pp 1-33 | Cite as

Aptamer-Modified Nanoparticles in Medical Applications

  • Alina Eilers
  • Sandra Witt
  • Johanna WalterEmail author
Part of the Advances in Biochemical Engineering/Biotechnology book series


Since aptamers have been selected against a broad range of target structures of medical interest and nanoparticles are available with diverse properties, aptamer-modified nanoparticles can be used in various diagnostic and therapeutic applications. While the aptamer is responsible for specificity and affinity of the conjugate, the nanoparticles’ function varies from signal generation in diagnostic approaches to drug loading in drug delivery systems. Within this chapter different medical applications of aptamer-modified nanoparticles will be summarized and underlying principles will be described.

Graphical Abstract


Aptamer Biosensor Diagnostics Drug delivery Nanoparticle Therapy 



This work was funded by the Ministry of Science and Culture of Lower Saxony (MWK Niedersachsen).


  1. 1.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822Google Scholar
  2. 2.
    Wu X, Chen J, Wu M, Zhao JX (2015) Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics 5(4):322–344Google Scholar
  3. 3.
    Wang AZ et al (2008) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3(9):1311–1315Google Scholar
  4. 4.
    Chen A, Yang S (2015) Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 71:230–242Google Scholar
  5. 5.
    Ferreira CDA, De Barros ALB (2013) Aptamer functionalized nanoparticles for cancer targeting. J Mol Pharm Org Process Res 01(02):1–2Google Scholar
  6. 6.
    Modrejewski J et al (2016) Aptamer-modified polymer nanoparticles for targeted drug delivery. BioNanoMaterials 17(1–2):43–51Google Scholar
  7. 7.
    Luo YL, Shiao YS, Huang YF (2011) Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano 5(10):7796–7804Google Scholar
  8. 8.
    Zhu Z et al (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130:10856–10857Google Scholar
  9. 9.
    Min K et al (2011) Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (−) prostate cancers. Biomaterials 32(8):2124–2132Google Scholar
  10. 10.
    Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9(7):537–550Google Scholar
  11. 11.
    Patel DJ et al (1997) Structure, recognition and adaptive binding in RNA aptamer complexes. J Mol Biol 272(5):645–664Google Scholar
  12. 12.
    Urmann K, Modrejewski J, Scheper T, Walter J-G (2017) Aptamer-modified nanomaterials: principles and applications. BioNanoMaterials 18(1–2):1–17Google Scholar
  13. 13.
    Walter JG, Kökpinar Ö, Friehs K, Stahl F, Scheper T (2008) Systematic investigation of optimal aptamer immobilization for protein-microarray applications. Anal Chem 80(19):7372–7378Google Scholar
  14. 14.
    Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR, Banaszak Holl MM (2007) The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 14(1):107–115Google Scholar
  15. 15.
    Vorobyeva M, Vorobjev P, Venyaminova A (2016) Multivalent aptamers: versatile tools for diagnostic and therapeutic applications. Molecules 21(12):1613Google Scholar
  16. 16.
    Li H et al (2015) Multifunctional aptamer-silver conjugates as theragnostic agents for specific cancer cell therapy and fluorescence-enhanced cell imaging. Anal Chem 87(7):3736–3745Google Scholar
  17. 17.
    Stephanopoulos N, Tong GJ, Hsiao SC, Francis MB (2010) Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano 4(10):6014–6020Google Scholar
  18. 18.
    Hsu CL, Chang HT, Chen CT, Wei SC, Shiang YC, Huang CC (2011) Highly efficient control of thrombin activity by multivalent nanoparticles. Chem Eur J 17(39):10994–11000Google Scholar
  19. 19.
    Huang SS, Wei SC, Chang HT, Lin HJ, Huang CC (2016) Gold nanoparticles modified with self-assembled hybrid monolayer of triblock aptamers as a photoreversible anticoagulant. J Control Release 221:9–17Google Scholar
  20. 20.
    Zhang G, Zhu C, Huang Y, Yan J, Chen A (2018) A lateral flow strip based aptasensor for detection of Ochratoxin a in corn samples. Molecules 23(2):1–12Google Scholar
  21. 21.
    Wang P et al (2016) Aptamer-wrapped gold nanoparticles for the colorimetric detection of omethoate. Sci China Chem 59(2):237–242Google Scholar
  22. 22.
    Mohamad A, Teo H, Keasberry NA, Ahmed MU (2019) Recent developments in colorimetric immunoassays using nanozymes and plasmonic nanoparticles. Crit Rev Biotechnol 39(1):50–66Google Scholar
  23. 23.
    Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650Google Scholar
  24. 24.
    Cheng N et al (2018) Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosens Bioelectron 117:75–83Google Scholar
  25. 25.
    Dhiman A, Kalra P, Bansal V, Bruno JG, Sharma TK (2017) Aptamer-based point-of-care diagnostic platforms. Sensors Actuators B Chem 246:535–553Google Scholar
  26. 26.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75Google Scholar
  27. 27.
    Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779Google Scholar
  28. 28.
    Walter JG, Petersen S, Stahl F, Scheper T, Barcikowski S (2010) Laser ablation-based one-step generation and bio-functionalization of gold nanoparticles conjugated with aptamers. J Nanobiotechnol 8(1):21Google Scholar
  29. 29.
    Dubois LH, Nuzzo RG (1992) Synthesis, structure, and properties of model organic surfacesGoogle Scholar
  30. 30.
    Citartan M, Ch’ng ES, Rozhdestvensky TS, Tang TH (2016) Aptamers as the “capturing” agents in aptamer-based capture assays. Microchem J 128:187–197Google Scholar
  31. 31.
    Liu S, Han MY (2010) Silica-coated metal nanoparticles. Chem Asian J 5(1):36–45Google Scholar
  32. 32.
    Wu Z, Liang J, Ji X, Yang W (2011) Preparation of uniform au@SiO2 particles by direct silica coating on citrate-capped au nanoparticles. Colloids Surf A Physicochem Eng Asp 392(1):220–224Google Scholar
  33. 33.
    Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782Google Scholar
  34. 34.
    Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci 101(39):14036–14039Google Scholar
  35. 35.
    Koczula KM, Gallotta A (2016) Lateral flow assays. Essays Biochem 60(1):111–120Google Scholar
  36. 36.
    Vaitukaitis JL, Braunstein GD, Ross GT (1972) A radioimmunoassay which specifically measures human chorionic gonadotropin in the presence of human luteinizing hormone. Am J Obstet Gynecol 113(6):751–758Google Scholar
  37. 37.
    Daviaud J et al (1993) Reliability and feasibility of pregnancy home-use tests: laboratory validation and diagnostic evaluation by 638 volunteers. Clin Chem 39(1):53–59Google Scholar
  38. 38.
    Schüling T, Eilers A, Scheper T, Walter J (2018) Aptamer-based lateral flow assays. AIMS Bioeng 5(2):78–102Google Scholar
  39. 39.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609Google Scholar
  40. 40.
    Li X, Jiang L, Zhan Q, Qian J, He S (2009) Localized surface plasmon resonance (LSPR) of polyelectrolyte-functionalized gold-nanoparticles for bio-sensing. Colloids Surf A Physicochem Eng Asp 332:172–179Google Scholar
  41. 41.
    Kumar S, Gandhi KS, Kumar R (2007) Modeling of formation of gold nanoparticles by citrate method. Ind Eng Chem Res 46(10):3128–3136Google Scholar
  42. 42.
    Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM (2009) LSPR-based nanobiosensors. Nano Today 4(3):244–251Google Scholar
  43. 43.
    Chegel V et al (2012) Gold nanoparticles aggregation: drastic effect of cooperative functionalities in a single molecular conjugate. J Phys Chem C 116:2683–2690Google Scholar
  44. 44.
    Xia F et al (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci U S A 107(24):10837–10841Google Scholar
  45. 45.
    Frohnmeyer E et al (2019) Aptamer lateral flow assays for rapid and sensitive detection of cholera toxin. Analyst 144:1840Google Scholar
  46. 46.
    Liu J, Zeng J, Tian Y, Zhou N (2018) An aptamer and functionalized nanoparticle-based strip biosensor for on-site detection of kanamycin in food samples. Analyst 143:182Google Scholar
  47. 47.
    Wu S, Liu L, Duan N, Li Q, Zhou Y, Wang Z (2018) Aptamer-based lateral flow test strip for rapid detection of zearalenone in corn samples. J Agric Food Chem 66(8):1949–1954Google Scholar
  48. 48.
    Zhu Q et al (2017) Colorimetric detection of cholic acid based on an aptamer adsorbed gold nanoprobe. RSC Adv 7(31):19250–19256Google Scholar
  49. 49.
    Liu J, Bai W, Niu S, Zhu C, Yang S, Chen A (2014) Highly sensitive colorimetric detection of 17b-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles. Sci Rep 4:7571Google Scholar
  50. 50.
    Rafati A, Zarrabi A, Abediankenari S, Aarabi M, Gill P (2018) Sensitive colorimetric assay using insulin g-quadruplex aptamer arrays on DNA nanotubes coupled with magnetic nanoparticles. R Soc Open Sci 5(3)Google Scholar
  51. 51.
    Chávez JL, Hagen JA, Kelley-Loughnane N (2017) Fast and selective plasmonic serotonin detection with aptamer-gold nanoparticle conjugates. Sensors (Switzerland) 17(4)Google Scholar
  52. 52.
    Kang KA, Wang J, Jasinski JB, Achilefu S (2011) Fluorescence manipulation by gold nanoparticles: from complete quenching to extensive enhancement. J Nanobiotechnol 9:1–13Google Scholar
  53. 53.
    Wang RE, Zhang Y, Cai J, Cai W, Gao T (2011) Aptamer-based fluorescent biosensors. Curr Med Chem 18(27):4175–4184Google Scholar
  54. 54.
    Musumeci D et al (2017) Fluorescence sensing using DNA aptamers in cancer research and clinical diagnostics. Cancers (Basel) 9(12):174Google Scholar
  55. 55.
    Zhang C-Y, Johnson LW (2009) Single quantum-dot-based aptameric nanosensor for cocaine. Anal Chem 81(8):3051–3055Google Scholar
  56. 56.
    Rezaei Z, Ranjbar B (2017) Ultra-sensitive, rapid gold nanoparticle-quantum dot plexcitonic self-assembled aptamer-based nanobiosensor for the detection of human cardiac troponin I. Eng Life Sci 17(2):165–174Google Scholar
  57. 57.
    Nanotech O et al (2009) Aptamer-based detection of epithelial tumor marker mucin 1 with quantum dot-based fluorescence readout. Biochem Biophys Res Commun 57(2):6130–6139Google Scholar
  58. 58.
    Zhu D et al (2015) Silver nanoparticles-enhanced time-resolved fluorescence sensor for VEGF 165 based on Mn-doped ZnS quantum dots. Biosens Bioelectron 74:1053–1060Google Scholar
  59. 59.
    Jiang H, Ling K, Tao X, Zhang Q (2015) Theophylline detection in serum using a self-assembling RNA aptamer-based gold nanoparticle sensor. Biosens Bioelectron 70:299–303Google Scholar
  60. 60.
    Pang Y, Rong Z, Wang J, Xiao R, Wang S (2015) A fluorescent aptasensor for H5N1 influenza virus detection based-on the core–shell nanoparticles metal-enhanced fluorescence (MEF). Biosens Bioelectron 66:527–532Google Scholar
  61. 61.
    Kim T, Lee C-H, Joo S-W, Lee K (2008) Kinetics of gold nanoparticle aggregation: experiments and modeling. J Colloid Interface Sci 318:238–243Google Scholar
  62. 62.
    Mao J, Xu M, Ji W, Zhang M (2018) Absorbance enhancement of aptamers/GNP enables sensitive protein detection in rat brains. Chem Commun 54(10):1193–1196Google Scholar
  63. 63.
    Panczyk T, Konczak L, Zapotoczny S, Szabelski P, Nowakowska M (2015) Molecular dynamics simulations of proton transverse relaxation times in suspensions of magnetic nanoparticles. J Colloid Interface Sci 437:187–196Google Scholar
  64. 64.
    Bamrungsap S, Shukoor MI, Chen T, Sefah K, Tan W (2011) Detection of lysozyme magnetic relaxation switches based on aptamer-functionalized superparamagnetic nanoparticles. Anal Chem 83(20):7795–7799Google Scholar
  65. 65.
    Wei B, Mao K, Liu N, Zhang M, Yang Z (2018) Graphene nanocomposites modified electrochemical aptamer sensor for rapid and highly sensitive detection of prostate specific antigen. Biosens Bioelectron 121:41–46Google Scholar
  66. 66.
    Eissa S, Zourob M (2017) Aptamer-based label-free electrochemical biosensor array for the detection of total and glycated hemoglobin in human whole blood. Sci Rep 7(1):1016Google Scholar
  67. 67.
    Selvolini G et al (2018) DNA-based sensor for the detection of an organophosphorus pesticide: profenofos. Sensors 18(7):2035Google Scholar
  68. 68.
    Mir TA, Yoon JH, Gurudatt NG, Won MS, Shim YB (2015) Ultrasensitive cytosensing based on an aptamer modified nanobiosensor with a bioconjugate: detection of human non-small-cell lung cancer cells. Biosens Bioelectron 74:594–600Google Scholar
  69. 69.
    Zhu Y, Chandra P, Shim YB (2013) Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine-Au nanoparticle-aptamer bioconjugate. Anal Chem 85(2):1058–1064Google Scholar
  70. 70.
    Huang YF, Lin YW, Lin ZH, Chang HT (2009) Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J Nanopart Res 11(4):775–783Google Scholar
  71. 71.
    Wu L et al (2016) A paper-based electrochemiluminescence electrode as an aptamer-based cytosensor using PtNi@carbon dots as nanolabels for detection of cancer cells and for in-situ screening of anticancer drugs. Microchim Acta 183(6):1873–1880Google Scholar
  72. 72.
    Zhang HR, Xia XH, Xu JJ, Chen HY (2012) Sensitive cancer cell detection based on Au nanoparticles enhanced electrochemiluminescence of CdS nanocrystal film supplemented by magnetic separation. Electrochem Commun 25(1):112–115Google Scholar
  73. 73.
    Tan J et al (2016) Aptamer-functionalized fluorescent silica nanoparticles for highly sensitive detection of leukemia cells. Nanoscale Res Lett 11(1)Google Scholar
  74. 74.
    Yu M et al (2017) Dual-recognition Förster resonance energy transfer based platform for one-step sensitive detection of pathogenic bacteria using fluorescent vancomycin-gold nanoclusters and aptamer-gold nanoparticles. Anal Chem 89(7):4085–4090Google Scholar
  75. 75.
    Wang J et al (2015) Magnetically assisted surface-enhanced Raman spectroscopy for the detection of Staphylococcus aureus based on aptamer recognition. ACS Appl Mater Interfaces 7(37):20919–20929Google Scholar
  76. 76.
    Pathania P, Sharma A, Kumar B, Rishi P, Raman Suri C (2017) Selective identification of specific aptamers for the detection of non-typhoidal salmonellosis in an apta-impedimetric sensing format. Microchim Acta 184(5):1499–1508Google Scholar
  77. 77.
    Jo H, Her J, Ban C (2015) Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer. Biosens Bioelectron 71:129–136Google Scholar
  78. 78.
    Dai P-P, Li J-Y, Yu T, Xu J-J, Chen H-Y (2015) Nanocrystal-based electrochemiluminescence sensor for cell detection with Au nanoparticles and isothermal circular double-assisted signal amplification. Talanta 141:97–102Google Scholar
  79. 79.
    Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug. ACS Nano 3(1):16–20Google Scholar
  80. 80.
    Mu C et al (2013) Solubilization of flurbiprofen into aptamer-modified PEG-PLA micelles for targeted delivery to brain-derived endothelial cells in vitro. J Microencapsul 30(7):701–708Google Scholar
  81. 81.
    Farokhzad OC et al (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci 103(16):6315–6320Google Scholar
  82. 82.
    Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci 105(45):17356–17361Google Scholar
  83. 83.
    Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294Google Scholar
  84. 84.
    Zhang L et al (2007) Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem 2(9):1268–1271Google Scholar
  85. 85.
    Zhou J, Rossi JJ (2014) Cell-type-specific, aptamer-functionalized agents for targeted disease therapy. Mol Ther Nucleic Acids 3:e169Google Scholar
  86. 86.
    Taghdisi SM et al (2016) Double targeting, controlled release and reversible delivery of daunorubicin to cancer cells by polyvalent aptamers-modified gold nanoparticles. Mater Sci Eng C 61:753–761Google Scholar
  87. 87.
    Pattni BS, Chupin VV, Torchilin VP (2015) New developments in liposomal drug delivery. Chem Rev 115(19):10938–10966Google Scholar
  88. 88.
    Bangham AD, De Gier J, Greville GD (1967) Osmotic properties and water permeability of phospholipid liquid crystals. Chem Phys Lipids 1(3):225–246Google Scholar
  89. 89.
    Deamer DW (1978) Preparation and properties of ether-injection liposomes. Ann N Y Acad Sci 308(1):250–258Google Scholar
  90. 90.
    Jahn A, Vreeland WN, Gaitan M, Locascio LE (2004) Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc 126(9):2674–2675Google Scholar
  91. 91.
    Kang H, O’Donoghue MB, Liu H, Tan W (2010) A liposome-based nanostructure for aptamer directed delivery. Chem Commun 46(2):249–251Google Scholar
  92. 92.
    Li L et al (2014) Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials 35(12):3840–3850Google Scholar
  93. 93.
    Barenholz Y (2012) Doxil® – the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134Google Scholar
  94. 94.
    Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36(7):887–913Google Scholar
  95. 95.
    Gao H et al (2012) Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials 33(20):5115–5123Google Scholar
  96. 96.
    Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates. Cancer Res 64(21):7668–7672Google Scholar
  97. 97.
    Kolishetti N et al (2010) Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci 107(42):17939–17944Google Scholar
  98. 98.
    Tao W et al (2016) Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects. Theranostics 6(4):470–484Google Scholar
  99. 99.
    Seleci M, Ag Seleci D, Joncyzk R, Stahl F, Blume C, Scheper T (2016) Smart multifunctional nanoparticles in nanomedicine. BioNanoMaterials 17(1–2):33–41Google Scholar
  100. 100.
    Aravind A et al (2012) Aptamer-labeled PLGA nanoparticles for targeting cancer cells. Cancer Nanotechnol 3(1–6):1–12Google Scholar
  101. 101.
    Yu C et al (2011) Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS One 6(9):1–8Google Scholar
  102. 102.
    Zhao N, Bagaria HG, Wong MS, Zu Y (2011) A nanocomplex that is both tumor cell-selective and cancer gene-specific for anaplastic large cell lymphoma. J Nanobiotechnol 9:1–12Google Scholar
  103. 103.
    He X, Zhao Y, He D, Wang K, Xu F, Tang J (2012) ATP-responsive controlled release system using aptamer-functionalized mesoporous silica nanoparticles. Langmuir 28(35):12909–12915Google Scholar
  104. 104.
    Le Li L, Yin Q, Cheng J, Lu Y (2012) Polyvalent mesoporous silica nanoparticle-aptamer bioconjugates target breast cancer cells. Adv Healthc Mater 1(5):567–572Google Scholar
  105. 105.
    Zhu CL, Lu CH, Song XY, Yang HH, Wang XR (2011) Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. J Am Chem Soc 133(5):1278–1281Google Scholar
  106. 106.
    Chen H, Tian J, Liu D, He W, Guo Z (2017) Dual aptamer modified dendrigraft poly-l-lysine nanoparticles for overcoming multi-drug resistance through mitochondrial targeting. J Mater Chem B 5(5):972–979Google Scholar
  107. 107.
    Cohen BA, Bergkvist M (2013) Targeted in vitro photodynamic therapy via aptamer-labeled, porphyrin-loaded virus capsids. J Photochem Photobiol B Biol 121:67–74Google Scholar
  108. 108.
    Farokhzad OC, Jon S, Khademhosseini A, Tran TT, Lavan DA, Langer R (2004) Advances in brief nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Synthesis (Stuttg), pp 7668–7672Google Scholar
  109. 109.
    Xie X et al (2016) EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci 83:28–35Google Scholar
  110. 110.
    Wang J et al (2012) Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 6(6):5070–5077Google Scholar
  111. 111.
    Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Hamblin MR (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32(1):41–52Google Scholar
  112. 112.
    Agostinis P, Berg K, Cengel K et al (2011) Photodynamic therapy of cancer: an update. Ca Cancer J Clin 61(4):250–281Google Scholar
  113. 113.
    Sinha N, Member S, Yeow JT (2005) Carbon nanotubes for biomedical applications (carbon nanostructures). IEEE Trans Nanobioscience 4(2):180–195Google Scholar
  114. 114.
    Nair BG, Nagaoka Y, Morimoto H, Yoshida Y, Maekawa T, Kumar DS (2010) Aptamer conjugated magnetic nanoparticles as nanosurgeons. Nanotechnology 21(45)Google Scholar
  115. 115.
    Weinstein JS et al (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 30(1):15–35Google Scholar
  116. 116.
    Mirau PA, Smith JE, Chávezchávez JL, Hagen JA, Kelley-Loughnane N, Naik R (2018) Structured DNA aptamer interactions with gold nanoparticles. Langmuir 34:18Google Scholar
  117. 117.
    Wang R, Billone PS, Mullett WM (2013) Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J Nanomater 2013Google Scholar
  118. 118.
    Bagalkot V et al (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070Google Scholar
  119. 119.
    Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S (2011) Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7(15):2241–2249Google Scholar
  120. 120.
    Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer – gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4(7):3689–3696Google Scholar
  121. 121.
    Chen T et al (2011) Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging. ACS Nano 5(10):7866–7873Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institut für Technische ChemieHannoverGermany

Personalised recommendations