Isolation and Cultivation of Alkaliphiles

  • Vadim V. KevbrinEmail author
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 172)


Alkaliphilic microorganisms are ubiquitous and inhabit various econiches on Earth. Alkaline environments suitable for alkaliphilic microbial communities may be created by certain geological processes or human activities. Moreover, a significant contribution to the emergence of alkaline conditions may be due to the activity of neutralophilic microorganisms through certain reactions, which explains the widespread distribution of alkaliphiles. Alkaliphilic microorganisms are part of extremophiles and become interesting and useful in environmental and industrial microbiology. With increasing knowledge of alkaliphiles, we greatly increase their biotechnological and industrial application potential. New microorganisms from natural habitats serve as a practically endless source of new enzymes. This chapter summarizes the scattered data on alkaliphiles isolated from habitats other than soda lakes. The conditions for occurrence of alkaline habitats are also considered. Moreover, the chapter reviews some important features on preparation of media for the isolation and cultivation of alkaliphiles. The chapter also includes relevant information on chromatographic analysis of alkaliphiles culture.

Graphical Abstract


Alkaline environments Alkaliphiles Alkaliphilic eukaryotes Chromatography Extremophiles Isolation of alkaliphiles Microbial communities 



Flame ionization detector


Gas-liquid chromatography


High-performance liquid chromatography


Operational taxonomic unit



This work was partially supported by a grant No. 18-04-00236 from the Russian Foundation for Basic Research “Degradation of nitrogen-containing components of a bacterial cell by alkaliphilic microorganisms of soda lakes” and by Basic Research Program No 17, Subprogram 2 of the Russian Academy of Sciences “Evolution of organic world and planetary processes.”


  1. 1.
    Horikoshi K (2011) General physiology of alkaliphiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 99–118Google Scholar
  2. 2.
    Horikoshi K, Bull AT (2011) Prologue: definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 3–15Google Scholar
  3. 3.
    Wiegel J (1998) Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles 2:257–267PubMedGoogle Scholar
  4. 4.
    Wiegel J (2011) Anaerobic alkaliphiles and alkaliphilic poly-extremophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 81–97Google Scholar
  5. 5.
    Vedder A (1934) Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingsbodems. Ant van Leeuwenhoek. J Microbiol Serol 1:143–147Google Scholar
  6. 6.
    Horikoshi K (2011) Introduction and history of alkaliphiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 19–26Google Scholar
  7. 7.
    Niimura Y, Koh E, Yanagida F, Suzuki K-I, Komagata K, Kozaki M (1990) Amphibacillus xylanus gen. nov., sp. nov., a facultatively anaerobic sporeforming xylan-digesting bacterium which lacks cytochrome, quinone, and catalase. Int J Syst Bacteriol 40:297–301Google Scholar
  8. 8.
    Mathrani IM, Boone DR, Mah RA, Fox GE, Lau PP (1988) Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Bacteriol 38:139–142PubMedGoogle Scholar
  9. 9.
    Grant WD, Jones BE (2016) Bacteria, archaea and viruses of soda lakes. In: Schagerl M (ed) Soda lakes of East Africa. Springer, Cham, pp 97–147Google Scholar
  10. 10.
    Deocampo DM, Renaut RW (2016) Geochemistry of African soda lakes. In: Schagerl M (ed) Soda lakes of East Africa. Springer, Cahm, pp 77–93Google Scholar
  11. 11.
    Zavarzin GA (1993) Epicontinental soda lake are probable relict biotopes of terrestrial biota formation. Microbiology RU 62:473–479Google Scholar
  12. 12.
    Zavarzin GA (2005) Recent microbiology and Precambrian paleontology. In: Hoover RB, Rosanov AY, Paepe R (eds) Perspectives in astrobiology. NATO science series. I: life and behavioural sciences, vol 366. IOS Press, Amsterdam, pp 201–216Google Scholar
  13. 13.
    Chavagnac V, Monnin C, Ceuleneer G, Boulart C, Hoareau G (2013) Characterization of hyperalkaline fluids produced by low-temperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites. Geochem Geophys Geosyst 14:2496–2522Google Scholar
  14. 14.
    Barnes I, Lamarche VC, Himmelberg G (1967) Geochemical evidence of present-day serpentinization. Science 156:830–832PubMedGoogle Scholar
  15. 15.
    Pedersen K, Nilsson E, Arlinger J, Hallbeck L, O’Neill A (2004) Distribution, diversity and activity of microorganisms in the hyper-alkaline spring waters of Maqarin in Jordan. Extremophiles 8:151–164PubMedGoogle Scholar
  16. 16.
    Tiago I, Veríssimo A (2013) Microbial and functional diversity of a subterrestrial high pH groundwater associated to serpentinization. Environ Microbiol 15:1687–1706PubMedGoogle Scholar
  17. 17.
    Brazelton WJ, Morrill PL, Szponar N, Schrenk MO (2013) Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs. Appl Environ Microbiol 79:3906–3916PubMedPubMedCentralGoogle Scholar
  18. 18.
    Woycheese KM, Meyer-Dombard DR, Cardace D, Argayosa AM, Arcilla CA (2015) Out of the dark: transitional subsurface-to-surface microbial diversity in a terrestrial serpentinizing seep (Manleluag, Pangasinan, the Philippines). Front Microbiol 6:44PubMedPubMedCentralGoogle Scholar
  19. 19.
    Quéméneur M, Palvadeau A, Postec A, Monnin C, Chavagnac V, Ollivier B, Erauso G (2015) Endolithic microbial communities in carbonate precipitates from serpentinite-hosted hyperalkaline springs of the Voltri Massif (Ligurian Alps, Northern Italy). Environ Sci Pollut Res 22:13613–13624Google Scholar
  20. 20.
    Rempfert KR, Miller HM, Bompard N, Nothaft D, Matter JM, Kelemen P, Fierer N, Templeton AS (2017) Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman. Front Microbiol 8:56PubMedPubMedCentralGoogle Scholar
  21. 21.
    Neubeck A, Sun L, Müller B, Ivarsson M, Hosgörmez H, Özcan D, Broman C, Schnürer A (2017) Microbial community structure of a serpentine-hosted abiotic gas seepage at the Chimaera ophiolite, Turkey. Appl Environ Microbiol 83:e03430–e03416PubMedPubMedCentralGoogle Scholar
  22. 22.
    Crespo-Medina M, Twing KI, Sánchez-Murillo R, Brazelton WJ, McCollom TM, Schrenk MO (2017) Methane dynamics in a tropical serpentinizing environment: the Santa Elena Ophiolite, Costa Rica. Front Microbiol 8:916PubMedPubMedCentralGoogle Scholar
  23. 23.
    Suzuki S, Ishii S, Wu A, Cheung A, Tenney A, Wanger G, Wanger G, Gijs Kuenen J, Nealson KH (2013) Microbial diversity in The Cedars, an ultrabasic, ultrareducing, and low salinity serpentinizing ecosystem. Proc Natl Acad Sci U S A 110:15336–15341PubMedPubMedCentralGoogle Scholar
  24. 24.
    Kelley DS et al (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307:1428–1434PubMedGoogle Scholar
  25. 25.
    Brazelton WJ, Schrenk MO, Kelley DS, Baross JA (2006) Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl Environ Microbiol 72:6257–6270PubMedPubMedCentralGoogle Scholar
  26. 26.
    Brazelton WJ, Ludwig KA, Sogin ML, Andreishcheva EN, Kelley DS, Shen C-C, Edwards RL, Baross JA (2010) Archaea and bacteria with surprising microdiversity show shifts in dominance over 1,000-year time scales in hydrothermal chimneys. Proc Natl Acad Sci U S A 107:1612–1617PubMedPubMedCentralGoogle Scholar
  27. 27.
    Proskurowski G et al (2008) Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 319:604–607PubMedGoogle Scholar
  28. 28.
    Postec A, Quéméneur M, Bes M, Mei N, Benaïssa F, Payri C, Pelletier B, Monnin C, Guentas-Dombrowsky L, Ollivier B, Gérard E, Pisapia C, Gérard M, Ménez B, Erauso G (2015) Microbial diversity in a submarine carbonate edifice from the serpentinizing hydrothermal system of the Prony Bay (New Caledonia) over a 6-year period. Front Microbiol 6:857PubMedPubMedCentralGoogle Scholar
  29. 29.
    Frouin E, Bes M, Ollivier B, Quéméneur M, Postec A, Debroas D, Armougom F, Erauso G (2017) Diversity of rare and abundant prokaryotic phylotypes in the Prony Hydrothermal Field and comparison with other serpentinite-hosted ecosystems. Front Microbiol 9:102Google Scholar
  30. 30.
    Bes M, Merrouch M, Joseph M, Quéméneur M, Payri C, Pelletier B, Ollivier B, Fardeau M-L, Erauso G, Postec A (2015) Acetoanaerobium pronyense sp. nov., an anaerobic alkaliphilic bacterium isolated from a carbonate chimney of the Prony Hydrothermal Field (New Caledonia). Int J Syst Evol Microbiol 65:2574–2580PubMedGoogle Scholar
  31. 31.
    Ben Aissa F, Postec A, Erauso G, Payri C, Pelletier B, Hamdi M, Fardeau M-L, Ollivier B (2015) Characterization of Alkaliphilus hydrothermalis sp. nov., a novel alkaliphilic anaerobic bacterium, isolated from a carbonaceous chimney of the Prony Hydrothermal Field, New Caledonia. Extremophiles 19:183–188PubMedGoogle Scholar
  32. 32.
    Mei N, Postec A, Erauso G, Joseph M, Pelletier B, Payri C, Ollivier B, Quéméneur M (2016) Serpentinicella alkaliphila gen. nov., sp. nov., a novel alkaliphilic anaerobic bacterium isolated from the serpentinite-hosted Prony Hydrothermal Field, New Caledonia. Int J Syst Evol Microbiol 66:4464–4470PubMedGoogle Scholar
  33. 33.
    Suzuki S, Kuenen JG, Schipper K, van der Velde S, Ishii S, Wu A, Sorokin DY, Tenney A, Meng XY, Morrill PL, Kamagata Y, Muyzer G, Nealson KH (2014) Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site. Nat Commun 5:3900PubMedPubMedCentralGoogle Scholar
  34. 34.
    Tiago I, Mendes V, Pires C, Morais PV, Veríssimo A (2006) Chimaereicella alkaliphila gen. nov., sp. nov., a gram-negative alkaliphilic bacterium isolated from a nonsaline alkaline groundwater. Syst Appl Microbiol 29:100–108PubMedGoogle Scholar
  35. 35.
    Schulte M, Blake D, Hoehler T, McCollom T (2006) Serpentinization and its implications for life on the early Earth and Mars. Astrobiology 6:364–376PubMedGoogle Scholar
  36. 36.
    Russell MJ, Hall AJ, Martin W (2010) Serpentinization as a source of energy at the origin of life. Geobiology 8:355–371PubMedGoogle Scholar
  37. 37.
    Sleep NH, Bird DK, Pope EC (2011) Serpentinite and the dawn of life. Philos Trans R Soc Lond Ser B Biol Sci 366:2857–2869Google Scholar
  38. 38.
    Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285PubMedGoogle Scholar
  39. 39.
    Takami H, Kobata K, Nagahama T, Kobayashi H, Inoue A, Horikoshi K (1999) Biodiversity in deep-sea sites located near the south part of Japan. Extremophiles 3:97–102PubMedGoogle Scholar
  40. 40.
    Kim Y-G, Choi DH, Hyun S, Cho BC (2007) Oceanobacillus profundus sp. nov., isolated from a deep-sea sediment core. Int J Syst Evol Microbiol 57:409–413PubMedGoogle Scholar
  41. 41.
    Yu C, Yu S, Zhang Z, Li Z, Zhang X-H (2014) Oceanobacillus pacificus sp. nov., isolated from a deep-sea sediment. Int J Syst Evol Microbiol 64:1278–1283PubMedGoogle Scholar
  42. 42.
    Lu J, Nogi Y, Takami H (2001) Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol Lett 205:291–297PubMedGoogle Scholar
  43. 43.
    Ishikawa M, Tanasupawat S, Nakajima K, Kanamori H, Ishizaki S, Kodama K, Okamoto-Kainuma A, Koizumi Y, Yamamoto Y, Yamasato K (2009) Alkalibacterium thalassium sp. nov., Alkalibacterium pelagium sp. nov., Alkalibacterium putridalgicola sp. nov. and Alkalibacterium kapii sp. nov., slightly halophilic and alkaliphilic marine lactic acid bacteria isolated from marine organisms and salted foods collected in Japan and Thailand. Int J Syst Evol Microbiol 59:1215–1226PubMedGoogle Scholar
  44. 44.
    Ishikawa M, Nakajima K, Ishizaki S, Kodama K, Okamoto-Kainuma A, Koizumi Y, Yamamoto Y, Yamasato K (2011) Alkalibacterium subtropicum sp. nov., a slightly halophilic and alkaliphilic marine lactic acid bacterium isolated from decaying marine algae. Int J Syst Evol Microbiol 61:2996–3002PubMedGoogle Scholar
  45. 45.
    Kurata A, Miyazaki M, Kobayashi T, Nogi Y, Horikoshi K (2007) Alkalimonas collagenimarina sp. nov., a psychrotolerant, obligate alkaliphile isolated from deep-sea sediment. Int J Syst Evol Microbiol 57:1549–1553PubMedGoogle Scholar
  46. 46.
    Zhang J, Wang J, Song F, Fang C, Xin Y, Zhang Y (2011) Bacillus nanhaiisediminis sp. nov., an alkalitolerant member of Bacillus rRNA group 6. Int J Syst Evol Microbiol 61:1078–1083PubMedGoogle Scholar
  47. 47.
    Wu Y-H, Shen Y-Q, Xu X-W, Wang C-S, Oren A, Wu M (2009) Pseudidiomarina donghaiensis sp. nov. and Pseudidiomarina maritima sp. nov., isolated from the East China Sea. Int J Syst Evol Microbiol 59:1321–1325PubMedGoogle Scholar
  48. 48.
    Hu ZY, Li Y (2007) Pseudidiomarina sediminum sp. nov., a marine bacterium isolated from coastal sediments of Luoyuan Bay in China. Int J Syst Evol Microbiol 57:2572–2577PubMedGoogle Scholar
  49. 49.
    Huang SP, Chang HY, Chen JS, Jean WD, Shieh WY (2012) Aliidiomarina taiwanensis gen. nov., sp. nov., isolated from shallow coastal water. Int J Syst Evol Microbiol 62:155–161PubMedGoogle Scholar
  50. 50.
    Srinivas TNR, Nupur, Anil Kumar P (2012) Aliidiomarina haloalkalitolerans sp. nov., a marine bacterium isolated from coastal surface seawater. Antonie Van Leeuwenhoek 101:761–768PubMedGoogle Scholar
  51. 51.
    Amoozegar MA, Shahinpei A, Abolhassan S, Fazeli S, Schumann P, Spröer C, Ventosa A (2016) Aliidiomarina iranensis sp. nov., a haloalkaliphilic bacterium from a coastal-marine wetland. Int J Syst Evol Microbiol 66:2099–2105Google Scholar
  52. 52.
    Shahinpei A, Amoozegar MA, Abolhassan S, Fazeli S, Schumann P, Spröer C, Ventosa A (2017) Aliidiomarina sedimenti sp. nov., a haloalkaliphilic bacterium in the family Idiomarinaceae. Int J Syst Evol Microbiol 67:2087–2092PubMedGoogle Scholar
  53. 53.
    Shahinpei A, Amoozegar MA, Fazeli SAS, Schumann P, Ventosa A (2014) Salinispirillum marinum gen. nov., sp. nov., a haloalkaliphilic bacterium in the family ‘Saccharospirillaceae’. Int J Syst Evol Microbiol 64:3610–3615PubMedGoogle Scholar
  54. 54.
    Zhao J-X, Liu Q-Q, Zhou Y-X, Chen G-J, Du Z-J (2015) Alkalimarinus sediminis gen. nov., sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 65:3511–3516PubMedGoogle Scholar
  55. 55.
    Zhang G, Yang Y, Wang S, Sun Z, Jiao K (2015) Alkalimicrobium pacificum gen. nov., sp. nov., a marine bacterium in the family Rhodobacteraceae. Int J Syst Evol Microbiol 65:2453–2458PubMedGoogle Scholar
  56. 56.
    IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015 international soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, RomeGoogle Scholar
  57. 57.
    Zhang Y-G, Lu X-H, Ding Y-B, Wang S-J, Zhou X-K, Wang H-F, Guo J-W, Liu Y-H, Duan Y-Q, Li W-J (2016) Lipingzhangella halophila gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 66:4071–4076PubMedGoogle Scholar
  58. 58.
    Zhang Y-G, Lu X-H, Ding Y-B, Zhou X-K, Li L, Guo J-W, Wang H-F, Duan Y-Q, Li W-J (2016) Phytoactinopolyspora alkaliphila sp. nov., an alkaliphilic actinomycete isolated from a saline-alkaline soil. Int J Syst Evol Microbiol 66:2058–2063PubMedGoogle Scholar
  59. 59.
    Zhang Y-G, Wang H-F, Yang L-L, Zhou X-K, Zhi X-Y, Duan Y-Q, Xiao M, Zhang Y-M, Li W-J (2016) Egibacter rhizosphaerae gen. nov., sp. nov., an obligately halophilic, facultatively alkaliphilic actinobacterium and proposal of Egibaceraceae fam. nov. and Egibacterales ord. nov. Int J Syst Evol Microbiol 66:283–289PubMedGoogle Scholar
  60. 60.
    Zhang Y-G, Zhou X-K, Guo J-W, Xiao M, Wang H-F, Wang Y, Bobodzhanova K, Li W-J (2018) Bacillus tamaricis sp. nov., an alkaliphilic bacterium isolated from a Tamarix cone soil. Int J Syst Evol Microbiol 68:558–563PubMedGoogle Scholar
  61. 61.
    Olivera N, Siňeriz F, Breccia JD (2005) Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from Atriplex lampa rhizosphere, Patagonia, Argentina. Int J Syst Evol Microbiol 55:443–447PubMedGoogle Scholar
  62. 62.
    Borsodi AK, Tóth E, Aszalós JM, Bárány A, Schumann P, Spröer C, Kovács AL, Márialigeti K, Szili-Kovács T (2017) Bacillus kiskunsagensis sp. nov., a novel alkaliphilic and moderately halophilic bacterium isolated from soda soil. Int J Syst Evol Microbiol 67:3490–3495PubMedGoogle Scholar
  63. 63.
    Keshri J, Mody K, Jha B (2013) Bacterial community structure in a semi-arid haloalkaline soil using culture independent method. Geomicrobiol J 30:517–529Google Scholar
  64. 64.
    Sorokin ID, Zadorina EV, Kravchenko IK, Boulygina ES, Tourova TP, Sorokin DY (2008) Natronobacillus azotifigens gen. nov., sp. nov., an anaerobic diazotrophic haloalkaliphile from soda-rich habitats. Extremophiles 12:819–827PubMedGoogle Scholar
  65. 65.
    Sorokin ID, Kravchenko IK, Tourova TP, Kolganova TV, Boulygina ES, Sorokin DY (2008) Bacillus alkalidiazotrophicus sp. nov., a diazotrophic, low salt-tolerant alkaliphile isolated from Mongolian soda soil. Int J Syst Evol Microbiol 58:2459–2464PubMedGoogle Scholar
  66. 66.
    Sorokin DY, Kolganova TV, Khijniak TV, Jones BE, Kublanov IV (2017) Diversity of cultivated aerobic poly-hydrolytic bacteria in saline alkaline soils. PeerJ 5:e3796PubMedPubMedCentralGoogle Scholar
  67. 67.
    Srinivas A, Divyasree B, Sasikala C, Tushar L, Bharti D, Ramana CV (2016) Description of Jeotgalibacillus alkaliphilus sp. nov., isolated from a solar salt pan, and Jeotgalibacillus terrae sp. nov., a name to replace ‘Jeotgalibacillus soli’ Chen et al. 2010. Int J Syst Evol Microbiol 66:5167–5172PubMedGoogle Scholar
  68. 68.
    Pérez-Davó A, Aguilera M, Ramos-Cormenzana A, Monteoliva-Sánchez M (2014) Alkalibacillus almallahensis sp. nov., a halophilic bacterium isolated from an inland solar saltern. Int J Syst Evol Microbiol 64:2066–2071PubMedGoogle Scholar
  69. 69.
    Borsodi AK, Szili-Kovács T, Schumann P, Spröer C, Márialigeti K, Tóth E (2017) Nesterenkonia pannonica sp. nov., a novel alkaliphilic and moderately halophilic actinobacterium. Int J Syst Evol Microbiol 67:4116–4120PubMedGoogle Scholar
  70. 70.
    Borsodi AK, Korponai K, Schumann P, Spröer C, Felföldi T, Márialigeti K, Szili-Kovács T, Tóth E (2017) Nitrincola alkalilacustris sp. nov. and Nitrincola schmidtii sp. nov., alkaliphilic bacteria isolated from soda pans, and emended description of the genus Nitrincola. Int J Syst Evol Microbiol 67:5159–5164PubMedGoogle Scholar
  71. 71.
    Schmidt M, Priemé A, Stougaard P (2006) High microbial diversity in permanently cold and alkaline ikaite columns from Greenland. Extremophiles 10:551–562PubMedGoogle Scholar
  72. 72.
    Trampe E, Castenholz RW, Larsen JE, Kühl M (2017) Phototrophic microbes form endolithic biofilms in ikaite tufa columns (SW Greenland). Environ Microbiol 19:4754–4770PubMedGoogle Scholar
  73. 73.
    Vester JK, Glaring MA, Stougaard P (2014) Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing. Microb Cell Factories 13:72Google Scholar
  74. 74.
    Schmidt M, Prieme A, Stougaard P (2006) Rhodonellum psychrophilum gen. nov., sp. nov., a novel psychrophilic and alkaliphilic bacterium of the phylum Bacteroidetes isolated from Greenland. Int J Syst Evol Microbiol 56:2887–2892PubMedGoogle Scholar
  75. 75.
    Schmidt M, Priemé A, Stougaard P (2007) Arsukibacterium ikkense gen. nov., sp. nov, a novel alkaliphilic, enzyme-producing γ-Proteobacterium isolated from a cold and alkaline environment in Greenland. Syst Appl Microbiol 30:197–201PubMedGoogle Scholar
  76. 76.
    Schmidt M, Priemé A, Johansen A, Stougaard P (2012) Alkalilactibacillus ikkensis, gen. nov., sp. nov., a novel enzyme-producing bacterium from a cold and alkaline environment in Greenland. Extremophiles 16:297–305Google Scholar
  77. 77.
    Mono Basin Ecosystem Study Committee, Board on Environmental Studies and Toxicology, Commission on Physical Sciences, Mathematics, and Resources, National Research Council (1987) The Mono Basin ecosystem: effects of changing lake level. National Academy Press, WashingtonGoogle Scholar
  78. 78.
    Reimer A, Landmann G, Kempe S (2009) Lake Van, Eastern Anatolia, hydrochemistry and history. Aquat Geochem 15:195–222Google Scholar
  79. 79.
    Roadcap GS, Sanford RA, Jin Q, Pardinas JR, Bethke CM (2006) Extremely alkaline (pH > 12) ground water hosts diverse microbial community. Ground Water 44:511–517PubMedGoogle Scholar
  80. 80.
    Kalwasińska A, Felföldi T, Szabó A, Deja-Sikora E, Kosobucki P, Walczak M (2017) Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland. Antonie Van Leeuwenhoek 110:945–962PubMedPubMedCentralGoogle Scholar
  81. 81.
    Agnew MD, Koval SF, Jarrell KF (1995) Isolation and characterization of novel alkaliphiles from bauxite-processing waste and description of Bacillus vedderi sp. nov., a new obligate alkaliphile. Syst Appl Microbiol 18:221–230Google Scholar
  82. 82.
    Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM, Dohnalkova A, Fredrikson JK (2001) Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South Africa gold mine. Int J Syst Evol Microbiol 51:1245–1256PubMedGoogle Scholar
  83. 83.
    Ren L, Han Y, Yang S, Tan X, Wang J, Zhao X, Fan J, Dong T, Zhou Z (2014) Isolation, identification and primary application of bacteria from putrid alkaline silica sol. Front Chem Sci Eng 8:330–339Google Scholar
  84. 84.
    Aino K, Hirota K, Okamoto T, Tu Z, Matsuyama H, Yumoto I (2018) Microbial communities associated with indigo fermentation that thrive in anaerobic alkaline environments. Front Microbiol 9:2196PubMedPubMedCentralGoogle Scholar
  85. 85.
    Yumoto I, Hirota K, Nodasak Y, Yokota Y, Hoshino T, Nakajima K (2004) Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 54:2379–2383PubMedGoogle Scholar
  86. 86.
    Nishita M, Hirota K, Matsuyama H, Yumoto I (2017) Development of media to accelerate the isolation of indigo-reducing bacteria, which are difficult to isolate using conventional media. World J Microbiol Biotechnol 33:133PubMedGoogle Scholar
  87. 87.
    Aino K, Narihiro T, Minamida K, Kamagata Y, Yoshimune K, Yumoto I (2010) Bacterial community characterization and dynamics of indigo fermentation. FEMS Microbiol Ecol 74:174–183PubMedGoogle Scholar
  88. 88.
    Okamoto T, Aino K, Narihiro T, Matsuyama H, Yumoto I (2017) Analysis of microbiota involved in the aged natural fermentation of indigo. World J Microbiol Biotechnol 33:70PubMedGoogle Scholar
  89. 89.
    Collins MD, Lund BM, Farrow JAE, Schleifer KH (1983) Chemotaxonomic study of an alkalophilic bacterium, Exiguobacterium aurantiacum gen. nov., sp. nov. J Gen Microbiol 129:2037–2042Google Scholar
  90. 90.
    Kulshreshtha NM, Kumar R, Begum Z, Shivaji S, Kumar A (2013) Exiguobacterium alkaliphilum sp. nov. isolated from alkaline wastewater drained sludge of a beverage factory. Int J Syst Evol Microbiol 63:4374–4379Google Scholar
  91. 91.
    Ntougias S, Russell NJ (2001) Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash waters. Int J Syst Evol Microbiol 51:1161–1170PubMedGoogle Scholar
  92. 92.
    Ntougias S, Zervakis GI, Ehaliotis C, Kavroulakis N, Papadopoulou KK (2006) Ecophysiology and molecular phylogeny of bacteria isolated from alkaline two-phase olive mill wastes. Res Microbiol 157:376–385PubMedGoogle Scholar
  93. 93.
    Tang X, Zhai L, Lin Y, Yao S, Wang L, Ge Y, Liu Y, Zhang X, Zhang T, Zhang L, Liu J, Cheng C (2017) Halomonas alkalicola sp. nov., isolated from a household product plant. Int J Syst Evol Microbiol 67:1546–1550PubMedGoogle Scholar
  94. 94.
    Rijkenberg MJA, Kort R, Hellingwerf KJ (2001) Alkalispirillum mobile gen. nov., spec. nov., an alkaliphilic non-phototrophic member of the Ectothiorhodospiraceae. Arch Microbiol 175:369–375PubMedGoogle Scholar
  95. 95.
    Vaz MGMV, Genuário DB, Andreote APD, Malone CFS, Sant’Anna CL, Barbiero L, Fiore MF (2015) Pantanalinema gen. nov. and Alkalinema gen. nov.: novel pseudanabaenacean genera (Cyanobacteria) isolated from saline–alkaline lakes. Int J Syst Evol Microbiol 65:298–308PubMedGoogle Scholar
  96. 96.
    Chun S-J, Cui Y, Ko S-R, Lee H-G, Oh H-M, Ahn C-Y (2017) Silanimonas algicola sp. nov., isolated from laboratory culture of a bloom-forming cyanobacterium, Microcystis. Int J Syst Evol Microbiol 67:3274–3278PubMedGoogle Scholar
  97. 97.
    Wang G, Wu H, Zhang X, Zhang H, Yang X, Tian X, Li J, Xiang W, Li X (2013) Aliidiomarina sanyensis sp. nov., a hexabromocyclododecane assimilating bacterium from the pool of Spirulina platensis cultivation, Sanya, China. Antonie Van Leeuwenhoek 104:309–314PubMedGoogle Scholar
  98. 98.
    Berendes F, Gottschalk G, Heine-Dobbernack E, Moore ERB, Tindall BJ (1996) Halomonas desiderata sp. nov., a new alkaliphilic, halotolerant and denitrifying bacterium isolated from a municipal sewage works. Syst Appl Microbiol 19:158–167Google Scholar
  99. 99.
    Li Y, Mandelco L, Wiegel J (1993) Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum, sp. nov. Int J Syst Bacteriol 43:450–460Google Scholar
  100. 100.
    Li Y, Engle M, Mandelco L, Wiegel J (1994) Clostridium thermoalcaliphilum sp. nov., an anaerobic and thermotolerant facultative alkaliphile. Int J Syst Bacteriol 44:111–118PubMedGoogle Scholar
  101. 101.
    Pikuta E, Lysenko A, Suzina N, Osipov G, Kuznetsov B, Tourova T, Akimenko V, Laurinavichius K (2000) Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50:25–33PubMedGoogle Scholar
  102. 102.
    Allen TD, Caldwell ME, Lawson PA, Huhnke RL, Tanner RS (2010) Alkalibaculum bacchi gen. nov., sp. nov., a CO-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil. Int J Syst Evol Microbiol 60:2483–2489PubMedGoogle Scholar
  103. 103.
    Echigo A, Minegishi H, Shimane Y, Kamekura M, Usami R (2012) Natribacillus halophilus gen. nov., sp. nov., a moderately halophilic and alkalitolerant bacterium isolated from soil. Int J Syst Evol Microbiol 62:289–294PubMedGoogle Scholar
  104. 104.
    Usami R, Echigo A, Fukushima T, Mizuki T, Yoshida Y, Kamekura M (2007) Alkalibacillus silvisoli sp. nov., an alkaliphilic moderate halophile isolated from non-saline forest soil in Japan. Int J Syst Evol Microbiol 57:770–774PubMedGoogle Scholar
  105. 105.
    Inan K, Kacagan M, Ozer A, Belduz AO, Canakci S (2015) Algoriphagus trabzonensis sp. nov., isolated from freshwater, and emended description of Algoriphagus alkaliphilus. Int J Syst Evol Microbiol 65:2234–2240PubMedGoogle Scholar
  106. 106.
    Denizci AA, Kazan D, Erarslan A (2010) Bacillus marmarensis sp. nov., an alkaliphilic, protease- producing bacterium isolated from mushroom compost. Int J Syst Evol Microbiol 60:1590–1594PubMedGoogle Scholar
  107. 107.
    Yumoto I, Nakamura A, Iwata H, Kojima K, Kusumoto K, Nodasaka Y, Matsuyama H (2002) Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52:85–90PubMedGoogle Scholar
  108. 108.
    Yumoto M, Hishinuma-Narisawa M, Hirota K, Shingyo T, Takebe F, Nodasaka Y, Matsuyama H, Hara I (2004) Exiguobacterium oxidotolerans sp. nov., a novel alkaliphile exhibiting high catalase activity. Int J Syst Evol Microbiol 54:2013–2017PubMedGoogle Scholar
  109. 109.
    Sravanthi T, Tushar L, Sasikala C, Ramana CV (2015) Spirochaeta odontotermitis sp. nov., an obligately anaerobic, cellulolytic, halotolerant, alkaliphilic spirochaete isolated from the termite Odontotermes obesus (Rambur) gut. Int J Syst Evol Microbiol 65:4589–4594PubMedGoogle Scholar
  110. 110.
    Sravanthi T, Tushar L, Sasikala C, Ramana CV (2016) Alkalispirochaeta cellulosivorans gen. nov., sp. nov., a cellulose-hydrolysing, alkaliphilic, halotolerant bacterium isolated from the gut of a wood-eating cockroach (Cryptocercus punctulatus), and reclassification of four species of Spirochaeta as new combinations within Alkalispirochaeta gen. nov. Int J Syst Evol Microbiol 66:1612–1619PubMedGoogle Scholar
  111. 111.
    Aizawa T, Urai M, Iwabuchi N, Nakajima M, Sunairi M (2010) Bacillus trypoxylicola sp. nov., xylanase-producing, alkaliphilic bacteria isolated from the guts of Japanese horned beetle larvae (Trypoxylus dichotomus septentrionalis). Int J Syst Evol Microbiol 60:61–66PubMedGoogle Scholar
  112. 112.
    Ishikawa M, Kodama K, Yasuda H, Okamoto-Kainuma A, Koizumi K, Yamasato K (2007) Presence of halophilic and alkaliphilic lactic acid bacteria in various cheeses. Lett Appl Microbiol 44:308–313PubMedGoogle Scholar
  113. 113.
    Kempe S, Kaźmierczak J (2003) Modern soda lakes: model environments for an early alkaline ocean. In: Müller T, Müller H (eds) Modelling in natural sciences; design, validation and case studies. Springer, Berlin, pp 309–322Google Scholar
  114. 114.
    Bondarenko SA, Ianutsevich EA, Danilova OA, Grum-Grzhimaylo AA, Kotlova ER, Kamzolkina OV, Bilanenko EN, Tereshina VM (2017) Membrane lipids and soluble sugars dynamics of the alkaliphilic fungus Sodiomyces tronii in response to ambient pH. Extremophiles 21:743–754PubMedGoogle Scholar
  115. 115.
    Schagerl M (ed) (2016) Soda lakes of East Africa. Springer, ChamGoogle Scholar
  116. 116.
    Keresztes ZG, Felföldi T, Somogyi B, Székely G, Dragoş N, Márialigeti K, Bartha C, Vörös L (2012) First record of picophytoplankton diversity in Central European hypersaline lakes. Extremophiles 16:759–769PubMedPubMedCentralGoogle Scholar
  117. 117.
    Steiman R, Ford L, Ducros V, Lafond JL, Guiraud P (2004) First survey of fungi in hypersaline soil and water of Mono Lake area (California). Antonie Van Leeuwenhoek 85:69–83PubMedGoogle Scholar
  118. 118.
    Golubic S, Buch B (1978) Diatoms in Lake Van Sediments. In: Degens ET, Kurtman F (eds) Geology of Lake Van. Miner Res Explor Inst Turkey, vol 169. Ankara, pp 111–114Google Scholar
  119. 119.
    Amaral-Zettler LA (2013) Eukaryotic diversity at pH extremes. Front Microbiol 3:441PubMedPubMedCentralGoogle Scholar
  120. 120.
    Roesler CS, Culbertson CW, Etheridge SM, Goericke R, Kiene RP, Miller LG, Oremland RS (2002) Distribution, production, and ecophysiology of Picocystis strain ML in Mono Lake, California. Limnol Oceanogr 47:440–452Google Scholar
  121. 121.
    Di Menna ME (1959) Some physiological characters of yeasts from soils and allied habitats. J Gen Microbiol 20:13–23Google Scholar
  122. 122.
    Nagai K, Sakai T, Rantiatmodjo RM, Suzuki K, Gams W, Okada G (1995) Studies on the distribution of alkalophilic and alkali-tolerant soil fungi I. Mycoscience 36:247–256Google Scholar
  123. 123.
    Okada G, Niimura Y, Sakata T, Uchimura T, Ohara N, Suzuki H, Kozaki M (1993) Acremonium alcalophilum, a new alkalophilic cellulolytic hyphomycete. Trans Mycol Soc Jpn 34:171–185Google Scholar
  124. 124.
    Grum-Grzhimaylo AA, Georgieva ML, Bondarenko SA, Debets AJM, Bilanenko EN (2016) On the diversity of fungi from soda soils. Fungal Divers 76:27–74Google Scholar
  125. 125.
    Aono R (1990) Taxonomic distribution of alkali-tolerant yeasts. Syst Appl Microbiol 13:394–397Google Scholar
  126. 126.
    Lisichkina GA, Bab’eva IP, Sorokin DY (1993) Alkalitolerant yeasts from natural biotopes. Microbiology RU 72:618–620Google Scholar
  127. 127.
    Kladwang W, Bhumirattana A, Hywel-Jones N (2003) Alkaline-tolerant fungi from Thailand. Fungal Divers 13:69–83Google Scholar
  128. 128.
    Eliades LA, Cabello MN, Voget CE (2006) Contribution to the study of alkalophilic and alkali-tolerant Ascomycota from Argentina. Darwiniana 44:64–73Google Scholar
  129. 129.
    Nagai K, Suzuki K, Okada G (1998) Studies on the distribution of alkaliphilic and alkali-tolerant soil fungi II: fungal flora in two limestone caves in Japan. Mycoscience 39:293–298Google Scholar
  130. 130.
    Grant WD (2006) Cultivation of aerobic alkaliphiles. In: Rainey FA, Oren A (eds) Methods in microbiology. Extremophiles, vol 35. Elsevier, New York, pp 439–449Google Scholar
  131. 131.
    Kevbrin V, Boltyanskaya Y, Zhilina T, Kolganova T, Lavrentjeva E, Kuznetsov B (2013) Proteinivorax tanatarense gen. nov., sp. nov., an anaerobic, haloalkaliphilic, proteolytic bacterium isolated from a decaying algal bloom, and proposal of Proteinivoraceae fam. nov. Extremophiles 17:747–756PubMedGoogle Scholar
  132. 132.
    Datta S, Mody K, Gopalsamy G, Jha B (2011) Novel application of k-carrageenan: as a gelling agent in microbiological media to study biodiversity of extreme alkaliphiles. Carbohydr Polym 85:465–468Google Scholar
  133. 133.
    Kevbrin VV, Boltyanskaya Y, Garnova E, Wiegel J (2008) Anaerobranca zavarzinii sp. nov., an anaerobic, alkalithermophilic bacterium isolated from Kamchatka thermal fields. Int J Syst Evol Microbiol 58:1486–1491PubMedGoogle Scholar
  134. 134.
    Boltyanskaya Y, Detkova E, Pimenov N, Kevbrin V (2018) Proteinivorax hydrogeniformans sp. nov., an anaerobic, haloalkaliphilic bacterium fermenting proteinaceous compounds with high hydrogen production. Antonie Van Leeuwenhoek 111:275–284PubMedGoogle Scholar
  135. 135.
    McMillan DGG, Keis S, Berney M, Cook GM (2009) Nonfermentative thermoalkaliphilic growth is restricted to alkaline environments. Appl Environ Microbiol 75:7649–7654PubMedPubMedCentralGoogle Scholar
  136. 136.
    Kevbrin V, Lysenko AM, Zhilina TN (1997) Physiology of the alkaliphilic methanogen Z-7936, a new strain of Methanosalsus zhilinae isolated from lake Magadi. Microbiology RU 66:261–266Google Scholar
  137. 137.
    Krieg NR, Padgett PJ (2011) Phenotypic and physiological characterization methods. In: Rainey F, Oren A (eds) Methods in microbiology. Taxonomy of prokaryotes, vol 38. Academic, Cambridge, pp 15–60Google Scholar
  138. 138.
    Sorokin DY (2005) Is there a limit for high-pH life? Int J Syst Evol Microbiol 55:1405–1406PubMedGoogle Scholar
  139. 139.
    Mesbah NM, Wiegel J (2006) Isolation, cultivation and characterization of alkalithermophiles. In: Rainey FA, Oren A (eds) Methods in microbiology. Extremophiles, vol 35. Elsevier, New York, pp 451–468Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Winogradsky Institute of MicrobiologyResearch Center of Biotechnology of the Russian Academy of SciencesMoscowRussia

Personalised recommendations