pp 1-26 | Cite as

The Impact of Pharmacogenomics in Personalized Medicine

  • Dev Bukhsh Singh
Part of the Advances in Biochemical Engineering/Biotechnology book series


Recent advances in Pharmacogenomics have made it possible to understand the reasons behind the different response of a drug. Discovery of genetic variants and its association with the varying response of drug provide the basis for recommending a drug and its dose to an individual patient. Genetic makeup-based prescription, design, and implementation of therapy not only improve the outcome of treatments but also reduce the risk of toxicity and other adverse effects. A better understanding of individual variations and their effect on drug response, metabolism excretion, and toxicity will replace the trial-and-error approach of treatment. Evidence of the clinical utility of pharmacogenetics testing is only available for a few medications, and FDA labels only require pharmacogenetics testing for a small number of drugs. Although there is a great promise, there are not many examples where Pharmacogenomics impacts clinical utility. Some genetic variants related to different diseases have been reported, and many have not been studied yet. The information related to the outcome of treatment with a particular drug and a genetic variant can be used to release a warning/label for the use of that drug. There are many limitations in the way of implementing the goal of personalized medicine. Future advances in the field of genomics, diagnosis approaches, data analysis, clinical decision-making, and sustainable business model for personalization of therapy can speed up the individualization of therapy based on genetic makeup.

Graphical Abstract


Clinical decision Genetic makeup Personalized medicine Pharmacogenomics Therapeutic response 


  1. 1.
    Hess GP, Fonseca E, Scott R, Fagerness J (2015) Pharmacogenomic and pharmacogenetic-guided therapy as a tool in precision medicine: current state and factors impacting acceptance by stakeholders. Genet Res (Camb) 97:e13. CrossRefGoogle Scholar
  2. 2.
    NIH (2019) NIGMS: pharmacogenomics fact sheet. Accessed 20 Apr 2019
  3. 3.
    Kitzmiller JP, Groen DK, Phelps MA, Sadee W (2011) Pharmacogenomic testing: relevance in medical practice: why drugs work in some patients but not in others. Cleve Clin J Med 78:243–257Google Scholar
  4. 4.
    Romualdi C, Balding D, Nasidze IS, Risch G, Robichaux M, Sherry ST, Stoneking M, Batzer MA, Barbujani G (2002) Patterns of human diversity, within and among continents, inferred from biallelic DNA polymorphisms. Genome Res 12:602–612Google Scholar
  5. 5.
    Nadine C, Theresa F (2008) Challenges, opportunities, and evolving landscapes in pharmacogenomics and personalized medicine. In: Cohen N (ed) Pharmacogenomics and personalized medicine. Humana Press, Totowa, pp 1–26Google Scholar
  6. 6.
    Cho WC (2010) Recent progress in genetic variants associated with cancer and their implications in diagnostics development. Expert Rev Mol Diagn 10(6):699–703Google Scholar
  7. 7.
    Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11(6):415–425Google Scholar
  8. 8.
    IGSR (2018) The International Genome Sample Resource. Accessed 02 Apr 2018
  9. 9.
    International HapMap Consortium (2003) The international HapMap project. Nature 426:789–796Google Scholar
  10. 10.
    Alomar MJ (2014) Factors affecting the development of adverse drug reactions (Review article). Saudi Pharm J 22:83–94Google Scholar
  11. 11.
    Soldin OP, Chung SH, Mattison DR (2011) Sex differences in drug disposition. J Biomed Biotechnol. Google Scholar
  12. 12.
    Ma Q, Lu AY (2011) Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev 63:437–459Google Scholar
  13. 13.
    Hu Z, Yang X, Ho PC, Chan SY, Heng PW, Chan E, Duan W, Koh HL, Zhou S (2005) Herb-drug interactions: a literature review. Drugs 65:1239–1282Google Scholar
  14. 14.
    Zuo Z, Huang M, Kanfer I, Chow MS, Cho WC (2015) Herb-drug interactions: systematic review, mechanisms, and therapies. Evid Based Complement Alternat Med 2015:239150. CrossRefGoogle Scholar
  15. 15.
    Singh DB (2017) Pharmacogenomics: clinical perspective, strategies, and challenges. In: Wei DQ, Ma Y, Cho W, Xu Q, Zhou F (eds) Translational bioinformatics and its application. Translational medicine research. Springer, Dordrecht, pp 299–333Google Scholar
  16. 16.
    Martin MA, Kroetz DL (2013) Abacavir pharmacogenetics--from initial reports to standard of care. Pharmacotherapy 33:765–775Google Scholar
  17. 17.
    Delaney C, Frank S, Huang RS (2015) Pharmacogenomics of EGFR-targeted therapies in non-small cell lung cancer: EGFR and beyond. Chin J Cancer 34:149–160Google Scholar
  18. 18.
    Dean L (2016) Aripiprazole therapy and CYP2D6 genotype. In: Pratt V, McLeod H, Rubinstein W, Dean L, Kattman B, Malheiro A (eds) Medical genetics summaries [Internet]. National Center for Biotechnology Information (US), BethesdaGoogle Scholar
  19. 19.
    Hashi S, Yano I, Shibata M, Masuda S, Kinoshita M, Matsumoto R, Ikeda A, Takahashi R, Matsubara K (2015) Effect of CYP2C19 polymorphisms on the clinical outcome of low-dose clobazam therapy in Japanese patients with epilepsy. Eur J Clin Pharmacol 71:51–58Google Scholar
  20. 20.
    Kim SH, Kim DH, Byeon JY, Kim YH, Kim DH, Lim HJ, Lee CM, Whang SS, Choi CI, Bae JW, Lee YJ, Jang CG, Lee SY (2017) Effects of CYP2C9 genetic polymorphisms on the pharmacokinetics of celecoxib and its carboxylic acid metabolite. Arch Pharm Res 40:382–390Google Scholar
  21. 21.
    Hagleitner MM, Coenen MJ, Patino-Garcia A, de Bont ES, Gonzalez-Neira A, Vos HI, van Leeuwen FN, Gelderblom H, Hoogerbrugge PM, Guchelaar HJ, Te Loo MW (2014) Influence of genetic variants in TPMT and COMT associated with cisplatin induced hearing loss in patients with cancer: two new cohorts and a meta-analysis reveal significant heterogeneity between cohorts. PLoS One 9:e115869Google Scholar
  22. 22.
    Lee SJ (2013) Clinical application of CYP2C19 pharmacogenetics toward more personalized medicine. Front Genet 3:318Google Scholar
  23. 23.
    Shirasaka Y, Sager JE, Lutz JD, Davis C, Isoherranen N (2013) Inhibition of CYP2C19 and CYP3A4 by omeprazole metabolites and their contribution to drug-drug interactions. Drug Metab Dispos 41:1414–1424Google Scholar
  24. 24.
    PharmGKB (2019) CPIC: Clinical Pharmacogenetics Implementation Consortium. Accessed 03 Apr 2019
  25. 25.
    CPIC (2019) Clinical Pharmacogenetics Implementation Consortium. Accessed 03 Apr 2019
  26. 26.
    PharmGKB (2019) DPWG: Dutch Pharmacogenetics Working Group. Accessed 03 Apr 2019
  27. 27.
    Swen JJ, Nijenhuis M, de Boer A, Grandia L, Maitland-van der Zee AH, Mulder H, Rongen GA, van Schaik RH, Schalekamp T, Touw DJ, van der Weide J, Wilffert B, Deneer VH, Guchelaar HJ (2011) Pharmacogenetics: from bench to byte--an update of guidelines. Clin Pharmacol Ther 89:662–673Google Scholar
  28. 28.
    Ossorio P, Duster T (2005) Race and genetics: controversies in biomedical, behavioral, and forensic sciences. American Psychologist 60(1):115–128Google Scholar
  29. 29.
    Peterson-Iyer K (2008) Pharmacogenomics, ethics, and public policy. Kennedy Inst Ethics J 18(1):35–56Google Scholar
  30. 30.
    Redekop WK, Mladsi D (2013) The faces of personalized medicine: a framework for understanding its meaning and scope. Value Health 16(6 Suppl):S4–S9Google Scholar
  31. 31.
    Laing RE, Hess P, Shen Y, Wang J, Hu SX (2011) The role and impact of SNPs in pharmacogenomics and personalized medicine. Curr Drug Metab 12(5):460–486Google Scholar
  32. 32.
    Schwab M, Schaeffeler E (2012) Pharmacogenomics: a key component of personalized therapy. Genome Med 4(11):93Google Scholar
  33. 33.
    Mousa AY, Broce M, Campbell J, Nanjundappa A, Stone PA, Abu-Halimah S, Srivastava M, Bates MC, Aburahma AF (2012) Clopidogrel use before renal artery angioplasty with/without stent placement resulted in tertiary procedure risk reduction. J Vasc Surg 56(2):416–423Google Scholar
  34. 34.
    Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW, Stein CM, Carrillo M, Evans WE, Klein TE, Clinical Pharmacogenetics Implementation Consortium (2011) Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther 89(3):387–391Google Scholar
  35. 35.
    Renders L, Frisman M, Ufer M, Mosyagin I, Haenisch S, Ott U, Caliebe A, Dechant M, Braun F, Kunzendorf U, Cascorbi I (2007) CYP3A5 genotype markedly influences the pharmacokinetics of tacrolimus and sirolimus in kidney transplant recipients. Clin Pharmacol Ther 81(2):228–234Google Scholar
  36. 36.
    Guinea J, Escribano P, Marcos-Zambrano LJ, Pela’ez T, Kestler M, Muñoz P, Vena A, López-Fabal F, Bouza E (2016) Therapeutic drug monitoring of voriconazole helps to decrease the percentage of patients with off-target trough serum levels. Med Mycol 54(4):353–360Google Scholar
  37. 37.
    Armitage J, Bowman L, Wallendszus K, Bulbulia R, Rahimi K, Haynes R, Parish S, Peto R, Collins R, Study of the Effectiveness of Additional Reductions in Cholesterol and Homocysteine (SEARCH) Collaborative Group (2010) Intensive lowering of LDL cholesterol with 80 mg versus 20 mg simvastatin daily in 12,064 survivors of myocardial infarction: a double-blind randomised trial. Lancet 376(9753):1658–1669Google Scholar
  38. 38.
    Druker BJ, Guilhot F, O’Brien SG et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355(23):2408–2417Google Scholar
  39. 39.
    Kwak EL, Bang YJ, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non–small-cell lung cancer. N Engl J Med 363(18):1693–1703Google Scholar
  40. 40.
    Simon T, Verstuyft C, Mary-Krause M et al (2009) Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med 360(4):363–375Google Scholar
  41. 41.
    Leypoldt F, Höftberger R, Titulaer MJ et al (2015) Investigations on CXCL13 in anti-N-methyl-D-aspartate receptor encephalitis: a potential biomarker of treatment response. JAMA Neurol 72(2):180–186Google Scholar
  42. 42.
    Ramsey BW, Davies J, McElvaney NG et al (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663–1672Google Scholar
  43. 43.
    Vandenbroucke JP, Koster T, Briët E, Reitsma PH, Bertina RM, Rosendaal FR (1994) Increased risk of venous thrombosis in oralcontraceptive users who are carriers of factor V Leiden mutation. Lancet 344(8935):1453–1457Google Scholar
  44. 44.
    O’Day E, Alsafar H (2018) Advanced diagnostics for personalized medicine. Accessed 06 Apr 2019
  45. 45.
    Dams SM, Crisamore KR, Empey PE (2018) Clinical pharmacogenomics: applications in nephrology. Clin J Am Soc Nephrol 13(10):1561–1571Google Scholar
  46. 46.
    Jameson JL, Longo DL (2015) Precision medicine--personalized, problematic, and promising. N Engl J Med 372(23):2229–2234Google Scholar
  47. 47.
    Akinobu G (2014) Personalized medicine-based strategy for prostate cancer. Pers Med Univ 3:1–3Google Scholar
  48. 48.
    Han MR, Zheng W, Cai Q, Gao YT, Zheng Y, Bolla MK, Michailidou K, Dennis J, Wang Q, Dunning AM, Brennan P, Chen ST, Choi JY, Hartman M, Ito H, Lophatananon A, Matsuo K, Miao H, Muir K, Sangrajrang S, Shen CY, Teo SH, Tseng CC, Wu AH, Yip CH, Kang D, Xiang YB, Easton DF, Shu XO, Long J (2017) Evaluating genetic variants associated with breast cancer risk in high and moderate-penetrance genes in Asians. Carcinogenesis 38(5):511–518Google Scholar
  49. 49.
    Sultana N, Rahman M, Myti S, Islam J, Mustafa MG, Nag K (2019) A novel knowledge-derived data potentizing method revealed unique liver cancer-associated genetic variants. Hum Genomics 13(1)Google Scholar
  50. 50.
    Lilyquist J, Ruddy KJ, Vachon CM, Couch FJ (2018) Common genetic variation and breast cancer risk-past, present, and future. Cancer Epidemiol Biomarkers Prev 27:380–394Google Scholar
  51. 51.
    Kar SP, Berchuck A, Gayther SA, Goode EL, Moysich KB, Pearce CL, Ramus SJ, Schildkraut JM, Sellers TA, Pharoah PDP (2018) Common genetic variation and susceptibility to ovarian cancer: current insights and future directions. Cancer Epidemiol Biomarkers Prev 27:395–404Google Scholar
  52. 52.
    Erdei E, Luo L, Sheng H, Maestas E, White KA, Mackey A, Dong Y, Berwick M, Morse DE (2013) Cytokines and tumor metastasis gene variants in oral cancer and precancer in Puerto Rico. PLoS One 8:e79187Google Scholar
  53. 53.
    Engle JA, Kolesar JM (2014) Afatinib: a first-line treatment for selected patients with metastatic non-small-cell lung cancer. Am J Health Syst Pharm 71:1933–1938Google Scholar
  54. 54.
    Goss GD, Felip E, Cobo M, Lu S, Syrigos K, Lee KH, Göker E, Georgoulias V, Li W, Guclu S, Isla D, Min YJ, Morabito A, Ardizzoni A, Gadgeel SM, Fülöp A, Bühnemann C, Gibson N, Krämer N, Solca F, Cseh A, Ehrnrooth E, Soria JC (2018) Association of ERBB mutations with clinical outcomes of afatinib- or erlotinib-treated patients with lung squamous cell carcinoma: secondary analysis of the LUX-Lung 8 randomized clinical trial. JAMA Oncol 4:1189–1197Google Scholar
  55. 55.
    Barratt DT, Somogyi AA (2017) Role of pharmacogenetics in personalised imatinib dosing. Transl Cancer Res 6:S1541–S1557Google Scholar
  56. 56.
    Togneri FS, Ward DG, Foster JM, Devall AJ, Wojtowicz P, Alyas S, Vasques FR, Oumie A, James ND, Cheng KK, Zeegers MP, Deshmukh N, O’Sullivan B, Taniere P, Spink KG, McMullan DJ, Griffiths M, Bryan RT (2016) Genomic complexity of urothelial bladder cancer revealed in urinary cfDNA. Eur J Hum Genet 24(8):1167–1174Google Scholar
  57. 57.
    Taly V, Pekin D, Benhaim L, Kotsopoulos SK, Le Corre D, Li X, Atochin I, Link DR, Griffiths AD, Pallier K, Blons H, Bouché O, Landi B, Hutchison JB, Laurent-Puig P (2013) Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem 59(12):1722–1731Google Scholar
  58. 58.
    Nakamura Y (2015) Challenges and future directions of immunopharmacogenomics. In: Nakamura Y (ed) Immunopharmacogenomics. Springer, Tokyo, pp 159–162Google Scholar
  59. 59.
    Deng X, Nakamura Y (2017) Cancer precision medicine: from cancer screening to drug selection and personalized immunotherapy. Trends Pharmacol Sci 38(1):15–24Google Scholar
  60. 60.
    Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, van der Flier WM (2016) Alzheimer’s disease. Lancet 388(10043):505–517Google Scholar
  61. 61.
    Lill CM (2016) Genetics of Parkinson’s disease. Mol Cell Probes 30:386–396Google Scholar
  62. 62.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823Google Scholar
  63. 63.
    Raffel J, Wakerley B, Nicholas R (2016) Multiple sclerosis. Medicine 44(9):537–541Google Scholar
  64. 64.
    Chatawa J (2017) Treating clinically isolated syndrome: the long game. J Neurol Neurosurg Psychiatry 88(4):284Google Scholar
  65. 65.
    Stilund M, Reuschlein AK, Christensen T, Møller HJ, Rasmussen PV, Petersen T (2014) Soluble CD163 as a marker of macrophage activity in newly diagnosed patients with multiple sclerosis. PLoS One 9(6):e98588Google Scholar
  66. 66.
    Nagalla S, Bray PF (2016) Personalized medicine in thrombosis: back to the future. Blood 127(22):2665–2671Google Scholar
  67. 67.
    Johnson JA (2012) Warfarin pharmacogenetics: a rising tide for its clinical value. Circulation 125(16):1964–1966Google Scholar
  68. 68.
    Mega JL, Walker JR, Ruff CT et al (2015) Genetics and the clinical response to warfarin and edoxaban: findings from the randomised, double-blind ENGAGE AF-TIMI 48 trial. Lancet 385(9984):2280–2287Google Scholar
  69. 69.
    Leonard D, Svenungsson E, Dahlqvist J, Alexsson A, Ärlestig L, Taylor KE, Sandling JK, Bengtsson C, Frodlund M, Jönsen A, Eketjäll S, Jensen-Urstad K, Gunnarsson I, Sjöwall C, Bengtsson AA, Eloranta ML, Syvänen AC, Rantapää-Dahlqvist S, Criswell LA, Rönnblom L (2018) Novel gene variants associated with cardiovascular disease in systemic lupus erythematosus and rheumatoid arthritis. Ann Rheum Dis. 77(7):1063–1069Google Scholar
  70. 70.
    Christiansen MK, Larsen SB, Nyegaard M, Neergaard-Petersen S, Ajjan R, Würtz M, Kristensen SD (2017) Coronary artery disease-associated genetic variants and biomarkers of inflammation. PloS one 12(7):e0180365Google Scholar
  71. 71.
    LeBlanc M, Zuber V, Andreassen BK, Witoelar A, Zeng L, Bettella F, Wang Y, McEvoy LK, Thompson WK, Schork AJ, Reppe S, Barrett-Connor E, Ligthart S, Dehghan A, Gautvik KM, Nelson CP, Schunkert H, Samani NJ, CARDIoGRAM Consortium, Ridker PM, Chasman DI, Aukrust P, Djurovic S, Frigessi A, Desikan RS, Dale AM, Andreassen OA (2016) Identifying novel gene variants in coronary artery disease and shared genes with several cardiovascular risk factors. Circ Res 118(1):83–94Google Scholar
  72. 72.
    Soliday FK, Conley YP, Henker R (2010) Pseudocholinesterase deficiency: a comprehensive review of genetic, acquired, and drug influences. AANA J 78(4):313–320Google Scholar
  73. 73.
    Kaye AD, Mahakian T, Kaye AJ, Pham AA, Hart BM, Gennuso S, Cornett EM, Gabriel R, Urman RD (2018) Pharmacogenomics, precision medicine, and implications on anesthesia care. Best Pract Res Clin Anaesthesiol 32:61–81. CrossRefGoogle Scholar
  74. 74.
    Palmer SN, Giesecke NM, Body SC, Shernan SK, Fox AA, Collard CD (2005) Pharmacogenetics of anesthetic and analgesic agents. Anesthesiology 102(3):663–671Google Scholar
  75. 75.
    Fitipaldi H, McCarthy MI, Florez JC, Franks PW (2018) A global overview of precision medicine in type 2 diabetes. Diabetes 67(10):1911–1922Google Scholar
  76. 76.
    Moltke I, Grarup N, Jørgensen ME et al (2014) A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature 512(7513):190–193Google Scholar
  77. 77.
    Estrada K, Aukrust I, Bjørkhaug L, SIGMA Type 2 Diabetes Consortium et al (2014) Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA 311:2305–2314Google Scholar
  78. 78.
    Zhou K, Yee SW, Seiser EL, MetGen Investigators; DPP Investigators; ACCORD Investigators et al (2016) Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet 48(9):1055–1059Google Scholar
  79. 79.
    Perlis RH (2014) Pharmacogenomic testing and personalized treatment of depression. Clin Chem. 60(1):53–59. CrossRefGoogle Scholar
  80. 80.
    Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA (2013) Applications of CYP450 testing in the clinical setting. Mol Diagn Ther 17(3):165–184Google Scholar
  81. 81.
    Lobello KW, Preskorn SH, Guico-Pabia CJ, Jiang Q, Paul J, Nichols AI, Patroneva A, Ninan PT (2010) Cytochrome P450 2D6 phenotype predicts antidepressant efficacy of venlafaxine: a secondary analysis of 4 studies in major depressive disorder. J Clin Psychiatry 71(11):1482–1487Google Scholar
  82. 82.
    Finch RA, Sartorelli AC, Piwnica-Worms D (1999) Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal fluid drug-permeability barrier. Proc Natl Acad Sci U S A 96(7):3900–3905Google Scholar
  83. 83.
    de Leon J (2009) The future (or lack of future) of personalized prescription in psychiatry. Pharmacol Res 59(2):81–89Google Scholar
  84. 84.
    de Leon J (2006) The AmpliChip CYP450 test: personalized medicine has arrived in psychiatry. Expert Rev Mol Diagn 6(3):277–286Google Scholar
  85. 85.
    Filaković P, Petek A (2009) Personalized pharmacotherapy in psychiatry. Psychiatr Danub 21(3):341–346Google Scholar
  86. 86.
    Skrętkowicz J, Barańska M, Rychlik-Sych M (2013) Clinical significance of pharmacogenetics in psychiatry. Wiad Lek 66(2 Pt 2):185–191Google Scholar
  87. 87.
    Spina E, de Leon J (2015) Clinical applications of CYP genotyping in psychiatry. J Neural Transm (Vienna) 122(1):5–28Google Scholar
  88. 88.
    Arneet DK, Class SA, Glasser SP (2006) Pharmacogenetics of antihypertensive treatment. Vasc Pharmacol 44(2):107–118Google Scholar
  89. 89.
    Johnson JA, Zineh I, Puckett BJ, McGorray SP, Yarandi HN, Pauly DF (2003) Beta 1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin Pharmacol Ther 74(1):44–52Google Scholar
  90. 90.
    Bengtsson K, Melander O, Orho-Melander M (2001) Polymorphism in the beta(1)-adrenergic receptor gene and hypertension. Circulation 104(2):187–190Google Scholar
  91. 91.
    Shin J, Lobmeyer MT, Gong Y (2007) Relation of beta(2)-adrenoceptor haplotype to risk of death and heart transplantation in patients with heart failure. Am J Cardiol 99(2):250–255Google Scholar
  92. 92.
    Cooper-DeHoff RM, Johnson JA (2016) Hypertension pharmacogenomics: in search of personalized treatment approaches. Nat Rev Nephrol 12(2):110–122Google Scholar
  93. 93.
    Byrd JB (2016) Personalized medicine and treatment approaches in hypertension: current perspectives. Integr Blood Pressure Control 9:59–67Google Scholar
  94. 94.
    Kushner J (2014) The ethics of personalized medicine. Pers Med Univ 3:42–45Google Scholar
  95. 95.
    Relling M (2015) Clinical implementation of pharmacogenetics: CPIC guidelines. Clin Chem Lab Med 53:S75Google Scholar
  96. 96.
    Jansen ME, Rigter T, Rodenburg W, Fleur TMC, Houwink EJF, Weda M, Cornel MC (2017) Review of the reported measures of clinical validity and clinical utility as arguments for the implementation of pharmacogenetic testing: a case study of statin-induced muscle toxicity. Front Pharmacol 8:555Google Scholar
  97. 97.
    Tonk EC, Gurwitz D, Maitland-van der Zee AH, Janssens AC (2016) Assessment of pharmacogenetic tests: presenting measures of clinical validity and potential population impact in association studies. Pharmacogenomics J 17:386–392Google Scholar
  98. 98.
    Vogenberg FR, Isaacson Barash C, Pursel M (2010) Personalized medicine: part 1: evolution and development into theranostics. P T 35(10):560–576Google Scholar
  99. 99.
    Atutornu J, Hayre CM (2018) Personalized medicine and medical imaging: opportunities and challenges for contemporary health care. J Med Imaging Radiat Sci 49(4):352–359Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dev Bukhsh Singh
    • 1
  1. 1.Department of BiotechnologyInstitute of Biosciences and Biotechnology, Chhatrapati Shahu Ji Maharaj UniversityKanpurIndia

Personalised recommendations