Challenges and Adaptations of Life in Alkaline Habitats

  • Gashaw MamoEmail author
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 172)


A vast array of organisms is known thriving in high pH environments. The biotechnological, medical, and environmental importance of this remarkable group of organisms has attracted a great deal of interest among researchers and industrialists. One of the most intriguing phenomena of alkaliphiles that engrossed researchers’ attention is their adaptation to high pH and ability to thrive in the “extreme” condition which is often lethal to other organisms. Studies made in this line revealed that alkaliphiles deployed a range of adaptive strategies to overcome the various challenges of life in high pH environments. This chapter highlights some of the challenges and the most important structural and functional adaptations that alkaliphiles evolved to circumvent the hurdles and flourish in alkaline habitats. The fascinating alkaliphiles’ pH homeostasis that effectively maintains a lower cytoplasmic pH than its extracellular environment and the remarkable bioenergetics that produce ATP much faster than non-alkaliphiles systems are reviewed in detail. Moreover, the adaptive mechanisms that alkaliphiles employ to keep the structural and functional integrity of their biomolecules at elevated pH are assessed.

It is undeniable that our understanding of alkaliphiles adaptation mechanisms to high pH is expanding with time. However, considering that little is known so far about the adaptation of life in alkaline milieu, it seems that this is just the beginning. Probably, there is a lot more waiting for discovery, and some of these issues are raised in the chapter, which not only summarizes the relevant literature but also forwards new insights regarding high pH adaptation. Moreover, an effort is made to include the largely neglected eukaryotic organisms’ adaptation to high pH habitats.

Graphical Abstract


Alkaliphiles Alkaliphiles adaptation Antiporter ATP synthase Bioenergetic Cardiolipin Cytochrome Eukaryotes Extremophiles pH homeostasis Secondary cell wall S-layer Squalene Unsaturated fatty acids 



Adenosine diphosphate


Adenosine triphosphate


Bis(monoacylglycero) phosphate


Cation/proton antiporters


Glycoside hydrolase




Multiple resistance and pH


Mass spectrometry




Nuclear magnetic resonance


Oxidative phosphorylation


L-isoaspartyl protein carboxyl methyltransferase




Inorganic phosphate


Isoelectric points


Proton motive force


Secondary cell wall polymers


Cell surface layer


S-layer homology


Surface-layer protein A


Sodium motive force


Transporter classification database


Trans-membrane helix-4


Trans-membrane helix-5


Teichuronic acid




Urea transporter A


  1. 1.
    Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:3191–3200Google Scholar
  2. 2.
    Sorokin DY, Berben T, Melton EM, Overmars L, Vavourakis CD, Muyzer G (2014) Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18:791–809PubMedPubMedCentralGoogle Scholar
  3. 3.
    Borsodi AK, Korponai K, Schumann P, Spröer C, Felföldi T, Márialigeti K, Szili-Kovács T, Tóth E (2017) Nitrincola alkalilacustris sp. nov. and Nitrincola schmidtii sp. nov., alkaliphilic bacteria isolated from soda pans, and emended description of the genus Nitrincola. Int J Syst Evol Microbiol 67:5159–5164PubMedGoogle Scholar
  4. 4.
    Olivera N, Siňeriz F, Breccia JD (2005) Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from Atriplex lampa rhizosphere, Patagonia, Argentina. Int J Syst Evol Microbiol 55:443–447PubMedGoogle Scholar
  5. 5.
    Szabo A, Korponai K, erepesi Cs K, Somogyi B, Vörös L, Bartha D et al (2017) Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 21:639–649PubMedGoogle Scholar
  6. 6.
    Zhang G, Yang Y, Wang S, Sun Z, Jiao K (2015) Alkalimicrobium pacificum gen. nov., sp. nov., a marine bacterium in the family Rhodobacteraceae. Int J Syst Evol Microbiol 65:2453–2458PubMedGoogle Scholar
  7. 7.
    Zhang YG, Lu XH, Ding YB, Wang SJ, Zhou XK, Wang HF et al (2016) Lipingzhangella halophila gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 66:4071–4076PubMedGoogle Scholar
  8. 8.
    Ohkuma M, Shimizu H, Thongaram T, Kosono S, Moriya K, Trakulnaleam S et al (2003) An alkaliphilic and xylanolytic Paenibacillus species isolated from the gut of a soil-feeding termite. Microbes Environ 18:145–151Google Scholar
  9. 9.
    Donovan SE, Purdy KJ, Kane MD, Eggleton P (2004) Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl Environ Microbiol 70:3884–3892PubMedPubMedCentralGoogle Scholar
  10. 10.
    Liang X, Sun C, Chen B, Du K, Yu T, Luang-In V, Lu X, Shao Y (2018) Insect symbionts as valuable grist for the biotechnological mill: an alkaliphilic silkworm gut bacterium for efficient lactic acid production. Appl Microbiol Biotechnol 102:4951–4962PubMedGoogle Scholar
  11. 11.
    Chavagnac V, Monnin C, Ceuleneer G, Boulart C, Hoareau G (2013) Characterization of hyperalkaline fluids produced by low-temperature serpentinization of mantleperidotites in the Oman and Ligurian ophiolites. Geochem Geophys Geosyst 14:2496–2522Google Scholar
  12. 12.
    Ben Aissa F, Postec A, Erauso G, Payri C, Pelletier B, Hamdi M, Fardeau M-L, Ollivier B (2015) Characterization of Alkaliphilus hydrothermalis sp. nov., a novel alkaliphilic anaerobic bacterium, isolated from a carbonaceous chimney of the Prony hydrothermal field, New Caledonia. Extremophiles 19:183–188PubMedGoogle Scholar
  13. 13.
    Mei N, Postec A, Erauso G, Joseph M, Pelletier B, Payri C et al (2016) Serpentinicella alkaliphila gen. nov., sp. nov., a novel alkaliphilic anaerobic bacterium isolated from the serpentinite-hosted Prony hydrothermal field, New Caledonia. Int J Syst Evol Microbiol 66:4464–4470PubMedGoogle Scholar
  14. 14.
    Agnew MD, Koval SF, Jarrell KF (1995) Isolation and characterisation of novel alkaliphiles from bauxite-processing waste and description of Bacillus vedderi sp. nov. Syst Appl Microbiol 18:221–230Google Scholar
  15. 15.
    Gee JM, Lund BM, Metcalf G, Peel JL (1980) Properties of a new group of alkalophilic bacteria. J Gen Microbiol 117:9–17Google Scholar
  16. 16.
    Kisková J, Stramová Z, Javorský P, Sedláková-Kaduková J, Pristaš P (2019) Analysis of the bacterial community from high alkaline (pH > 13) drainage water at a brown mud disposal site near Žiar nad Hronom (Banská Bystrica region, Slovakia) using 454 pyrosequencing. Folia Microbiol 64:83–90Google Scholar
  17. 17.
    Mueller RH, Jorks S, Kleinsteuber S, Babel W (1998) Degradation of various chlorophenols under alkaline conditions by Gram-negative bacteria closely related to Ochrobactrum anthropi. J Microbiol 38:269–281Google Scholar
  18. 18.
    Takahara Y, Tanabe O (1962) Studies on the reduction of indigo in industrial fermentation vat (XIX). Taxonomic characterisation of strain No. S-8. J Ferment Technol 40:77–80Google Scholar
  19. 19.
    Kevbrin VV (2019) Isolation and cultivation of alkaliphiles. Adv Biochem Eng Biotechnol.
  20. 20.
    Krulwich TA, Hicks DB, Swartz TH, Ito M (2007) Bioenergetic adaptations that support alkaliphily. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, pp 311–329Google Scholar
  21. 21.
    Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88PubMedPubMedCentralGoogle Scholar
  22. 22.
    Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55:1–317PubMedGoogle Scholar
  23. 23.
    Greenwood JE, Tan JL, Ming JCT, Abell AD (2016) Alkalis and skin. J Burn Care Res 37:135–141PubMedGoogle Scholar
  24. 24.
    Hirata Y, Ito H, Furuta T, Ikuta K, Sakudo A (2010) Degradation and destabilization of abnormal prion protein using alkaline detergents and proteases. Int J Mol Med 25:267–270PubMedGoogle Scholar
  25. 25.
    Shooter KV (1976) The kinetics of the alkaline hydrolysis of phosphotriesters in DNA. Chem Biol Interact 13:151–163PubMedGoogle Scholar
  26. 26.
    Hunt KA, Flynn JM, Naranjo B, Shikhare ID, Gralnick JA (2010) Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J Bacteriol 192:3345–3351PubMedPubMedCentralGoogle Scholar
  27. 27.
    Hicks DB, Liu J, Fujisawa M, Krulwich TA (2010) F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochim Biophys Acta 1797:1362–1377PubMedPubMedCentralGoogle Scholar
  28. 28.
    Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148PubMedPubMedCentralGoogle Scholar
  29. 29.
    Chiego B, Silver H (1942) The effect of alkalis on the stability of keratins. J Invest Dermatol 5:95–103Google Scholar
  30. 30.
    Krachle RF, Krachler R, Stojanovic A, Wielander B, Herzig A (2009) Effects of pH on aquatic biodegradation. Biogeosci Discuss 6:491–514Google Scholar
  31. 31.
    Block SS (1991) Disinfection, sterilization, and preservation. Lea & Febiger, PhiladelphiaGoogle Scholar
  32. 32.
    GE Healthcare Bio-Sciences AB (2014) Use of sodium hydroxide for cleaning and sanitization of chromatography media and systems. Application note 18-1124-57 AIGoogle Scholar
  33. 33.
    Hobbs BC, Wilson GS (1942) The disinfectant activity of caustic soda. J Hyg 42:436–450PubMedGoogle Scholar
  34. 34.
    Lemire KA, Rodriguez YY, McIntosh MT (2016) Alkaline hydrolysis to remove potentially infectious viral RNA contaminants from DNA. Virol J 13:88. Scholar
  35. 35.
    Arnosti C, Bell C, Moorhead DL, Sinsabaugh RL, Steen AD, Stromberger M et al (2013) Extracellular enzymes in terrestrial, freshwater, and marine environments: perspectives on system variability and common research needs. Biogeochemistry 117:5–21Google Scholar
  36. 36.
    Bogino PC, Oliva MM, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14:15838–15859PubMedPubMedCentralGoogle Scholar
  37. 37.
    Castrec J, Soudant P, Payton L, Tran D, Miner P, Lambert C et al (2018) Bioactive extracellular compounds produced by the dinoflagellate Alexandrium minutum are highly detrimental for oysters. Aquat Toxicol 199:188–198PubMedGoogle Scholar
  38. 38.
    Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015PubMedPubMedCentralGoogle Scholar
  39. 39.
    Sebastian Engel S, Jensen PR, Fenical W (2002) Chemical ecology of marine microbial defense. J Chem Ecol 28:1971–1985PubMedGoogle Scholar
  40. 40.
    Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMedGoogle Scholar
  41. 41.
    Boros E, Kolpakova M (2018) A review of the defining chemical properties of soda lakes and pans: an assessment on a large geographic scale of Eurasian inland saline surface waters. PLoS One 13(8):e0202205. Scholar
  42. 42.
    Grant WD, Jones BE (2016) Bacteria, archaea and viruses of soda lakes. In: Schager LM (ed) Soda lakes of East Africa. Springer, Cham, pp 97–148Google Scholar
  43. 43.
    Finkelstein J (2009) Metalloproteins. Nature 460:813. Scholar
  44. 44.
    Garland PB (1977) Energy transduction and transmission in microbial systems. In: Haddock BA, Hamilton WA (eds) 27th symposium of the Society for General Microbiology. Microbial energetics. Cambridge University Press, Cambridge, pp 1–21Google Scholar
  45. 45.
    McLaggan D, Selwyn MJ, Dawson AP (1984) Dependence on Naþ of control of cytoplasmic pH in a facultative alkalophile. FEBS Lett 165:254–258Google Scholar
  46. 46.
    Cook GM, Russell JB, Reichert A, Wiegel J (1996) The intracellular pH of Clostridium paradoxum, an anaerobic, alkaliphilic, and thermophilic bacterium. Appl Environ Microbiol 62:4576–4579PubMedPubMedCentralGoogle Scholar
  47. 47.
    Guffanti AA, Hicks DB (1991) Molar growth yields and bioenergetic parameters of extremely alkaliphilic Bacillus species in batch cultures, and growth in a chemostat at pH 10.5. J Gen Microbiol 137:2375–2379PubMedGoogle Scholar
  48. 48.
    Sturr MG, Guffanti AA, Krulwich TA (1994) Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH. J Bacteriol 176:3111–3116PubMedPubMedCentralGoogle Scholar
  49. 49.
    Aono R, Ito M, Horikoshi K (1997) Measurement of cytoplasmic pH of the alkaliphile Bacillus lentus C-125 with a fluorescent pH probe. Microbiology 143:2531–2536Google Scholar
  50. 50.
    Olsson K, Keis S, Morgan HW, Dimroth P, Cook GM (2003) Bioenergetic properties of the thermoalkaliphilic Bacillus sp. strain TA2.A1. J Bacteriol 185:461–465PubMedPubMedCentralGoogle Scholar
  51. 51.
    Yumoto I (2002) Bioenergetics of alkaliphilic Bacillus spp. J Biosci Bioeng 93:342–353PubMedGoogle Scholar
  52. 52.
    Krulwich TA, Guffanti AA, Ito M (1999) Mechanisms by which bacterial cells respond to pH. Novartis Foundation Symposia, vol 221. Wiley, Chichester, pp 167–182Google Scholar
  53. 53.
    Krulwich TA, Ito M, Gilmour R, Hicks DB, Guffanti AA (1998) Energetics of alkaliphilic Bacillus species: physiology and molecules. Adv Microb Physiol 40:401–438PubMedGoogle Scholar
  54. 54.
    Krulwich TA, Liu J, Morino M, Fujisawa M, Ito M, Hicks DB (2011) Adaptive mechanisms of extreme alkaliphiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer, Tokyo, pp 119–139Google Scholar
  55. 55.
    Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330–343PubMedPubMedCentralGoogle Scholar
  56. 56.
    Paavilainen S, Helistö P, Korpela T (1994) Conversion of carbohydrates to organic acids by alkaliphilic bacilli. J Ferment Bioeng 78(3):217–222Google Scholar
  57. 57.
    Padan E, Gerchman Y, Rimon A, Rothman A, Dover N, Carmel-Harel O (1999) The molecular mechanism of regulation of the NhaA Naþ/Hþ antiporter of Escherichia coli, a key transporter in the adaptation to Naþ and Hþ. Novartis Foundation Symposia, vol 221. Wiley, Chichester, pp 183–196Google Scholar
  58. 58.
    Padan E, Venturi M, Gerchman Y, Dover N (2001) Na+/H+ antiporters. Biochim Biophys Acta 1505:144–157PubMedGoogle Scholar
  59. 59.
    Slonczewski JL, Rosen BP, Alger JR, Macnab RM (1981) pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate. Proc Natl Acad Sci U S A 78:6271–6275PubMedPubMedCentralGoogle Scholar
  60. 60.
    Hamamoto T, Hashimoto M, Hino M, Kitada M, Seto Y, Kudo T, Horikoshi K (1994) Characterization of a gene responsible for the Na+/H+ antiporter system of alkalophilic Bacillus species strain C-125. Mol Microbiol 14:939–946PubMedGoogle Scholar
  61. 61.
    Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G (2016) The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res 44:D372–D379PubMedGoogle Scholar
  62. 62.
    Krulwich TA, Hicks DB, Ito M (2009) Cation/proton antiporter complements of bacteria: why so large and diverse? Mol Microbiol 74:257–260PubMedPubMedCentralGoogle Scholar
  63. 63.
    Brett CL, Donowitz M, Rao R (2005) Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 288:C223–C239PubMedGoogle Scholar
  64. 64.
    Counillon L, Pouyssegur J (2000) The expanding family of eucaryotic Na+/H+ exchangers. J Biol Chem 275:1–4PubMedGoogle Scholar
  65. 65.
    Fliegel L (2005) The Na+/H+ exchanger isoform 1. Int J Biochem Cell Biol 37:33–37PubMedGoogle Scholar
  66. 66.
    Orlowski J, Grinstein S (2004) Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch 447:549–565PubMedGoogle Scholar
  67. 67.
    Ito M, Guffanti AA, Oudega B, Krulwich TA (1999) Mrp, a multigene, multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na+ and in pH homeostasis. J Bacteriol 181:2394–2402PubMedPubMedCentralGoogle Scholar
  68. 68.
    Fuster DG, Alexander RT (2014) Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch 466:61–76PubMedGoogle Scholar
  69. 69.
    Padan E, Landau M (2016) Sodium-proton (Na+/H+) antiporters: properties and roles in health and disease. Met Ions Life Sci 16:391–458PubMedGoogle Scholar
  70. 70.
    Harel-Bronstein M, Dibrov P, Olami Y, Pinner E, Schuldiner S, Padan E (1995) MH1, a second-site revertant of an Escherichia coli mutant lacking Na+/H+ antiporters (DnhaADnhaB), regains Na+ resistance and a capacity to excrete Na+ in a ΔμH+-independent fashion. J Biol Chem 270:3816–3822PubMedGoogle Scholar
  71. 71.
    Wei Y, Liu J, Ma Y, Krulwich TA (2007) Three putative cation/proton antiporters from the soda lake alkaliphile Alkalimonas amylolytica N10 complement an alkali-sensitive Escherichia coli mutant. Microbiology 153:2168–2179PubMedPubMedCentralGoogle Scholar
  72. 72.
    Krulwich TA, Ito M, Guffanti AA (2001) The Na+-dependence of alkaliphily in Bacillus. Biochim Biophys Acta 1501:158–168Google Scholar
  73. 73.
    Kitada M, Kosono S, Kudo T (2000) The Na+/H+ antiporter of alkaliphilic Bacillus sp. Extremophiles 4:253–258PubMedGoogle Scholar
  74. 74.
    Ran S, He Z, Liang J (2013) Survival of Enterococcus faecalis during alkaline stress: changes in morphology, ultrastructure, physiochemical properties of the cell wall and specific gene transcripts. Arch Oral Biol l58:1667–1676Google Scholar
  75. 75.
    Harold FM, Van Brunt J (1977) Circulation of H+ and K+ across the plasma membrane is not obligatory for bacterial growth. Science 197:372–373PubMedGoogle Scholar
  76. 76.
    Speelmans G, Poolman B, Abee T, Konings WN (1993) Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions. Proc Natl Acad Sci U S A 90:7975–7979PubMedPubMedCentralGoogle Scholar
  77. 77.
    Swartz TH, Ikewada S, Ishikawa O, Ito M, Krulwich TA (2005) The Mrp system: a giant among monovalent cation/proton antiporters? Extremophiles 9:345–354PubMedGoogle Scholar
  78. 78.
    Ito M, Morino M, Krulwich TA (2017) Mrp antiporters have important roles in diverse bacteria and archaea. Front Microbiol 8:2325. Scholar
  79. 79.
    Kajiyama Y, Otagiri M, Sekiguchi J, Kosono S, Kudo T (2007) Complex formation by the mrpABCDEFG gene products, which constitute a principal Na+/H+ antiporter in Bacillus subtilis. J Bacteriol 189:7511–7514PubMedPubMedCentralGoogle Scholar
  80. 80.
    Morino M, Natsui S, Swartz TH, Krulwich TA, Ito M (2008) Single gene deletions of mrpA to mrpG and mrpE point mutations affect activity of the Mrp Na+/H+ antiporter of alkaliphilic Bacillus and formation of hetero-oligomeric Mrp complexes. J Bacteriol 190:4162–4172PubMedPubMedCentralGoogle Scholar
  81. 81.
    Aono R, Ito M, Horikoshi K (1992) Instability of the protoplast membrane of facultative alkaliphilic Bacillus sp. C-125 at alkaline pH values below the pH optimum for growth. Biochem J 285:99–103PubMedPubMedCentralGoogle Scholar
  82. 82.
    Aono R, Ito M, Machida T (1999) Contribution of the cell wall component teichuronopeptide to pH homeostasis and alkaliphily in the alkaliphile Bacillus lentus C-125. J Bacteriol 181:6600–6606PubMedPubMedCentralGoogle Scholar
  83. 83.
    Aono R, Ogino H, Horikoshi K (1992) pH-dependent flagella formation by facultative alkaliphilic Bacillus sp. C-125. Biosci Biotechnol Biochem 56:48–53PubMedGoogle Scholar
  84. 84.
    Aono R, Ohtani M (1990) Loss of alkalophily in cell-wall-component-defective mutants derived from alkalophilic Bacillus C-125. Isolation and partial characterization of the mutants. Biochem J 266:933–936PubMedPubMedCentralGoogle Scholar
  85. 85.
    Gilmour r, Messner P, Guffanti AA, Kent R, Scheberl A, Kendrick N, Krulwich TA (2000) Two-dimensional gel electrophoresis analyses of pH-dependent protein expression in facultatively alkaliphilic Bacillus pseudofirmus OF4 lead to characterization of an S-layer protein with a role in alkaliphily. J Bacteriol 182:5969–5981PubMedPubMedCentralGoogle Scholar
  86. 86.
    Ito M, Hicks DB, Henkin TM, Guffanti AA, Powers B, Zvi L, Uematsu K, Krulwich TA (2004) MotPS is the stator-force generator for motility of alkaliphilic Bacillus and its homologue is a second functional Mot in Bacillus subtilis. Mol Microbiol 53:1035–1049PubMedGoogle Scholar
  87. 87.
    Terahara N, Kodera N, Uchihashi T, Ando T, Namba K, Minamino T (2017) Na+-induced structural transition of MotPS for stator assembly of the Bacillus flagellar motor. Sci Adv 3:eaao4119PubMedPubMedCentralGoogle Scholar
  88. 88.
    Fujinami S, Terahara N, Lee S, Ito M (2007) Na+ and flagella-dependent swimming of alkaliphilic Bacillus pseudofirmus OF4: a basis for poor motility at low pH and enhancement in viscous media in an “up-motile” variant. Arch Microbiol 187:239PubMedGoogle Scholar
  89. 89.
    Chahine M, Pilote S, Pouliot V, Takami H, Sato C (2004) Role of arginine residues on the S4 segment of the Bacillus halodurans Na+ channel in voltage-sensing. J Membr Biol 201:9–24PubMedGoogle Scholar
  90. 90.
    Koishi RXH, Ren D, Navarro B, Spiller BW, Shi Q, Clapham DE (2004) A superfamily of voltage-gated sodium channels in bacteria. J Biol Chem 279:9532–9538PubMedGoogle Scholar
  91. 91.
    Ito M, Xu H, Guffanti AA, Wei Y, Zvi L, Clapham DE, Krulwich TA (2004) The voltage-gated Na+ channel NavBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc Natl Acad Sci U S A 101:10566–10571PubMedPubMedCentralGoogle Scholar
  92. 92.
    Morino M, Suzuki T, Ito M, Krulwich TA (2014) Purification and functional reconstitution of a seven-subunit mrp-type Na+/H+ antiporter. J Bacteriol 196:28–35PubMedPubMedCentralGoogle Scholar
  93. 93.
    Fujinami S, Sato T, Trimmer JS, Spiller BW, Clapham DE, Krulwich TA et al (2007) The voltage-gated Na+ channel NaVBP co-localizes with methyl-accepting chemotaxis protein at cell poles of alkaliphilic Bacillus pseudofirmus OF4. Microbiology 153:4027–4038PubMedPubMedCentralGoogle Scholar
  94. 94.
    McMillan DGG, Keis S, Dimroth P, Gregory M, Cook GM (2007) A specific adaptation in the a-subunit of thermoalkaliphilic F1FO-ATP synthase enables ATP synthesis at high pH but not at neutral pH values. J Biol Chem 282:17395–17404Google Scholar
  95. 95.
    Fujisawa F, Fackelmayer OJ, Liu J, Krulwich TA, Hicks DB (2010) The ATP synthase a-subunit of extreme alkaliphiles is a distinct variant: mutations in the critical alkaliphile-specific residue Lys180 and other residues that support alkaliphile oxidative phosphorylation. J Biol Chem 285:32105–32115PubMedPubMedCentralGoogle Scholar
  96. 96.
    Cook GM, Keis S, Morgan HW, von Ballmoos C, Matthey U, Kaim G, Dimroth P (2003) Purification and biochemical characterization of the F1Fo-ATP synthase from thermoalkaliphilic Bacillus sp. strain TA2.A1. J Bacteriol 85:4442–4449Google Scholar
  97. 97.
    Dimroth P, Cook GM (2004) Bacterial Na+- or H+-coupled ATP synthases operating at low electrochemical potential. Adv Microb Physiol 49:175–218PubMedGoogle Scholar
  98. 98.
    Hicks DB, Krulwich TA (1990) Purification and reconstitution of the F1FO-ATP synthase from alkaliphilic Bacillus firmus OF4. Evidence that the enzyme translocates H+ but not Na+. J Biol Chem 265:20547–20554PubMedGoogle Scholar
  99. 99.
    Hoffmann A, Dimroth P (1990) The ATPase of Bacillus alcalophilus. Purification and properties of the enzyme. Eur J Biochem 194:423–430PubMedGoogle Scholar
  100. 100.
    Burne RA, Marquis RE (2000) Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett 193:1–6PubMedGoogle Scholar
  101. 101.
    Yokaryo H, Tokiwa Y (2014) Isolation of alkaliphilic bacteria for production of high optically pure L-(+)-lactic acid. J Gen Appl Microbiol 60:270–275PubMedGoogle Scholar
  102. 102.
    Wilks JC, Kitko RD, Cleeton SH, Lee GE, Ugwu CS, Jones BD, BonDurant SS, Slonczewski JL (2009) Acid and base stress and transcriptomic responses in Bacillus subtilis. Appl Environ Microbiol 75:981–990PubMedGoogle Scholar
  103. 103.
    Graham AF, Lund BM (1983) The effect of alkaline pH on growth and metabolic products of a motile, yellow-pigmented Streptococcus sp. J Gen Microbiol 129:2429–2435Google Scholar
  104. 104.
    Hirota K, Aino K, Yumoto I (2013) Amphibacillus iburiensis sp. nov., an alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 63:4303–4308PubMedGoogle Scholar
  105. 105.
    Horikoshi K (2006) Alkaliphiles. Kodansha, New YorkGoogle Scholar
  106. 106.
    Aono R, Ito M, Joblin KN, Horikoshi K (1995) A high cell wall negative charge is necessary for the growth of the alkaliphile Bacillus lentus C-125 at elevated pH. Microbiology 141:2955–2964Google Scholar
  107. 107.
    Hancock IC, Baddiley J (1985) Biosynthesis of the bacterial envelope polymers teichoic acid and teichuronic acid. In: Martonosi NA (ed) The enzymes of biological membranes, vol 2. 2nd edn. Plenum, New York, pp 279–307Google Scholar
  108. 108.
    Ward JB (1981) Teichoic and teichuronic acids: biosynthesis, assembly and location. Microbiol Rev 45:211–243PubMedPubMedCentralGoogle Scholar
  109. 109.
    Archibald AR, Baddiley J, Blumsom NL (1968) The teichoic acids. Adv Enzymol Relat Areas Mol Biol 30:223–253PubMedGoogle Scholar
  110. 110.
    Archibald AR, Hancock IC, Harwood CR (1993) Cell wall structure, synthesis and turnover. In: Sonenshein A, Hoch JA, Losick R (eds) Bacillus subtilis and other Gram-positive bacteria. American Society for Microbiology, Washington, pp 381–410Google Scholar
  111. 111.
    Araki Y, Ito E (1989) Linkage units in cell walls of Gram-positive bacteria. CRC Crit Rev Microbiol 17:121–135Google Scholar
  112. 112.
    Naumova IB, Shashkov AS (1997) Anionic polymers in cell walls of Gram-positive bacteria. Biochemistry 62:809–840PubMedGoogle Scholar
  113. 113.
    Aono R, Horikoshi K (1983) Chemical composition of cell walls of alkalophilic strains of Bacillus. J Gen Microbiol 129:1083–1087Google Scholar
  114. 114.
    Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750PubMedPubMedCentralGoogle Scholar
  115. 115.
    Koch AL (1986) The pH in the neighborhood of membranes generating a protonmotive force. J Theor Biol 120:73–84PubMedGoogle Scholar
  116. 116.
    Aono R (1985) Isolation and partial characterization of structural components of the walls of alkalophilic Bacillus strain C-125. J Gen Microbiol 131:105–111Google Scholar
  117. 117.
    Ito M, Aono R (2002) Decrease in cytoplasmic pH-homeostastatic activity of the alkaliphile Bacillus lentus C-125 by a cell wall defect. Biosci Biotechnol Biochem 66:218–220PubMedGoogle Scholar
  118. 118.
    Corsaro MM, Gambacorta A, Iadonisi A, Lanzetta R, Naldi T, Nicolaus B et al (2006) Structural determination of the O-chain polysaccharide from the lipopolysaccharide of the haloalkaliphilic Halomonas pantelleriensis bacterium. Eur J Org Chem 2006:1801–1808Google Scholar
  119. 119.
    Silipo A, Sturiale L, Garozzo D, de Castro C, Lanzetta R, Parrilli M et al (2004) Structure elucidation of the highly heterogeneous lipid A from the lipopolysaccharide of the Gram-negative extremophile bacterium Halomonas Magadiensis strain 21 M1. Eur J Org Chem 2004:2263–2271Google Scholar
  120. 120.
    Messner P, Schäffer C (2003) Prokaryotic glycoproteins. In: Herz W, Falk H, Kirby GW (eds) Progress in the chemistry of organic natural products, vol 85. Springer, Wien, pp 51–124Google Scholar
  121. 121.
    Sleytr UB, Sara M, Pum D, Schuster B, Messner P, Schäffer C (2002) Self-assembly protein systems: microbial slayers. In: Steinbuchel A, Fahnestock SR (eds) Biopolymers, polyamides and complex proteinaceous matrices I, vol 7. Wiley, Weinheim, pp 285–338Google Scholar
  122. 122.
    Schäffer C, Messner P (2005) The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. Microbiology 151:643–651PubMedGoogle Scholar
  123. 123.
    Fujinami S, Ito M (2018) The surface layer homology domain-containing proteins of alkaliphilic Bacillus pseudofirmus OF4 play an important role in alkaline adaptation via peptidoglycan synthesis. Front Microbiol 9:810. Scholar
  124. 124.
    Janto B, Ahmed A, Ito M, Liu J, Hicks DB, Pagni S et al (2011) The genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. Environ Microbiol 13:3289–3309PubMedPubMedCentralGoogle Scholar
  125. 125.
    Krulwich TA, Ito M (2013) Prokaryotic alkaliphiles. In: Rosenberg E (ed) The prokaryotes, 4th edn. Springer, Berlin, Heidelberg, pp 441–470Google Scholar
  126. 126.
    Sara M, Sleytr UB (2000) S-layer proteins: minireview. Microbiology 51:349–355Google Scholar
  127. 127.
    Yumoto I, Yamazaki K, Hishinuma M, Nodasaka Y, Suemori A, Nakajima K et al (2001) Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51:349–355PubMedGoogle Scholar
  128. 128.
    Clejan S, Krulwich TA, Mondrus KR, Seto-Young D (1986) Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J Bacteriol 168:334–340PubMedPubMedCentralGoogle Scholar
  129. 129.
    Bodnaruk PW, Golden DA (1996) Influence of pH and incubation temperature on fatty acid composition and virulence factors of Yersinia enterocolitica. Food Microbiol 13:17–22Google Scholar
  130. 130.
    Banciu H, Sorokin DY, Rijpstra WIC, Damste JSS, Galinski EA, Takaichi S et al (2005) Fatty acid, compatible solute and pigment composition of obligately chemolithoautotrophic alkaliphilic sulfur-oxidizing bacteria from soda lakes. FEMS Microbiol Lett 243:181–187PubMedGoogle Scholar
  131. 131.
    Dunkley EA, Guffanti AA, Clejan S, Krulwich TA (1991) Facultative alkaliphiles lack fatty acid desaturase activity and lose the ability to grow at near-neutral pH when supplemented with an unsaturated fatty acid. J Bacteriol 173:1331–1334PubMedPubMedCentralGoogle Scholar
  132. 132.
    Aono R, Kaneko H, Horikoshi K (1996) Alkaline growth pH-dependent increase of respiratory and NADH-oxidation activities of the facultatively alkaliphilic strain Bacillus lentus C-125. Biosci Biotechnol Biochem 60:1243–1247Google Scholar
  133. 133.
    Hicks DB, Plass RJ, Quirk PG (1991) Evidence for multiple terminal oxidases, including cytochrome d, in facultatively alkaliphilic Bacillus firmus OF4. J Bacteriol 173:5010–5016PubMedPubMedCentralGoogle Scholar
  134. 134.
    Nishihara M, Morii H, Koga Y (1982) Bis(monoacylglycero)phosphate in alkalophilic bacteria. J Biochem 92:1469–1479PubMedGoogle Scholar
  135. 135.
    Hauß T, Dante S, Dencher NA, Haines TH (2002) Squalane is in the midplane of the lipid bilayer: implications for its function as a proton permeability barrier. Biochim Biophys Acta 1556:149–154PubMedGoogle Scholar
  136. 136.
    Haines TH (2001) Do sterols reduce proton and sodium leaks through lipid bilayers? Prog Lipid Res 40:299–324PubMedGoogle Scholar
  137. 137.
    Yumoto I, Yamazaki K, Hishinuma M, Nodasaka Y, Suemori A, Nakajima K, Inoue N, Kawasaki K (2001) Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51:349–355PubMedGoogle Scholar
  138. 138.
    Gianotti A, Iucci L, Guerzoni ME, Lanciotti R (2009) Effect of acidic conditions on fatty acid composition and membrane fluidity of Escherichia coli strains isolated from Crescenza cheese. Ann Microbiol 59:603. Scholar
  139. 139.
    Loffeld B, Keweloh H (1996) Cis-trans isomerization fatty acids as possible control mechanism of membrane fluidity in Pseudomonas putida P8. Lipids 31:811–815PubMedGoogle Scholar
  140. 140.
    Okuyama H, Enari D, Shibahara A, Yamamoto K, Morita N (1996) Identification of activities that catalyze the cis-transisomerization of the double bond of a mono unsaturated fatty acid in Pseudomonas sp. strain E-3. Arch Microbiol 165:415–417PubMedGoogle Scholar
  141. 141.
    Yuk YG, Marshall DL (2004) Adaptation of Escherichia coli O157:H7 to pH alters membrane lipid composition, verotoxin secretion, and resistance to simulated gastric fluid acid. Appl Environ Microbiol 70:3500–3505PubMedPubMedCentralGoogle Scholar
  142. 142.
    Koga Y, Nishihara M, Mori H (1982) Lipids of alkaliphilic bacteria: identification, composition and metabolism. J Univ Occup Environ Health 4:227–240Google Scholar
  143. 143.
    Clejan S, Krulwich TA (1988) Permeability studies of lipid vesicles from alkalophilic Bacillus firmus showing opposing effects of membrane isoprenoid and diacylglycerol fractions and suggesting a possible basis for obligate alkalophily. Biochim Biophys Acta 946:40–48PubMedGoogle Scholar
  144. 144.
    Haines TH, Dencher NA (2002) Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett 528:35–39PubMedGoogle Scholar
  145. 145.
    Kitada M, Guffanti AA, Krulwich TA (1982) Bioenergetic properties and viability of the alkalophilic Bacillus firmus RAB as a function of pH and Na+ contents of the incubation medium. J Bacteriol 152:1096–1104PubMedPubMedCentralGoogle Scholar
  146. 146.
    Krulwich TA, Agus R, Schneier M, Guffanti AA (1985) Buffering capacity of bacilli that grow at different pH ranges. J Bacteriol 162:768–772PubMedPubMedCentralGoogle Scholar
  147. 147.
    Krulwich TA, Hicks DB, Seto-Young D, Guffanti AA (1988) The bioenergetics of alkalophilic bacilli. Crit Rev Microbiol 16:15–36PubMedGoogle Scholar
  148. 148.
    Stolyar S, He Q, Joachimiak MP, He Z, Yang ZK, Borglin SE et al (2007) Response of Desulfovibrio vulgaris to alkaline stress. J Bacteriol 189:8944–8952PubMedPubMedCentralGoogle Scholar
  149. 149.
    Nah T, Kessler SH, Daumit KE, Kroll JH, Leone SR, Wilson KR (2013) OH-initiated oxidation of sub-micron unsaturated fatty acid particles. Phys Chem Chem Phys 15:18649–18663PubMedGoogle Scholar
  150. 150.
    Eble KS, Coleman WB, Hantgan RR, Cunningham CC (1990) Tightly associated cardiolipin in the bovine heart mitochondrial ATP synthase as analyzed by 31P nuclear magnetic resonance spectroscopy. J Biol Chem 265:19434–19440PubMedGoogle Scholar
  151. 151.
    Fry M, Green DE (1981) Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J Biol Chem 256:1874–1880PubMedGoogle Scholar
  152. 152.
    Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G (2014) Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta 1837:408–417PubMedGoogle Scholar
  153. 153.
    Robinson NC (1993) Functional binding of cardiolipin to cytochrome c oxidase. J Bioenerg Biomembr 25:153–163PubMedGoogle Scholar
  154. 154.
    von Ballmoos C, Cook GM, Dimroth P (2008) Unique rotary ATP synthase and its biological diversity. Annu Rev Biophys 37:43–64Google Scholar
  155. 155.
    Liberton M, Berg RH, Heuser J, Roth R, Pakrasi HB (2006) Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma 227:129–138Google Scholar
  156. 156.
    Nevo R, Charuvi D, Shimoni E, Schwarz R, Kaplan A, Ohad I, Riech Z (2007) Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. EMBO J 26:1467–1473PubMedPubMedCentralGoogle Scholar
  157. 157.
    Schneider D, Fuhrmann E, Scholz I, Hess WR, Graumann PL (2007) Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes. BMC Cell Biol 8:39. Scholar
  158. 158.
    Belkin S, Boussiba S (1991) Resistance of Spirulina platensis to ammonia at high pH values. Plant Cell Physiol 32:953–958Google Scholar
  159. 159.
    Pogoryelov D, Sudhir PR, Kovacs L, Gombos Z, Brown I, Garab G (2003) Sodium dependency of the photosynthetic electron transport in the alkaliphilic cyanobacterium Arthrospira platensis. J Bioenerg Biomembr 35:427–437PubMedPubMedCentralGoogle Scholar
  160. 160.
    Hirabayashi T, Goto T, Morimoto H, Yoshimune K, Matsyama H, Yumoto I (2012) Relationship between rates of respiratory proton extrusion and ATP synthesis in obligately alkaliphilic Bacillus clarkii DSM 8720. J Bioenerg Biomembr 44:265–272PubMedGoogle Scholar
  161. 161.
    Goto T, Matsuno T, Hishinuma-Narisawa M, Yamazaki K, Matsuyama H, Inoue N, Yumoto I (2005) Cytochrome c and bioenergetic hypothetical model for alkaliphilic Bacillus spp. J Biosci Bioeng 100:365–379PubMedGoogle Scholar
  162. 162.
    Dimroth P, von Ballmoos C, Meier T (2006) Catalytic and mechanical cycles in F-ATP synthases: fourth in the cycles review series. EMBO Rep 7:276–282PubMedPubMedCentralGoogle Scholar
  163. 163.
    Hoffmann A, Dimroth P (1991) The ATPase of Bacillus alcalophilus. Reconstitution of energy-transducing functions. Eur J Biochem 196:493–497PubMedGoogle Scholar
  164. 164.
    Krulwich TA (1995) Alkaliphiles: ‘basic’ molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15:403–410PubMedGoogle Scholar
  165. 165.
    Barriuso-Iglesias M, Barreiro C, Flechoso F, Martin JF (2006) Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH. Microbiology 152:11–21PubMedGoogle Scholar
  166. 166.
    Hayes ET, Wilks JC, Sanfilippo P, Yohannes E, Tate DP, Jones BD, Radmacher MD, BonDurant SS, Slonczewski JL et al (2006) Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiol 6:89PubMedPubMedCentralGoogle Scholar
  167. 167.
    Maurer LM, Yohannes E, Bondurant SS, Radmacher M, Slonczewski JL (2005) pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol 187:304–319PubMedPubMedCentralGoogle Scholar
  168. 168.
    Kosono S, Asai K, Sadaie Y, Kudo T (2004) Altered gene expression in the transition phase by disruption of a Na+/H+ antiporter gene (shaA) in Bacillus subtilis. FEMS Microbiol Lett 232:93–99PubMedGoogle Scholar
  169. 169.
    Ran S, Liu B, Jiang W, Sun Z, Liang J (2015) Transcriptome analysis of Enterococcus faecalis in response to alkaline stress. Front Microbiol 6:795. Scholar
  170. 170.
    Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA (2015) Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis. Front Bioeng Biotechnol 3:75. Scholar
  171. 171.
    Dong H, Fillingame RH (2010) Chemical reactivities of cysteine substitutions in subunit a of ATP synthase define residues gating H+ transport from each side of the membrane. J Biol Chem 285:39811–39818PubMedPubMedCentralGoogle Scholar
  172. 172.
    Arechaga I, Jones PC (2001) The rotor in the membrane of the ATP synthase and relatives. FEBS Lett 494:1–5PubMedGoogle Scholar
  173. 173.
    Liu J, Fujisawa M, Hicks DB, Krulwich TA (2009) Characterization of the functionally critical AXAXAXA and PXXEXXP motifs of the ATP synthase c-subunit from an alkaliphilic Bacillus. J Biol Chem 284:8714–8725PubMedPubMedCentralGoogle Scholar
  174. 174.
    Matsuno T, Yumoto I (2015) Bioenergetics and the role of soluble cytochromes c for alkaline adaptation in Gram-negative alkaliphilic Pseudomonas. Biomed Res Int 2015:847945. Scholar
  175. 175.
    Hicks DB, Krulwich TA (1995) The respiratory chain of alkaliphilic bacteria. Biochim Biophys Acta 1229:303–314PubMedPubMedCentralGoogle Scholar
  176. 176.
    Muntyan MS, Bloch DA (2008) Study of redox potential in cytochrome c covalently bound to terminal oxidase of alkaliphilic Bacillus pseudofirmus FTU. Biochemistry (Mosc) 73:107–111Google Scholar
  177. 177.
    Matsuno T, Goto T, Ogami S, Morimoto H, Yamazaki K, Inoue N et al (2018) Formation of proton motive force under low-aeration alkaline conditions in alkaliphilic bacteria. Front Microbiol 9:2331. Scholar
  178. 178.
    Matsuno T, Yoshimune K, Yumoto I (2011) Physiological function of soluble cytochrome c-552 from alkaliphilic Pseudomonas alcaliphila AL15-21T. J Bioenerg Biomembr 43:473–481PubMedGoogle Scholar
  179. 179.
    Mulkidjanian AY, Dibrov P, Galperin MY (2008) The past and present of sodium energetics: may the sodium-motive force be with you. Biochim Biophys Acta 1777:985–992PubMedPubMedCentralGoogle Scholar
  180. 180.
    Liu X, Gong X, Hicks DB, Krulwich TA, Yu L, Yu CA (2007) Interaction between cytochrome caa3 and F1F0-ATP synthase of alkaliphilic Bacillus pseudofirmus OF4 is demonstrated by saturation transfer electron paramagnetic resonance and differential scanning calorimetry assays. Biochemistry 46:306–313PubMedPubMedCentralGoogle Scholar
  181. 181.
    Ling HL, Rahmat Z, Bakar FDA, Murad AMA, Illias RM (2018) Secretome analysis of alkaliphilic bacterium Bacillus lehensis G1 in response to pH changes. Microbiol Res 215:46–54PubMedGoogle Scholar
  182. 182.
    Saito H, Kobayashi H (2003) Bacterial responses to alkaline stress. Sci Prog 86:271–282PubMedGoogle Scholar
  183. 183.
    Serra-Cardona A, Canadell D, Ariño J (2015) Coordinate responses to alkaline pH stress in budding yeast. Microb Cell 2:182–196PubMedPubMedCentralGoogle Scholar
  184. 184.
    Canadell D, Garcia-Martinez J, Alepuz P, Perez-Ortin JE, Arino J (2015) Impact of high pH stress on yeast gene expression: a comprehensive analysis of mRNA turnover during stress responses. Biochim Biophys Acta 1849:653–664PubMedGoogle Scholar
  185. 185.
    Flahaut S, Hartke A, Giard JC, Auffray Y (1997) Alkaline stress response in Enterococcus faecalis: adaptation, cross-protection, and changes in protein synthesis. Appl Environ Microbiol 63:812–814PubMedPubMedCentralGoogle Scholar
  186. 186.
    Clarke S, Stephenson RC, Lowenson JD (1992) Lability of asparagine and aspartic acid residues in proteins and peptides. In: Ahern TJ, Manning MC (eds) Stability of protein pharmaceuticals, part A: chemical and physical pathways of protein degradation. Plenum, New York, pp 1–29Google Scholar
  187. 187.
    Shimizu T, Matsuoka Y, Shirasawa T (2005) Biological significance of isoaspartate and its repair system. Biol Pharm Bull 28:1590–159610PubMedGoogle Scholar
  188. 188.
    Szymanska G, Leszyk JD, O’Connor CM (1998) Carboxyl methylation of deamidated calmodulin increases its stability in Xenopus oocyte cytoplasm: implications for protein repair. J Biol Chem 273:28516–28523PubMedGoogle Scholar
  189. 189.
    Riggs DL, Gomez SV, Julian RR (2017) Sequence and solution effects on the prevalence of d-isomers produced by deamidation. ACS Chem Biol 12:2875–2882PubMedPubMedCentralGoogle Scholar
  190. 190.
    Yang H, Zubarev RA (2010) Mass spectrometric analysis of asparagine deamidation and aspartate isomerization in polypeptides. Electrophoresis 31:1764–1772PubMedPubMedCentralGoogle Scholar
  191. 191.
    Visick JE, Clarke S (1995) Repair, refold, recycle: how bacteria can deal with spontaneous and environmental damage to proteins. Mol Microbiol 16:835–845PubMedGoogle Scholar
  192. 192.
    Li C, Clarke S (1992) Distribution of an L-isoaspartyl protein methyltransferase in eubacteria. J Bacteriol 174:355–361PubMedPubMedCentralGoogle Scholar
  193. 193.
    Visick JE, Cai H, Clarke S (1998) The L-isoaspartyl protein repair methyltransferase enhances survival of aging Escherichia coli subjected to secondary environmental stresses. J Bacteriol 180:2623–2629PubMedPubMedCentralGoogle Scholar
  194. 194.
    Johnson BA, Shirokawa JM, Aswad DW (1989) Deamidation of calmodulin at neutral and alkaline pH: quantitative relationships between ammonia loss and the susceptibility of calmodulin to modification by protein carboxyl methyltransferase. Arch Biochem Biophys 268:276–286PubMedGoogle Scholar
  195. 195.
    Suh MJ, Alami H, Clark DJ, Parmar PP, Robinson JM, Huang ST et al (2008) Widespread occurrence of non-enzymatic deamidations of asparagine residues in Yersinia pestis proteins resulting from alkaline pH membrane extraction conditions. Open Proteomics J 1:106–115PubMedPubMedCentralGoogle Scholar
  196. 196.
    Yan Q, Huang M, Lewis MJ, Hu P (2018) Structure based prediction of asparagine deamidation propensity in monoclonal antibodies. MAbs 10:901–912PubMedPubMedCentralGoogle Scholar
  197. 197.
    Hicks WM, Kotlajich MV, Visick JE (2005) Recovery from long-term stationary phase and stress survival in Escherichia coli require the L-isoaspartyl protein carboxyl methyltransferase at alkaline pH. Microbiology 151:2151–2158PubMedGoogle Scholar
  198. 198.
    Dahl JU, Koldewey P, Salmon L, Horowitz S, Bardwell JCA, Jakob U (2015) HdeB functions as an acid-protective chaperone in bacteria. J Biol Chem 290:65–75PubMedGoogle Scholar
  199. 199.
    Hong W, Wu YE, Fu X, Chang Z (2012) Chaperone-dependent mechanisms for acid resistance in enteric bacteria. Trends Microbiol 20:328–335PubMedGoogle Scholar
  200. 200.
    Kern R, Malki A, Abdallah J, Tagourti J, Richarme G (2007) Escherichia coli HdeB is an acid stress chaperone. J Bacteriol 189:603–610PubMedGoogle Scholar
  201. 201.
    Taglicht D, Padan E, Oppenheim AB, Schuldiner S (1987) An alkaline shiftinduces the heatshock response in Escherichia coli. J Bacteriol 169:885–887PubMedPubMedCentralGoogle Scholar
  202. 202.
    Horikoshi K, Akiba T (1982) Alkalophilic microorganisms: a new microbial world. Springer, HeidelbergGoogle Scholar
  203. 203.
    Verdolino V, Cammi R, Munk BH, Schlegel HB (2008) Calculation of pKa values of nucleobases and the guanine oxidation products guanidinohydantoin and spiroiminodihydantoin using density functional theory and a polarizable continuum model. J Phys Chem B 112:16860–16873PubMedGoogle Scholar
  204. 204.
    Goodson M, Rowbury RJ (1990) Habituation to alkali and increased UV-resistance in DNA repair-proficient and -deficient strains of Escherichia coli grown at pH 9.0. Lett Appl Microbiol 11:123–125Google Scholar
  205. 205.
    Dubnovitsky AP, Kapetaniou EG, Papageorgiou AC (2005) Enzyme adaptation to alkaline pH: atomic resolution (1.08 Å) structure of phosphoserine aminotransferase from Bacillus alcalophilus. Protein Sci 14:97–110PubMedPubMedCentralGoogle Scholar
  206. 206.
    Mamo G, Thunnissen M, Hatti-Kaul R, Mattiasson B (2009) An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation. Biochimie 91:1187–1196PubMedGoogle Scholar
  207. 207.
    Shirai T, Ishida H, Noda J, Yamane T, Ozaki K, Hakamada Y, Ito S (2001) Crystal structure of alkaline cellulase K: insight into the alkaline adaptation of an industrial enzyme. J Mol Biol 310:1079–1087PubMedGoogle Scholar
  208. 208.
    Shirai T, Suzuki A, Yamane T, Ashida T, Kobayashi T, Hitomi J, Ito S (1997) High-resolution crystal structure of M-protease: phylogeny aided analysis of the highalkaline adaptation mechanism. Protein Eng 10:627–634PubMedGoogle Scholar
  209. 209.
    Zhao Y, Zhang Y, Cao Y, Qi J, Mao L, Xue Y et al (2011) Structural analysis of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5: implications for adaptation to alkaline conditions. PLoS One 6(1):e14608. Scholar
  210. 210.
    Geiger T, Clarke S (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides: succinimide-linked reactions that contribute to protein degradation. J Biol Chem 262:785–794PubMedGoogle Scholar
  211. 211.
    Tyler-Cross R, Schirch V (1991) Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides. J Biol Chem 266:22549–22556PubMedGoogle Scholar
  212. 212.
    Gulich S, Linhult M, Nygren PA, Hober S (2000) Stability towards alkaline conditions can be engineered into a protein ligand. J Biotechnol 80:169–178PubMedGoogle Scholar
  213. 213.
    Gulich S, Linhult M, Stahl S, Hober S (2002) Engineering streptococcal protein G for increased alkaline stability. Protein Eng 15:835–842PubMedGoogle Scholar
  214. 214.
    Krulwich TA (2005) Extreme alkaliphiles: experts at alkaline pH homeostasis and able to grow when cytoplasmic pH rises above the limit for growth of non-alkaliphiles. In: International symposium on extremophiles and their applications, pp 220–227Google Scholar
  215. 215.
    Schmidt A, Schlacher A, Steiner W, Schwab H, Kratky C (1998) Structure of the xylanase from Penicillium simplicissimum. Protein Sci 7:2081–2088PubMedPubMedCentralGoogle Scholar
  216. 216.
    Mamo G, Hatti-Kaul R, Mattiasson B (2006) A thermostable alkaline active endo-β-1-4-xylanase from Bacillus halodurans S7: purification and characterization. Enzym Microb Technol 39:1492–1498Google Scholar
  217. 217.
    Inagaki K, Nakahira K, Mukai K, Tamura T, Tanaka H (1998) Gene cloning and characterization of an acidic xylanase from Acidobacterium capsulatum. Biosci Biotechnol Biochem 62:1061–1067PubMedGoogle Scholar
  218. 218.
    Yang JH, Park JY, Kim SH, Yoo YJ (2008) Shifting pH optimum of Bacillus circulans xylanase based on molecular modeling. J Biotechnol 133:294–300PubMedGoogle Scholar
  219. 219.
    Nielsen JE, McCammon JA (2003) Calculating pKa values in enzyme active sites. Protein Sci. 12:1894–1901PubMedPubMedCentralGoogle Scholar
  220. 220.
    Joshi MD, Sidhu G, Nielsen JE, Brayer GD, Withers SG, McIntosh LP (2001) Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase. Biochemistry 40:10115–10139PubMedGoogle Scholar
  221. 221.
    Nielsen JE, Borchert TV, Vriend G (2001) The determinants of alpha-amylase pH-activity profiles. Protein Eng 14:505–512PubMedGoogle Scholar
  222. 222.
    Coughlan S, Wang XG, Britton KL, Stillman TJ, Rice DW et al (2001) Contribution of an aspartate residue, D114, in the active site of clostridial glutamate dehydrogenase to the enzyme’s unusual pH dependence. Biochim Biophys Acta 1544:10–17PubMedGoogle Scholar
  223. 223.
    Bai W, Cao Y, Liu J, Wang Q, Jia Z (2016) Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis. BMC Biotechnol 16:77PubMedPubMedCentralGoogle Scholar
  224. 224.
    Madzak C, Mimmi MC, Caminade E, Brault A, Baumberger S, Briozzo P et al (2006) Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis. Protein Eng Des Sel 19:77–84PubMedGoogle Scholar
  225. 225.
    Richardson TH, Tan X, Frey G, Callen W, Cabell M, Lam D et al (2002) A novel, high performance enzyme for starch liquefaction. Discovery and optimization of a low pH, thermostable alpha-amylase. J Biol Chem 277:26501–26507PubMedGoogle Scholar
  226. 226.
    Aygan A, Arikan B, Korkmaz H, Dinçer S, Çolak Ö (2008) Highly thermostable and alkaline α-amylase from a halotolerant-alkaliphilic Bacillus sp. AB68. Braz J Microbiol 39:547–553PubMedPubMedCentralGoogle Scholar
  227. 227.
    Kim DH, Morimoto N, Saburi W, Mukai A, Imoto K, Takehana T et al (2012) Purification and characterization of a liquefying α-amylase from alkalophilic thermophilic Bacillus sp. AAH-31. Biosci Biotechnol Biochem 76:1378–1383PubMedGoogle Scholar
  228. 228.
    Drechsel H, Jung G (1998) Peptide siderophores. J Pept Sci 4:147–181PubMedGoogle Scholar
  229. 229.
    McMillan DGG, Velasquez I, Nunn BL, Goodlett DR, Hunter KA, Lamont I et al (2010) Acquisition of iron by alkaliphilic Bacillus species. Appl Environ Microbiol 76:6955–6961PubMedPubMedCentralGoogle Scholar
  230. 230.
    Luque-Almagro VM, Blasco R, Huertas MJ, Martinez-Luque M, Moreno-Vivian C, Castillo F, Roldan MD (2005) Alkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT5344. Biochem Soc Trans 33:168–169PubMedGoogle Scholar
  231. 231.
    Sarethy IP, Saxena Y, Kapoor A, Sharma M, Sharma SK, Gupta V, Gupta S (2011) Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 38:769–790PubMedGoogle Scholar
  232. 232.
    Sorokin DY, Kuenen JG (2005) Chemolithotrophic haloalkaliphiles from soda lakes. FEMS Microbiol Ecol 52:287–295PubMedGoogle Scholar
  233. 233.
    Carini SA, Joye SB (2008) Nitrification in Mono Lake, California: activity and community composition during contrasting hydrological regimes. Limnol Oceanogr 53:2546–2557Google Scholar
  234. 234.
    Luque-Almagro VM et al (2005) Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl Environ Microbiol 71:940–947PubMedPubMedCentralGoogle Scholar
  235. 235.
    Schagerl M (2016) Soda lakes of East Africa. Springer, ChamGoogle Scholar
  236. 236.
    Lanzén A, Simachew A, Gessesse A, Chmolowska D, Jonassen I, Øvreås L (2013) Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian soda lakes. PLoS One 8(8):e72577PubMedPubMedCentralGoogle Scholar
  237. 237.
    Kavembe GD, Meyer A, Wood CM (2016) Fish populations in East African saline lakes. Soda lakes of East Africa. Springer, Cham, pp 227–257Google Scholar
  238. 238.
    Wilkie MP, Wood CM (1991) Nitrogenous waste excretion, acid-base regulation, and ionoregulation in rainbow trout (Oncorhynchus mykiss) exposed to extremely alkaline water. Physiol Zool 64:1069–1086Google Scholar
  239. 239.
    Wilkie MP, Wood CM (1995) Recovery from high pH exposure in the rainbow trout: white muscle ammonia storage, ammonia washout, and the restoration of blood chemistry. Physiol Zool 68:379–401Google Scholar
  240. 240.
    Wilkie MP, Wood CM (1996) The adaptations of fish to extremely alkaline environments. Comp Biochem Physiol B Biochem Mol Biol 113:665–673Google Scholar
  241. 241.
    Yesaki TY, Iwama GK (1992) Survival, acid-base regulation, ion regulation, and ammonia excretion in rainbow trout in highly alkaline hard water. Physiol Zool 65:763–787Google Scholar
  242. 242.
    Johansen K, Maloiy G, Lykkeboe G (1975) A fish in extreme alkalinity. Respir Physiol 24:159–162PubMedGoogle Scholar
  243. 243.
    Wilkie MP, Wright PA, Iwama GK, Wood CM (1994) The physiological adaptations of the Lahontan cutthroat trout (Oncorhynchus clarki henshawi) following transfer from well water to the highly alkaline waters of Pyramid Lake, Nevada (pH 9.4). Physiol Zool 67:355–380Google Scholar
  244. 244.
    Wood CM, Bergman HL, Bianchini A, Laurent P, Maina J, Johannsson OE et al (2012) Transepithelial potential in the Magadi tilapia, a fish living in extreme alkalinity. J Comp Physiol B 182:247–258PubMedGoogle Scholar
  245. 245.
    Wood CM, Bergman HL, Laurent P, John MN, Narahara AB, Walsh PJ (1994) Urea production, acid-base regulation and their interactions in the Lake Magadi tilapia, a unique teleost adapted to a highly alkaline environment. J Exp Biol 189:13–36PubMedGoogle Scholar
  246. 246.
    Wood CM, Wilson P, Bergman HL, Bergman AN, Laurent P, Owiti G et al (2002) Ionoregulatory strategies and the role of urea in the Magadi tilapia (Alcolapia grahami). Can J Zool 80:503–515Google Scholar
  247. 247.
    Wilkie MP (2002) Ammonia excretion and urea handling by fish gills: present understanding and future research challenges. J Exp Zool 293:284–301PubMedGoogle Scholar
  248. 248.
    Randall DJ, Tsui TKN (2002) Ammonia toxicity in fish. Mar Pollut Bull 45:17–23PubMedGoogle Scholar
  249. 249.
    Wilkie MP, Pamenter ME, Duquette S, Dhiyebi H, Sangha N, Skelton G et al (2011) The relationship between NMDA receptor function and the high ammonia tolerance of anoxia-tolerant goldfish. J Exp Biol 214:4107–4120PubMedGoogle Scholar
  250. 250.
    Walsh PJ, Smith CP (2001) Urea transport. Fish Physiol 20:279–307Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Indienz ABBillebergaSweden

Personalised recommendations