Genomics of Alkaliphiles

  • Pedro H. Lebre
  • Don A. CowanEmail author
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 172)


Alkalinicity presents a challenge for life due to a “reversed” proton gradient that is unfavourable to many bioenergetic processes across the membranes of microorganisms. Despite this, many bacteria, archaea, and eukaryotes, collectively termed alkaliphiles, are adapted to life in alkaline ecosystems and are of great scientific and biotechnological interest due to their niche specialization and ability to produce highly stable enzymes. Advances in next-generation sequencing technologies have propelled not only the genomic characterization of many alkaliphilic microorganisms that have been isolated from nature alkaline sources but also our understanding of the functional relationships between different taxa in microbial communities living in these ecosystems. In this review, we discuss the genetics and molecular biology of alkaliphiles from an “omics” point of view, focusing on how metagenomics and transcriptomics have contributed to our understanding of these extremophiles.

Graphical Abstract


Alkaliphiles Bioenergetics Genomics Metabolic potential Metagenomics 



Adenosine triphosphate


Coding sequence


Deoxyribonucleic acid


Flavin adenine dinucleotide


Joint Genome Institute


Eukaryotic Orthologous Groups


Mega base pairs




Nicotinamide adenine dinucleotide phosphate (reduced form)


Nicotinamide adenine dinucleotide (reduced form)


Isoelectric point


Proton motive force


Pentose phosphate


Sodium motive force



The authors wish to thank the University of Pretoria and the National Research Foundation of South Africa for financial support.


  1. 1.
    Grant WD, Mwatha WE, Jones BE (1990) Alkaliphiles: ecology, diversity and applications. FEMS Microbiol Rev 75:255–270Google Scholar
  2. 2.
    Yumoto I, Fukumori Y, Yamanaka T (1991) Stopped-flow and rapid-scan studies of the redox behavior of cytochrome aco from facultative alkalophilic Bacillus. J Biol Chem 266(2):14310–14316PubMedGoogle Scholar
  3. 3.
    Takami H, Takaki Y, Maeno G, Sasaki R, Masui N, Fumie F et al (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28(21):4317–4331PubMedPubMedCentralGoogle Scholar
  4. 4.
    Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER (2013) The next-generation sequencing revolution and its impact on genomics. Cell 155(1):27–38PubMedPubMedCentralGoogle Scholar
  5. 5.
    Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I et al (2014) The genome portal of the department of energy Joint Genome Institute: 2014 updates. Nucleic Acids Res 42:D26–D31PubMedGoogle Scholar
  6. 6.
    Janto B, Ahmed A, Ito M, Liu J, Hicks DB, Pagnl S et al (2011) Genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. Environ Microbiol 13(12):3289–3309PubMedPubMedCentralGoogle Scholar
  7. 7.
    Wu S, Wang L, Gan R, Tong T, Bian H, Li Z et al (2018) Signature arsenic detoxification pathways in Halomonas sp. strain GFAJ-1. MBio 9(3):e00515–e00518PubMedPubMedCentralGoogle Scholar
  8. 8.
    Zavarzin GA, Zhilina TN, Kevbrin VV (1999) The alkaliphilic microbial community and its functional diversity. Microbiology 68(5):503–521Google Scholar
  9. 9.
    Cheevadhanarak S, Paithoonrangsarid K, Prommeenate P, Kaewngam W, Musigkain A, Tragoonrung S et al (2012) Draft genome sequence of Arthrospira platensis C1 (PCC9438). Stand Genomic Sci 6:43–53PubMedPubMedCentralGoogle Scholar
  10. 10.
    Paul S, Bag SK, Das S, Harvill ET, Dutta C (2008) Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol 9:R70PubMedPubMedCentralGoogle Scholar
  11. 11.
    Klanchui A, Cheevadhanarak S, Prommeenate P, Meechai A (2017) Exploring components of the CO2-concentrating mechanism in alkaliphilic cyanobacteria through genome-based analysis. Comput Struct Biotechnol J 15:340–350PubMedPubMedCentralGoogle Scholar
  12. 12.
    Amaral-Zettler LA (2012) Eukaryotic diversity at pH extremes. Front Microbiol 3:441PubMedGoogle Scholar
  13. 13.
    Takami H (2011) Genomic and evolution of alkaliphilic Bacillus species. In: Horikoshi H (ed) Extremophiles handbook. Springer, Tokyo, pp 183–211Google Scholar
  14. 14.
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C et al (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 34(8):2115–2122PubMedPubMedCentralGoogle Scholar
  15. 15.
    Takami H, Takaki Y, Uchiyama I (2002) Genome sequence of Oceanobacillus iheyensis isolated from the Iheya ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res 30(18):3927–3935PubMedPubMedCentralGoogle Scholar
  16. 16.
    Schadewaldt P, Hummel W, Wendel U, Adelmeyer F (1995) Enzymatic method for determination of branched-chain amino acid aminotransferase activity. Anal Biochem 230(2):199–204PubMedGoogle Scholar
  17. 17.
    Cheng B, Meng Y, Cui Y, Li C, Tao F, Yin H et al (2016) Alkaline response of a halotolerant alkaliphilic halomonas strain and functional diversity of its Na+(K+)/H+ antiporters. J Biol Chem 291(50):26056–26065PubMedGoogle Scholar
  18. 18.
    Siddaramappa S, Challacombe JF, DeCastro RE, Pfeiffer F, Sastre DE, Gimenez MI et al (2012) A comparative genomics perspective on the genetic content of the alkaliphilic haloarchaeon Natrialba magadii ATCC 43099T. BMC Genomics 13:165PubMedPubMedCentralGoogle Scholar
  19. 19.
    Saunders E, Tindall BJ, Fahnrich R, Lapidus A, Copeland A, del Rio TG et al (2010) Complete genome sequence of Haloterrigena turkmenica type strain (4kT). Stand Genomic Sci 2(1):107–116PubMedPubMedCentralGoogle Scholar
  20. 20.
    Fujisawa T, Narikawa R, Okamoto S, Ehira S, Yoshimura H, Suzuki I et al (2010) Genomic structure of an economically important Cyanobacterium, Arthrospira (Spirulina) platensis NIES-39. DNA Res 17:85–103PubMedPubMedCentralGoogle Scholar
  21. 21.
    Grum-Gzhimaylo AA, Georgieva ML, Bondarenko SA, Debets JM, Bilanenko EN (2016) On the diversity of fungi from soda soils. Fungal Divers 76(1):27–74Google Scholar
  22. 22.
    Keresztes ZG, Felfoldi T, Somogyi B, Szekely G, Dragos N, Marialigeti K et al (2012) First record of picophytoplankton diversity in Central European hypersaline lakes. Extremophiles 16(5):759–769PubMedGoogle Scholar
  23. 23.
    Lanzen A, Simachew A, Gessesse A, Chmolowska D, Jonassen I, Ovreas L (2013) Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian Soda Lakes. PLoS One 8(8):e72577PubMedPubMedCentralGoogle Scholar
  24. 24.
    Grum-Grzhimaylo AA, Falkoski DL, van den Heuvel J, Valero-Jimenez CA, Min B, Choi IG et al (2018) The obligate alkalophilc soda-lake fungus Sodiomyces alkalinus has shifted to a protein diet. Mol Ecol 27:4808–4819PubMedGoogle Scholar
  25. 25.
    Pereira EO, Tsang A, McAllister TA, Menassa R (2013) The production and characterization of a new active lipase from Acremonium alcalophilum using a plant bioreactor. Biotechnol Biofuels 6:111PubMedPubMedCentralGoogle Scholar
  26. 26.
    Reeve W, Chain P, O’Hara G, Ardley J, Nandesena K, Brau L et al (2010) Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419. Stand Genomic Sci 2(1):77–86PubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhao B, Mesbah NM, Dalin E, Goodwin L, Nolan M, Pitluck S et al (2011) Complete genome sequence of the anaerobic, halophilic alkalithermophile Natranaerobius thermophilus JW/NM-WN-LF. J Bacteriol 193(15):4023–4024PubMedPubMedCentralGoogle Scholar
  28. 28.
    Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G (2014) Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18(5):791–809PubMedPubMedCentralGoogle Scholar
  29. 29.
    Cogne G, Gros JB, Dussap CG (2003) Identification of a metabolic network structure representative of Arthrospira (spirulina) platensis metabolism. Biotechnol Bioeng 84(6):667–676PubMedGoogle Scholar
  30. 30.
    Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59(7):1441–1461PubMedGoogle Scholar
  31. 31.
    Zhilina TN, Kevbrin VV, Tourova TP, Lysenko AM, Kostrikina NA, Zavarzin GA (2005) Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region. Microbiology 74(5):555–566Google Scholar
  32. 32.
    Garnova ES, Krasil’nikova EN (2003) Carbohydrate metabolism of the Saccharolytic alkaliphilic anaerobes Halonatronum saccarophilum, Amphibacillus fermentum, and Amphibacillus tropicus. Mikrobiologiia 72(5):627–632PubMedGoogle Scholar
  33. 33.
    Song Y, Xue Y, Ma Y (2013) Global microarray analysis of carbohydrate use in alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5. PLoS One 8(1):e54090PubMedPubMedCentralGoogle Scholar
  34. 34.
    Detkova EN, Pusheva MA (2006) Energy metabolism in halophilic and alkaliphilic acetogenic bacteria. Microbiology 75(1):1–11Google Scholar
  35. 35.
    Frank YA, Kadnikov VV, Likina AP, Banks D, Beletsky AV, Sen’kina EI et al (2016) Characterization and genome analysis of the first facultatively alkaliphilic Thermodesulfovibrio isolated from the deep terrestrial subsurface. Front Microbiol 7:2000PubMedPubMedCentralGoogle Scholar
  36. 36.
    Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibaugh RA, Hollibaugh JT (2002) Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68:4795–4802PubMedPubMedCentralGoogle Scholar
  37. 37.
    Hoeft SE, Blum JS, Stolz JF, Tabita FR, Witte B, King GM et al (2007) Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 57(Pt 3):504–512PubMedGoogle Scholar
  38. 38.
    Susuki S, Kuenen JG, Schipper K, van der Velde S, Ishii S, Wu A et al (2014) Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site. Nat Commun 5:3900Google Scholar
  39. 39.
    Krulwich TA, Hicks DB, Swartz TH, Ito M (2007) Bioenergetic adaptations that support alkaliphily. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, pp 311–329Google Scholar
  40. 40.
    Skulachev VP (1995) Membrane-linked energy transductions. Bioenergetic functions of sodium H+ is not unique as a coupling ion. FEBS J 151(2):199–208Google Scholar
  41. 41.
    Hicks DB, Krulwich TA (1995) The respiratory chain of alkaliphilic bacteria. Biochim Biophys Acta 1229:303–314PubMedGoogle Scholar
  42. 42.
    Mulkidjanian AY, Galperin MY, Koonin V (2009) Co-evolution of primordial membranes and membrane proteins. Trends Biochem Sci 34(4):206–215PubMedPubMedCentralGoogle Scholar
  43. 43.
    Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62(2):504–544PubMedPubMedCentralGoogle Scholar
  44. 44.
    Ito M, Guffanti AA, Krulwich TA (2001) Mrp-dependent Na+/H+ antiporters of Bacillus exhibit characteristics that are unanticipated for completely secondary active transporters. FEBS Lett 496:117–120PubMedGoogle Scholar
  45. 45.
    Krulwich TA, Ito M, Guffanti AA (2001) The Na(+)-dependence of alkaliphily in Bacillus. Biochim Biophys Acta 1505(1):158–168PubMedGoogle Scholar
  46. 46.
    Ito M, Xu H, Guffani AA, Wei Y, Zvi L, Clapham DE et al (2004) The voltage-gates Na+ channel NavBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc Natl Acad Sci U S A 101:10566–10571PubMedPubMedCentralGoogle Scholar
  47. 47.
    Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63(4):735–750PubMedPubMedCentralGoogle Scholar
  48. 48.
    Liu J, Xue Y, Wang Q, Wei Y, Swartz TH, Hicks DB et al (2005) The activity profile of the NhaD-type Na+(Li+)/H+ antiporter from the soda Lake Haloalkaliphile Alkalimonas amylolytica is adaptive for the extreme environment. J Bacteriol 187(22):7589–7595PubMedPubMedCentralGoogle Scholar
  49. 49.
    Janausch I, Zientz GE, Tran Q, Kroger HA, Unden G (2002) C4-dicarboxylate carriers and sensors in bacteria. Biochim Biophys Acta 1553:39–56PubMedGoogle Scholar
  50. 50.
    Wutipraditkul N, Waditee R, Incharoensakdi A, Hibino T, Tanaka Y, Nakamura T et al (2005) Halotolerant cyanobacterium Aphanothece halophytica contains NapA-Type Na+/H+ antiporters with novel ion specificity that are involved in salt tolerance at alkaline pH. Appl Environ Microbiol 71(8):4176–4184PubMedPubMedCentralGoogle Scholar
  51. 51.
    Krulwich TA (1985) Alkaliphiles: “basic” molecular problems of the pH tolerance and bioenergetics. Mol Microbiol 15(3):403–410Google Scholar
  52. 52.
    Hirota N, Kitada M, Imae Y (1981) Flagellar motors of alkalophilic Bacillus are powered by an electrochemical potential gradient of Na+. FEBS Lett 132(2):278–280Google Scholar
  53. 53.
    Terahara N, Krulwich TA, Ito M (2008) Mutations alter the sodium versus proton use of a Bacillus clausii flagellar motor and confer dual ion use on Bacillus subtilis motors. Proc Natl Acad Sci U S A 105(38):14359–14364PubMedPubMedCentralGoogle Scholar
  54. 54.
    Fujinami S, Terahara N, Krulwich TA, Ito M (2009) Motility and chemotaxis in alkaliphilic Bacillus species. Future Microbiol 4(9):1137–1149PubMedPubMedCentralGoogle Scholar
  55. 55.
    Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science 294(5550):2372–2375PubMedGoogle Scholar
  56. 56.
    Olsson K, Keis S, Morgan HW, Dimroth P, Cook GM (2003) Bioenergetic properties of the Thermoalkaliphilic Bacillus sp. strain TA2.A1. J Bacteriol 185(2):461–465PubMedPubMedCentralGoogle Scholar
  57. 57.
    Guffanti AA, Finkelthal O, Hicks DB, Falk L, Sidhu A, Garro A (1986) Isolation and characterization of new facultatively alkalophilic strains of Bacillus species. J Bacteriol 167(3):766–773PubMedPubMedCentralGoogle Scholar
  58. 58.
    Kitada M, Lewis RJ, Krulwich TA (1983) Respiratory Chain of the alkalophilic bacterium Bacillus firmus RAB and its non-alkalophilic mutant derivative. J Bacteriol 154(1):330–335PubMedPubMedCentralGoogle Scholar
  59. 59.
    Krulwich TA, Ito M, Hicks DB, Gilmour R, Guffanti AA (1998) pH homeostasis and ATP synthesis: studies of two processes that necessitate inward proton translocation in extremely alkaliphilic Bacillus species. Extremophiles 2:217–222PubMedGoogle Scholar
  60. 60.
    Hicks AB, Wang Z, Wei Y, Kent R, Guffani AA, Banciu H et al (2003) A tenth atp gene in the conserved atpI gene of a Bacillus atp operon have a role in Mg2+ uptake. PNAS 100(18):10213–10218PubMedGoogle Scholar
  61. 61.
    Ko YH, Hong S, Pedersen PL (1999) Chemical mechanism of ATP synthase. Magnesium plays a pivotal role in formation of the transition state where ATP is synthesized from ADP and inorganic phosphate. J Biol Chem 274(41):28853–28856PubMedGoogle Scholar
  62. 62.
    McMillan DGG, Keis S, Dimroth P, Cook GM (2007) A specific adaptation in the alpha subunit of thermoalkaliphilic F1F0-ATP synthase enables ATP synthesis at high pH but not at neutral pH values. J Biol Chem 282:17395–17404PubMedGoogle Scholar
  63. 63.
    Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA (2015) Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis. Front Bioeng Biotechnol 3:75PubMedPubMedCentralGoogle Scholar
  64. 64.
    Liu J, Fujisawa M, Hicks DB, Krulwich TA (2009) Characterization of the functionally critical AXAXAXA and PXXEXXP motifs of the ATP synthase c-subunit from an alkaliphilic Bacillus. J Biol Chem 284:8714–8725PubMedPubMedCentralGoogle Scholar
  65. 65.
    Liberton M, Howard Berg R, Heuser J, Roth R, Pakrasi HB (2006) Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystic sp. strain PCC6803. Protoplasma 227(2–4):129–138PubMedGoogle Scholar
  66. 66.
    Pogoryelov D, Yu J, Meier T, Vonck J, Dimroth P, Muller DJ (2005) The c15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory. EMBO Rep 6(11):1040–1044PubMedPubMedCentralGoogle Scholar
  67. 67.
    Hicks DB, Liu J, Fujisawa M, Krulwich TA (2010) F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochim Biophys Acta 1797:1362–1377PubMedPubMedCentralGoogle Scholar
  68. 68.
    Pogoryelov D, Sudhir PR, Kovacs L, Gombos |, Brown I, Garab G (2003) Sodium dependency of the photosynthetic electron transport in the alkaliphilic cyanobacterium Arthrospira platensis. J Bioenerg Biomembr 35(5):427–437PubMedGoogle Scholar
  69. 69.
    Ferguson SA, Keis S, Cook GM (2006) Biochemical and molecular characterization of a Na+-translocating F1F0-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum. J Bacteriol 188(14):5045–5054PubMedPubMedCentralGoogle Scholar
  70. 70.
    Stocker A, Keis S, Vonck J, Cook GM, Dimroth P (2007) The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase. Structure 15(8):904–914PubMedGoogle Scholar
  71. 71.
    Xu X, koyama N, Cui M, Yamagishi A, Nosoh Y, Oshima T (1991) Nucleotide sequence of the gene encoding NADH dehydrogenase from an alkalophile, Bacillus sp. strain YN-1. J Biochem 109:678–683PubMedGoogle Scholar
  72. 72.
    Heikal A, Nakatani Y, Dunn E, Weimar MR, Day CL, Baker EN, Lott JS, Sazanov LA, Cook GM (2014) Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation. Mol Microbiol 91(5):950–964PubMedGoogle Scholar
  73. 73.
    Quirk PG, Hicks DB, Krulwich TA (1993) Cloning of the cta operon from allkaliphilic Bacillus firmus OF4 and characterization OF the pH-regulated cytochrome caa3 oxidase it encodes. J Biol Chem 268(1):678–685PubMedGoogle Scholar
  74. 74.
    Brown KR, Allan BM, Do P, Hegg EL (2002) Identification of novel hemes generated by heme A synthase: evidence for two successive monooxygenase reactions. Biochemist 41(36):10906–10913Google Scholar
  75. 75.
    Throne-Holst M, Hederstedt L (2000) The Bacillus subtilis ctaB paralogue, yjdK, can complement the heme A synthesis deficiency of a CtaB-deficient mutant. FEMS Microbiol Lett 183(2):247–251PubMedGoogle Scholar
  76. 76.
    Stothard P (2000) The sequence manipulation suite: JavaScript programs for analysing and formatting protein and DNA sequences. BioTechniques 28:1102–1104PubMedGoogle Scholar
  77. 77.
    Matsuno T, Yumoto I (2015) Bioenergetics and the role of soluble cytochromes c for alkaline adaptation in gram-negative alkaliphilic Pseudomonas. Biomed Res Int 2015:847945PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations