahar hazards: concepts, case studies, and roles for scientists. J Appl Volcanol 3:16. doi: 10.1186/s13617-014-0016-4CrossRefGoogle Scholar
  70. Potter SH, Jolly GE, Neall VE, Johnston DM, Scott BJ (2014) Communicating the status of volcanic activity: revising New Zealand’s volcanic alert level system. J Appl Volcanol 3:12. doi: 10.1186/s13617-014-0013-7CrossRefGoogle Scholar
  71. Preppernau C, Jenny B (2015) Three-dimensional versus conventional volcanic hazard maps. Nat Hazards 78:1329–1347. doi: 10.1007/s11069-015-1773-zCrossRefGoogle Scholar
  72. Rakow T, Heard CL, Newell BR (2015) Meeting three challenges in risk communication: phenomena, numbers, and emotions. Policy Insights Behav Brain Sci 2:147–156. doi: 10.1177/2372732215601442CrossRefGoogle Scholar
  73. Retchless DP (2014) Sea level rise maps: how individual differences complicate the cartographic communication of an uncertain climate change hazard. Cartogr Perspect 77:17–32. doi: 10.14714/CP77.1235CrossRefGoogle Scholar
  74. Robinson AH (1967) Psychological aspects of color in cartography. Int Yearb Cartogr 7:50–59Google Scholar
  75. Robinson AH, Petchenik (1976) The nature of maps: essays toward understanding maps and mapping. University of Chicago Press, ChicagoGoogle Scholar
  76. Roth RE (2013) Interactive maps: what we know and what we need to know. J Spat Inf Sci 6:59–115. doi: 10.5311/JOSIS.2013.6.105CrossRefGoogle Scholar
  77. Schelling J, Prado L, Norman D, Walsh T, Driedger C, Faust L, Westby L, Schroedel R, Lovellford P (2014) Are you ready for an eruption? Washington Department of Natural Resources. Accessed 24 Sept 2016 at: http://www.dnr.wa.gov/programs-and-services/geology/geologic-hazards/volcanoes-and-lahars#volcano-preparedness-posters
  78. Servicio Geológico Colombiano (2015) Mapa de amenaza volcánica del Nevado del Ruiz. Escala 1:120,000 (http://www2.sgc.gov.co/Manizales/Imagenes/Mapas-de-Amenaza/VNR/v3_img/Mapa_de_Amenaza_v3-2015-50.aspx)
  79. Severtson D, Myers J (2013) The influence of uncertain map features on risk beliefs and perceived ambiguity for maps of modeled cancer risk from air pollution. Risk Anal 33:818–837. doi: 10.1111/j.1539-6924.2012.01893.xCrossRefGoogle Scholar
  80. Severtson D, Vatovec C (2012) The theory-based influence of map features on risk beliefs: self-reports of what is seen and understood for maps depicting an environmental health hazard. J Health Commun 17:836–856. doi: 10.1080/10810730.2011.650933CrossRefGoogle Scholar
  81. Sherman-Morris K, Antonelli KB, Williams CC (2015) Measuring the effectiveness of the graphical communication of hurricane storm surge threat. Weather Clim Soc 7:69–82. doi: 10.1175/WCAS-D-13-00073.1CrossRefGoogle Scholar
  82. Spiegelhalter D, Pearson M, Short I (2011) Visualizing uncertainty about the future. Science 333:1393–1400. doi: 10.1126/science.1191181CrossRefGoogle Scholar
  83. Strathie, Netto, Walker GH, Pender (2015) How presentation format affects the interpretation of probabilistic flood risk information. J Flood Risk Manage. doi: 10.1111/jfr3.12152CrossRefGoogle Scholar
  84. Sword-Daniels VL, Wilson TM, Sargeant S, Rossetto T, Twigg J, Johnston DM, Loughlin SC, Cole PD (2014) Consequences of long-term volcanic activity for essential services in Montserrat: challenges, adaptations and resilience. Geol Soc Spec Publ 39:471–488. doi: 10.1144/M39.26CrossRefGoogle Scholar
  85. Thompson MA, Lindsay JM, Gaillard J (2015) The influence of probabilistic volcanic hazard map properties on hazard communication. J Appl Volcanol. doi: 10.1186/s13617-015-0023-0CrossRefGoogle Scholar
  86. Tsukuda E, Eichelberger J et al (2012) The G-EVER1 accord. G-EVER consortium. Retrieved from http://g-ever.org/en/accord/index.html
  87. Tufte ER (1997) Visual explanations: images and quantities, evidence and narrative. Graphics Press, Chesire, CT, p 156Google Scholar
  88. Voight B (1990) The 1985 Nevado del Ruiz volcano catastrophe: anatomy and retrospection. J Volcanol Geoth Res 44:349–386. doi: 10.1016/0377-0273(90)90027-DCrossRefGoogle Scholar
  89. Wolfe JM, Horowitz TS (2004) What attributes guide the deployment of visual attention and how do they do it? Nat Rev Neurosci 5:495–501CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access   This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.School of EnvironmentUniversity of AucklandAucklandNew Zealand
  2. 2.GNS ScienceLower HuttNew Zealand

Personalised recommendations