Advertisement

pp 1-88 | Cite as

Environmental Concerns Regarding Ionic Liquids in Biotechnological Applications

  • Chul-Woong Cho
  • Myung-Hee Song
  • Thi Phuong Thuy Pham
  • Yeoung-Sang YunEmail author
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series

Abstract

Ionic liquids provide challenges and opportunities for sustainable industrial developments. However, the toxic impacts of ionic liquids reported by many researchers cannot be overlooked. Therefore, in this chapter, we introduce the antimicrobial activities of ionic liquids in bioprocesses and, in greater detail, we discuss their environmental impacts, including the toxicity, biodegradability, bioaccumulation, and mobility of ionic liquids. We believe that this presented information will support colleagues engaged in ionic liquid–related fields.

Graphical Abstract

Keywords

Adsorption Bioaccumulation Biodegradation Ionic liquids Mobility Quantitative structure–activity relationship (QSAR) Removal Toxicity 

Abbreviations

[IM01]+

1-Methylimidazolium

[IM0-12]+

1-Dodecylimidazolium

[IM01O-4]+

1-(Butoxymethyl)imidazolium

[IM04]+

1-Butylimidazolium

[IM11O2]+

1-(Ethoxymethyl)-3-methylimidazolium

[Ch]+

Cholinium

[IM11COO1]+

1-(2-Methoxy-2-oxoethyl)-3-methylimidazolium

[IM11COOH]+

3-Methyl-1-(carboxymethyl)imidazolium

[IM12]+

1-Ethyl-3-methylimidazolium

[IM12=1]+

1-Methyl-3-(2-propenyl)imidazolium

[IM14]+

1-Butyl-3-methylimidazolium

[IM16]+

1-Hexyl-3-methylimidazolium

[IM18]+

1-Methyl-3-octylimidazolium

[N1888]+

Trioctylmethylammonium

[P4444]+

Tetrabutylphosphonium

[P1444]

Tributylmethylphosphonium

[P666-14]+

Trihexyltetradecylphosphonium

[P3(OH)3(OH)3(OH)-10]+

Decyltriproxylphosphonium

[Py4]+

1-Butylpyridinium

[Py4-3Me]+

1-Butyl-3-methylimidazolium

[Pyr14]+

1-Butyl-1-methylpyrrolidinium

[(2-OPhO)2B]

Bis[1,2-benzenediolato(2-)]-borate

[4MePhSO3]

4-Methylbenzenesulfonate

[1COO]

Acetate

[(244Me3Pen)2PO2]

Bis(2,4,4-trimethylpentyl)phosphinate

[(CF3)2N]

Bis(trifluoromethyl)amide

[(CF3SO2)2N]

Bis(trifluoromethylsulfonyl)amide

[AC]

6-Methyl-2,2-dioxo-1,2,3-oxathiazin-4-onate

[Lac]

(2S)-2-Hydroxypropanoate

[Ala]

l-Alaninate

[Arg]

l-Argininate

[Asp]

l-Asparaginate

[Glu]

l-Glutaminate

[His]

l-Histidinate

[Iso]

l-Isoleucinate

[Leu]

l-Leucinate

[Lys]

l-Lysinate

[Met]

l-Methioninate

[Phe]

l-Phenylanine

[Pro]

l-Prolinate

[Ser]

l-Serinate

[Thr]

l-Threoninate

[Try]

l-Tryptophan

[Val]

l-Valinate

[2OSO3]

Ethylsulfate

[2SO3]

Ethylsulfonate

[SbF6]

Hexafluoroantimonate

[PF6]

Hexafluorophosphate

[HSO4]

Hydrogen sulfate

[1OSO3]

Methylsulfate

[N(CN)2]

N-Cyanocyanamide

[NO3]

Nitrate

[1O2O2OSO3]

O-2-(2-Methoxyethoxy)ethyl sulfate

[8OSO3]

Octylsulfate

[B(CN)4]

Tetracyanidoboranuide

[BF4]

Tetrafluoroborate

[(C2F5)3PF3]

Trifluorotris(pentafluoroethyl)phosphate

[CF3COO]

Trifluoroacetate

[CF3SO3]

Trifluoromethansulfonate

[SbF6]

Hexafluoridoantimonate

[Bic]

Bicarbonate

[Bit]

Bitartrate

[DHPhosp]

Dihydrogenophosphate

[DHCit]

Dihydrogenocitrate

[Sal]

Salicylate

[Prop]

Propanoate

[But]

Butanoate

[AgBr2]

Silver dibromide

[CuCl2]

Copper dichloride

[FeCl4]

Tetrachloroferrate

[MnCl4]

Manganese(IV) chloride

[CoCl4]

Cobalt tetrachloride

[GdCl6]

Gadolinium hexachloride

[(CH3)2PO4]

Ethylphosphoate

[Ibu]

Ibuprogenate

[Doc]

Docusate

[dicamba]

3,6-Dichloro-2-methoxybenzoic acid

[MCPP]

(RS)-2-(4-Chloro-2-methylphenoxy)propanoic acid

[TFo]

Triflate

[MDEGSO4]

2-(2-Methoxyethoxy) ethylsulfate

MDA

Malondialdehyde

SOD

Superoxide dismutase

POD

Peroxidase

CAT

Catalase

References

  1. 1.
    Earle MJ, Seddon KR (2000) Ionic liquids. Green solvents for the future. Pure Appl Chem 72:1391–1398.  https://doi.org/10.1351/pac200072071391CrossRefGoogle Scholar
  2. 2.
    Marsh KN, Boxall JA, Lichtenthaler R (2004) Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib 219:93–98.  https://doi.org/10.1016/j.fluid.2004.02.003CrossRefGoogle Scholar
  3. 3.
    McFarlane J, Ridenour WB, Luo H, Hunt RD, DePaoli DW, Ren RX (2005) Room temperature ionic liquids for separating organics from produced water. Sep Sci Technol 40:1245–1265.  https://doi.org/10.1081/ss-200052807CrossRefGoogle Scholar
  4. 4.
    Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278.  https://doi.org/10.1039/b418069kCrossRefGoogle Scholar
  5. 5.
    Pham TPT, Cho C-W, Yun Y-S (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44:352–372.  https://doi.org/10.1016/j.watres.2009.09.030CrossRefGoogle Scholar
  6. 6.
    Quijano G, Couvert A, Amrane A (2010) Ionic liquids: applications and future trends in bioreactor technology. Bioresour Technol 101:8923–8930.  https://doi.org/10.1016/j.biortech.2010.06.161CrossRefGoogle Scholar
  7. 7.
    Pham TPT, Cho C-W, Min J, Yun Y-S (2008) Alkyl-chain length effects of imidazolium and pyridinium ionic liquids on photosynthetic response of Pseudokirchneriella subcapitata. J Biosci Bioeng 105:425–428.  https://doi.org/10.1263/jbb.105.425CrossRefGoogle Scholar
  8. 8.
    Pham TPT, Cho CW, Vijayaraghavan K, Min JH, Yun YS (2008) Effect of imidazolium-based ionic liquids on the photosynthetic activity and growth rate of Selenastrum capricornutum. Environ Toxicol Chem 27:1583–1589Google Scholar
  9. 9.
    Cho CW, Pham TPT, Jeon YC, Yun YS (2008) Influence of anions on the toxic effects of ionic liquids to a phytoplankton Selenastrum capricornutum. Green Chem 10:67–72.  https://doi.org/10.1039/b705520jCrossRefGoogle Scholar
  10. 10.
    Kragl U, Eckstein M, Kaftzik N (2002) Enzyme catalysis in ionic liquids. Curr Opin Biotechnol 13:565–571.  https://doi.org/10.1016/s0958-1669(02)00353-1CrossRefGoogle Scholar
  11. 11.
    Sheldon RA, Lau RM, Sorgedrager MJ, van Rantwijk F, Seddon KR (2002) Biocatalysis in ionic liquids. Green Chem 4:147–151.  https://doi.org/10.1039/b110008bCrossRefGoogle Scholar
  12. 12.
    Matsumoto M, Mochiduki K, Kondo K (2004) Toxicity of ionic liquids and organic solvents to lactic acid–producing bacteria. J Biosci Bioeng 98:344–347.  https://doi.org/10.1016/S1389-1723(04)00293-2CrossRefGoogle Scholar
  13. 13.
    Matsumoto M, Mochiduki K, Fukunishi K, Kondo K (2004) Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to Lactobacillus rhamnosus. Sep Purif Technol 40:97–101.  https://doi.org/10.1016/j.seppur.2004.01.009CrossRefGoogle Scholar
  14. 14.
    Santos AG, Ribeiro BD, Alviano DS, Coelho MAZ (2014) Toxicity of ionic liquids toward microorganisms interesting to the food industry. RSC Adv 4:37157–37163.  https://doi.org/10.1039/C4RA05295ACrossRefGoogle Scholar
  15. 15.
    Ouellet M et al (2011) Impact of ionic liquid pretreated plant biomass on Saccharomyces cerevisiae growth and biofuel production. Green Chem 13:2743–2749Google Scholar
  16. 16.
    Venkata Nancharaiah Y, Francis AJ (2011) Alkyl-methylimidazolium ionic liquids affect the growth and fermentative metabolism of Clostridium sp. Bioresour Technol 102:6573–6578.  https://doi.org/10.1016/j.biortech.2011.03.042CrossRefGoogle Scholar
  17. 17.
    Lovejoy KS et al (2013) Evaluation of ionic liquids on phototrophic microbes and their use in biofuel extraction and isolation. J Appl Phycol 25:973–981.  https://doi.org/10.1007/s10811-012-9907-0CrossRefGoogle Scholar
  18. 18.
    Bar R (1987) Phase toxicity in a water–solvent two-liquid phase microbial system. Stud Org Chem 29:147–153Google Scholar
  19. 19.
    Dickinson Q et al (2016) Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain. Microb Cell Factories 15:17.  https://doi.org/10.1186/s12934-016-0417-7CrossRefGoogle Scholar
  20. 20.
    Xu J et al (2015) A novel ionic liquid–tolerant Fusarium oxysporum BN secreting ionic liquid–stable cellulase: consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid. Bioresour Technol 181:18–25.  https://doi.org/10.1016/j.biortech.2014.12.080CrossRefGoogle Scholar
  21. 21.
    Ruegg TL, Kim E-M, Simmons BA, Keasling JD, Singer SW, Lee TS, Thelen MP (2014) An auto-inducible mechanism for ionic liquid resistance in microbial biofuel production. Nat Commun 5:3490Google Scholar
  22. 22.
    Bubalo MC, Radosevic K, Redovnikovic IR, Halambek J, Srcek VG (2014) A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol Environ Saf 99:1–12.  https://doi.org/10.1016/j.ecoenv.2013.10.019CrossRefGoogle Scholar
  23. 23.
    Costa SPF, Azevedo AMO, Pinto P, Saraiva M (2017) Environmental impact of ionic liquids: recent advances in (eco)toxicology and (bio)degradability. ChemSusChem 10:2321–2347.  https://doi.org/10.1002/cssc.201700261CrossRefGoogle Scholar
  24. 24.
    Egorova KS, Gordeev EG, Ananikov VP (2017) Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev 117:7132–7189.  https://doi.org/10.1021/acs.chemrev.6b00562CrossRefGoogle Scholar
  25. 25.
    Matzke M, Arning J, Ranke J, Jastorff B, Stolte S (2010) Design of inherently safer ionic liquids: toxicology and biodegradation. In: Anastas PT (ed) Handbook of green chemistry. Wiley, Weinheim.  https://doi.org/10.1002/9783527628698.hgc069CrossRefGoogle Scholar
  26. 26.
    Petkovic M, Seddon KR, Rebelo LPN, Pereira CS (2011) Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 40:1383–1403.  https://doi.org/10.1039/c004968aCrossRefGoogle Scholar
  27. 27.
    Ranke J, Stolte S, Stormann R, Arning J, Jastorff B (2007) Design of sustainable chemical products—the example of ionic liquids. Chem Rev 107:2183–2206.  https://doi.org/10.1021/cr050942sCrossRefGoogle Scholar
  28. 28.
    Samori C (2011) Ionic liquids and their biological effects towards microorganisms. Curr Org Chem 15:1888–1904Google Scholar
  29. 29.
    Zhao D, Liao Y, Zhang Z (2007) Toxicity of ionic liquids. Clean Soil Air Water 35:42–48.  https://doi.org/10.1002/clen.200600015CrossRefGoogle Scholar
  30. 30.
    Stock F, Hoffmann J, Ranke J, Stormann R, Ondruschka B, Jastorff B (2004) Effects of ionic liquids on the acetylcholinesterase—a structure–activity relationship consideration. Green Chem 6:286–290.  https://doi.org/10.1039/b402348jCrossRefGoogle Scholar
  31. 31.
    Arning J et al (2008) Structure–activity relationships for the impact of selected isothiazol-3-one biocides on glutathione metabolism and glutathione reductase of the human liver cell line Hep G2. Toxicology 246:203–212.  https://doi.org/10.1016/j.tox.2008.01.011CrossRefGoogle Scholar
  32. 32.
    Stasiewicz M et al (2008) Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level. Ecotoxicol Environ Saf 71:157–165.  https://doi.org/10.1016/j.ecoenv.2007.08.011CrossRefGoogle Scholar
  33. 33.
    Lai JQ, Li Z, Lu YH, Yang Z (2011) Specific ion effects of ionic liquids on enzyme activity and stability. Green Chem 13:1860–1868.  https://doi.org/10.1039/c1gc15140aCrossRefGoogle Scholar
  34. 34.
    Peric B et al (2013) (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids. J Hazard Mater 261:99–105.  https://doi.org/10.1016/j.jhazmat.2013.06.070CrossRefGoogle Scholar
  35. 35.
    Steudte S, Bemowsky S, Mahrova M, Bottin-Weber U, Tojo-Suarez E, Stepnowski P, Stolte S (2014) Toxicity and biodegradability of dicationic ionic liquids. RSC Adv 4:5198–5205.  https://doi.org/10.1039/c3ra45675gCrossRefGoogle Scholar
  36. 36.
    Jastorff B et al (2005) Progress in evaluation of risk potential of ionic liquids-basis for an eco-design of sustainable products. Green Chem 7:362–372.  https://doi.org/10.1039/b418518hCrossRefGoogle Scholar
  37. 37.
    UFT (Zentrum für Umweltforschung und nachhaltige Technologien). The UFT Ionic Liquids Biological Effects Database. University of Bremen. http://www.il-eco.uft.uni-bremen.de/index.php. Accessed 08-01-2017
  38. 38.
    Matzke M et al (2007) The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco) toxicological test battery. Green Chem 9:1198–1207.  https://doi.org/10.1039/b705795dCrossRefGoogle Scholar
  39. 39.
    Arning J et al (2008) Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalised side chains and anions of ionic liquids on acetylcholinesterase. Green Chem 10:47–58.  https://doi.org/10.1039/b712109aCrossRefGoogle Scholar
  40. 40.
    Yu M, Li SM, Li XY, Zhang BJ, Wang JJ (2008) Acute effects of 1-octyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system of mouse liver. Ecotoxicol Environ Saf 71:903–908.  https://doi.org/10.1016/j.ecoenv.2008.02.022CrossRefGoogle Scholar
  41. 41.
    Boskin A, Tran CD, Franko M (2009) Oxidation of organophosphorus pesticides with chloroperoxidase enzyme in the presence of an ionic liquid as co-solvent. Environ Chem Lett 7:267–270.  https://doi.org/10.1007/s10311-008-0161-2CrossRefGoogle Scholar
  42. 42.
    Luo YR, Wang SH, Yun MX, Li XY, Wang JJ, Sun ZJ (2009) The toxic effects of ionic liquids on the activities of acetylcholinesterase and cellulase in earthworms. Chemosphere 77:313–318.  https://doi.org/10.1016/j.chemosphere.2009.07.026CrossRefGoogle Scholar
  43. 43.
    Schaffran T, Justus E, Elfert M, Chen T, Gabel D (2009) Toxicity of N,N,N-trialkylammoniododecaborates as new anions of ionic liquids in cellular, liposomal and enzymatic test systems. Green Chem 11:1458–1464.  https://doi.org/10.1039/b906165gCrossRefGoogle Scholar
  44. 44.
    Pinto P, Costa ADF, Lima J, Saraiva M (2011) Automated evaluation of the effect of ionic liquids on catalase activity. Chemosphere 82:1620–1628.  https://doi.org/10.1016/j.chemosphere.2010.11.046CrossRefGoogle Scholar
  45. 45.
    Steudte S, Stepnowski P, Cho C-W, Thoeming J, Stolte S (2012) (Eco)toxicity of fluoro-organic and cyano-based ionic liquid anions. Chem Commun 48:9382–9384.  https://doi.org/10.1039/c2cc34955hCrossRefGoogle Scholar
  46. 46.
    Hou XD, Liu QP, Smith TJ, Li N, Zong MH (2013) Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids. PLoS One 8:e59145.  https://doi.org/10.1371/journal.pone.0059145CrossRefGoogle Scholar
  47. 47.
    Stolte S, Schulz T, Cho CW, Arning J, Strassner T (2013) Synthesis, toxicity, and biodegradation of tunable aryl alkyl ionic liquids (TAAILs). ACS Sustain Chem Eng 1:410–418.  https://doi.org/10.1021/sc300146tCrossRefGoogle Scholar
  48. 48.
    Costa SPF, Justina VD, Bica K, Vasiloiu M, Pinto P, Saraiva M (2014) Automated evaluation of pharmaceutically active ionic liquids’ (eco)toxicity through the inhibition of human carboxylesterase and Vibrio fischeri. J Hazard Mater 265:133–141.  https://doi.org/10.1016/j.jhazmat.2013.11.052CrossRefGoogle Scholar
  49. 49.
    Ge HL, Liu SS, Su BX, Zhu XW (2014) Two-stage prediction of the effects of imidazolium and pyridinium ionic liquid mixtures on luciferase. Molecules 19:6877–6890.  https://doi.org/10.3390/molecules19056877CrossRefGoogle Scholar
  50. 50.
    Cunha E, Passos MLC, Pinto P, Saraiva M (2015) Automated evaluation of the inhibition of glutathione reductase activity: application to the prediction of ionic liquids’ toxicity. RSC Adv 5:78971–78978.  https://doi.org/10.1039/c5ra04029aCrossRefGoogle Scholar
  51. 51.
    Fan YC, Dong X, Yan LL, Li DD, Hua SF, Hu CB, Pan CC (2016) Evaluation of the toxicity of ionic liquids on trypsin: a mechanism study. Chemosphere 148:241–247.  https://doi.org/10.1016/j.chemosphere.2016.01.033CrossRefGoogle Scholar
  52. 52.
    Dong X, Fan YC, Zhang H, Zhong YY, Yang Y, Miao J, Hua SF (2016) Inhibitory effects of ionic liquids on the lactic dehydrogenase activity. Int J Biol Macromol 86:155–161.  https://doi.org/10.1016/j.ijbiomac.2016.01.059CrossRefGoogle Scholar
  53. 53.
    Wu YW et al (2016) Ionic liquids impact the bioenergy feedstock-degrading microbiome and transcription of enzymes relevant to polysaccharide hydrolysis. Msystems 1:e00120.  https://doi.org/10.1128/mSystems.00120-16CrossRefGoogle Scholar
  54. 54.
    Pernak J, Szymanowski J, Pujanek M, Kucharski S, Broniarz J (1979) Synthesis and bactericidal properties of some pyridinium chlorides with alkylthiomethyl hydrophobic groups. J Am Oil Chem Soc 56:830–833.  https://doi.org/10.1007/bf02909528CrossRefGoogle Scholar
  55. 55.
    Pernak J, Kalewska J, Ksycinska H, Cybulski J (2001) Synthesis and anti-microbial activities of some pyridinium salts with alkoxymethyl hydrophobic group. Eur J Med Chem 36:899–907.  https://doi.org/10.1016/s0223-5234(01)01280-6CrossRefGoogle Scholar
  56. 56.
    Pernak J, Goc I, Mirska I (2004) Anti-microbial activities of protic ionic liquids with lactate anion. Green Chem 6:323–329.  https://doi.org/10.1039/b404625kCrossRefGoogle Scholar
  57. 57.
    Cornellas A, Perez L, Comelles F, Ribosa I, Manresa A, Garcia MT (2011) Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J Colloid Interface Sci 355:164–171.  https://doi.org/10.1016/j.jcis.2010.11.063CrossRefGoogle Scholar
  58. 58.
    Luczak J, Jungnickel C, Lacka I, Stolle S, Hupka J (2010) Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives. Green Chem 12:593–601.  https://doi.org/10.1039/b921805jCrossRefGoogle Scholar
  59. 59.
    Pernak J et al (2007) Choline-derivative-based ionic liquids. Chem Eur J 13:6817–6827.  https://doi.org/10.1002/chem.200700285CrossRefGoogle Scholar
  60. 60.
    Petkovic M et al (2010) Novel biocompatible cholinium-based ionic liquids—toxicity and biodegradability. Green Chem 12:643–649.  https://doi.org/10.1039/b922247bCrossRefGoogle Scholar
  61. 61.
    Busetti A et al (2010) Antimicrobial and antibiofilm activities of 1-alkylquinolinium bromide ionic liquids. Green Chem 12:420–425.  https://doi.org/10.1039/b919872eCrossRefGoogle Scholar
  62. 62.
    Cole MR, Li M, El-Zahab B, Janes ME, Hayes D, Warner IM (2011) Design, synthesis, and biological evaluation of β-lactam antibiotic–based imidazolium- and pyridinium-type ionic liquids. Chem Biol Drug Des 78:33–41.  https://doi.org/10.1111/j.1747-0285.2011.01114.xCrossRefGoogle Scholar
  63. 63.
    Coleman D, Spulak M, Garcia MT, Gathergood N (2012) Antimicrobial toxicity studies of ionic liquids leading to a ‘hit’ MRSA selective antibacterial imidazolium salt. Green Chem 14:1350–1356.  https://doi.org/10.1039/c2gc16090kCrossRefGoogle Scholar
  64. 64.
    Borowiecki P, Milner-Krawczyk M, Brzezinska D, Wielechowska M, Plenkiewicz J (2013) Synthesis and antimicrobial activity of imidazolium and triazolium chiral ionic liquids. Eur J Org Chem 2013:712–720.  https://doi.org/10.1002/ejoc.201201245CrossRefGoogle Scholar
  65. 65.
    Feder-Kubis J, Tomczuk K (2013) The effect of the cationic structures of chiral ionic liquids on their antimicrobial activities. Tetrahedron 69:4190–4198.  https://doi.org/10.1016/j.tet.2013.03.107CrossRefGoogle Scholar
  66. 66.
    Piotrowska A, Syguda A, Wyrwas B, Chrzanowski L, Heipieper HJ (2017) Toxicity evaluation of selected ammonium-based ionic liquid forms with MCPP and dicamba moieties on Pseudomonas putida. Chemosphere 167:114–119.  https://doi.org/10.1016/j.chemosphere.2016.09.140CrossRefGoogle Scholar
  67. 67.
    Ventura SPM et al (2013) Imidazolium and pyridinium ionic liquids from mandelic acid derivatives: synthesis and bacteria and algae toxicity evaluation. ACS Sustain Chem Eng 1:393–402.  https://doi.org/10.1021/sc3001299CrossRefGoogle Scholar
  68. 68.
    Prydderch H, Haiss A, Spulak M, Quilty B, Kummerer K, Heise A, Gathergood N (2017) Mandelic acid derived ionic liquids: synthesis, toxicity and biodegradability. RSC Adv 7:2115–2126.  https://doi.org/10.1039/c6ra25562kCrossRefGoogle Scholar
  69. 69.
    Gouveia W et al (2014) Toxicity of ionic liquids prepared from biomaterials. Chemosphere 104:51–56.  https://doi.org/10.1016/j.chemosphere.2013.10.055CrossRefGoogle Scholar
  70. 70.
    Jordan A, Haiss A, Spulak M, Karpichev Y, Kummerer K, Gathergood N (2016) Synthesis of a series of amino acid derived ionic liquids and tertiary amines: green chemistry metrics including microbial toxicity and preliminary biodegradation data analysis. Green Chem 18:4374–4392.  https://doi.org/10.1039/c6gc00415fCrossRefGoogle Scholar
  71. 71.
    Frizzo CP et al (2016) Novel ibuprofenate- and docusate-based ionic liquids: emergence of antimicrobial activity. RSC Adv 6:100476–100486.  https://doi.org/10.1039/c6ra22237dCrossRefGoogle Scholar
  72. 72.
    Garcia MT, Ribosa I, Perez L, Manresa A, Comelles F (2013) Aggregation behavior and antimicrobial activity of ester-functionalized imidazolium- and pyridinium-based ionic liquids in aqueous solution. Langmuir 29:2536–2545.  https://doi.org/10.1021/la304752eCrossRefGoogle Scholar
  73. 73.
    Gilmore BF et al (2013) Enhanced antimicrobial activities of 1-alkyl-3-methyl imidazolium ionic liquids based on silver or copper containing anions. New J Chem 37:873–876.  https://doi.org/10.1039/c3nj40759dCrossRefGoogle Scholar
  74. 74.
    Hodyna D et al (2016) Efficient antimicrobial activity and reduced toxicity of 1-dodecy1-3-methylimidazolium tetrafluoroborate ionic liquid/beta-cyclodextrin complex. Chem Eng J 284:1136–1145.  https://doi.org/10.1016/j.cej.2015.09.041CrossRefGoogle Scholar
  75. 75.
    Messali M, Moussa Z, Alzahrani AY, El-Naggar MY, ElDouhaibi AS, Judeh ZMA, Hammouti B (2013) Synthesis, characterization and the antimicrobial activity of new eco-friendly ionic liquids. Chemosphere 91:1627–1634.  https://doi.org/10.1016/j.chemosphere.2012.12.062CrossRefGoogle Scholar
  76. 76.
    Postleb F, Stefanik D, Seifert H, Giernoth R (2013) Bionic liquids: imidazolium-based ionic liquids with antimicrobial activity. J Chem Sci 68:1123–1128.  https://doi.org/10.5560/znb.2013-3150CrossRefGoogle Scholar
  77. 77.
    Ranke J et al (2004) Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol Environ Saf 58:396–404.  https://doi.org/10.1016/s0147-6513(03)00105-2CrossRefGoogle Scholar
  78. 78.
    Samori C, Pasteris A, Galletti P, Tagliavini E (2007) Acute toxicity of oxygenated and nonoxygenated imidazolium-based ionic liquids to Daphnia magna and Vibrio fischeri. Environ Toxicol Chem 26:2379–2382.  https://doi.org/10.1897/07-066r2.1CrossRefGoogle Scholar
  79. 79.
    Ventura SPM, Marques CS, Rosatella AA, Afonso CAM, Goncalves F, Coutinho JAP (2012) Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria. Ecotoxicol Environ Saf 76:162–168.  https://doi.org/10.1016/j.ecoenv.2011.10.006CrossRefGoogle Scholar
  80. 80.
    Viboud S, Papaiconomou N, Cortesi A, Chatel G, Draye M, Fontvieille D (2012) Correlating the structure and composition of ionic liquids with their toxicity on Vibrio fischeri: a systematic study. J Hazard Mater 215:40–48.  https://doi.org/10.1016/j.jhazmat.2012.02.019CrossRefGoogle Scholar
  81. 81.
    Montalban MG, Hidalgo JM, Collado-Gonzalez M, Banos FGD, Villora G (2016) Assessing chemical toxicity of ionic liquids on Vibrio fischeri: correlation with structure and composition. Chemosphere 155:405–414.  https://doi.org/10.1016/j.chemosphere.2016.04.042CrossRefGoogle Scholar
  82. 82.
    Ventura SPM, Silva FAE, Goncalves AMM, Pereira JL, Goncalves F, Coutinho JAP (2014) Ecotoxicity analysis of cholinium-based ionic liquids to Vibrio fischeri marine bacteria. Ecotoxicol Environ Saf 102:48–54.  https://doi.org/10.1016/j.ecoenv.2014.01.003CrossRefGoogle Scholar
  83. 83.
    Ben Ghanem O et al (2015) Thermophysical properties and acute toxicity towards green algae and Vibrio fischeri of amino acid–based ionic liquids. J Mol Liq 212:352–359.  https://doi.org/10.1016/j.molliq.2015.09.017CrossRefGoogle Scholar
  84. 84.
    Sintra TE et al (2017) Ecotoxicological evaluation of magnetic ionic liquids. Ecotoxicol Environ Saf 143:315–321.  https://doi.org/10.1016/j.ecoenv.2017.05.034CrossRefGoogle Scholar
  85. 85.
    Ahlstrom B, Chelminskabertilsson M, Thompson RA, Edebo L (1995) Long-chain alkanoylcholines, a new category of soft antimicrobial agents that are enzymatically degradable. Antimicrob Agents Chemother 39:50–55Google Scholar
  86. 86.
    Pernak J, Rogoza J, Mirska I (2001) Synthesis and antimicrobial activities of new pyridinium and benzimidazolium chlorides. Eur J Med Chem 36:313–320.  https://doi.org/10.1016/s0223-5234(01)01226-0CrossRefGoogle Scholar
  87. 87.
    Cieniecka-Roslonkiewicz A, Pernak J, Kubis-Feder J, Ramani A, Robertson AJ, Seddon KR (2005) Synthesis, anti-microbial activities and anti-electrostatic properties of phosphonium-based ionic liquids. Green Chem 7:855–862.  https://doi.org/10.1039/b508499gCrossRefGoogle Scholar
  88. 88.
    Ganske F, Bornscheuer UT (2005) Lipase-catalyzed glucose fatty acid ester synthesis in ionic liquids. Org Lett 7:3097–3098.  https://doi.org/10.1021/ol0511169CrossRefGoogle Scholar
  89. 89.
    Petkovic M et al (2009) Exploring fungal activity in the presence of ionic liquids. Green Chem 11:889–894.  https://doi.org/10.1039/b823225cCrossRefGoogle Scholar
  90. 90.
    Carson L et al (2009) Antibiofilm activities of 1-alkyl-3-methylimidazolium chloride ionic liquids. Green Chem 11:492–497.  https://doi.org/10.1039/b821842kCrossRefGoogle Scholar
  91. 91.
    Singer SW, Reddy AP, Gladden JM, Guo H, Hazen TC, Simmons BA, VanderGheynst JS (2011) Enrichment, isolation and characterization of fungi tolerant to 1-ethyl-3-methylimidazolium acetate. J Appl Microbiol 110:1023–1031.  https://doi.org/10.1111/j.1365-2672.2011.04959.xCrossRefGoogle Scholar
  92. 92.
    Deng Y, Besse-Hoggan P, Sancelme M, Delort AM, Husson P, Gomes MFC (2011) Influence of oxygen functionalities on the environmental impact of imidazolium based ionic liquids. J Hazard Mater 198:165–174.  https://doi.org/10.1016/j.jhazmat.2011.10.024CrossRefGoogle Scholar
  93. 93.
    Wang H, Malhotra SV, Francis AJ (2011) Toxicity of various anions associated with methoxyethyl methyl imidazolium-based ionic liquids on Clostridium sp. Chemosphere 82:1597–1603.  https://doi.org/10.1016/j.chemosphere.2010.11.049CrossRefGoogle Scholar
  94. 94.
    Zhang C, Malhotra SV, Francis AJ (2011) Toxicity of imidazolium- and pyridinium-based ionic liquids and the co-metabolic degradation of N-ethylpyridinium tetrafluoroborate. Chemosphere 82:1690–1695.  https://doi.org/10.1016/j.chemosphere.2010.10.085CrossRefGoogle Scholar
  95. 95.
    Alberto EE, Rossato LL, Alves SH, Alves D, Braga AL (2011) Imidazolium ionic liquids containing selenium: synthesis and antimicrobial activity. Org Biomol Chem 9:1001–1003.  https://doi.org/10.1039/c0ob01010cCrossRefGoogle Scholar
  96. 96.
    Banothu J, Bavanthula R (2012) Bronsted acidic ionic liquid catalyzed highly efficient synthesis of chromeno pyrimidinone derivatives and their antimicrobial activity. Chin Chem Lett 23:1015–1018.  https://doi.org/10.1016/j.cclet.2012.06.041CrossRefGoogle Scholar
  97. 97.
    Li HQ, Yu CC, Chen R, Li J, Li JX (2012) Novel ionic liquid–type Gemini surfactants: synthesis, surface property and antimicrobial activity. Coll Surf 395:116–124.  https://doi.org/10.1016/j.colsurfa.2011.12.014CrossRefGoogle Scholar
  98. 98.
    Petkovic M, Hartmann DO, Adamova G, Seddon KR, Rebelo LPN, Pereira CS (2012) Unravelling the mechanism of toxicity of alkyltributylphosphonium chlorides in Aspergillus nidulans conidia. New J Chem 36:56–63.  https://doi.org/10.1039/c1nj20470jCrossRefGoogle Scholar
  99. 99.
    Ventura SPM, de Barros RLF, Sintra T, Soares CMF, Lima AS, Coutinho JAP (2012) Simple screening method to identify toxic/non-toxic ionic liquids: agar diffusion test adaptation. Ecotoxicol Environ Saf 83:55–62.  https://doi.org/10.1016/j.ecoenv.2012.06.002CrossRefGoogle Scholar
  100. 100.
    Banothu J, Gali R, Velpula R, Bavantula R (2013) Bronsted acidic ionic liquid catalysis: an efficient and eco-friendly synthesis of novel fused pyrano pyrimidinones and their antimicrobial activity. J Chem Sci 125:843–849Google Scholar
  101. 101.
    Ben Ghanem O, Mutalib MIA, El-Harbawi M, Gonfa G, Kait CF, Alitheen NBM, Leveque JM (2015) Effect of imidazolium-based ionic liquids on bacterial growth inhibition investigated via experimental and QSAR modelling studies. J Hazard Mater 297:198–206.  https://doi.org/10.1016/j.jhazmat.2015.04.082CrossRefGoogle Scholar
  102. 102.
    Mester P, Wagner M, Rossmanith P (2015) Antimicrobial effects of short chained imidazolium-based ionic liquids—influence of anion chaotropicity. Ecotoxicol Environ Saf 111:96–101.  https://doi.org/10.1016/j.ecoenv.2014.08.032CrossRefGoogle Scholar
  103. 103.
    Borkowski A et al (2016) Different antibacterial activity of novel theophylline-based ionic liquids—growth kinetic and cytotoxicity studies. Ecotoxicol Environ Saf 130:54–64.  https://doi.org/10.1016/j.ecoenv.2016.04.004CrossRefGoogle Scholar
  104. 104.
    Yu J, Zhang SS, Dai YT, Lu XX, Lei QF, Fang WJ (2016) Antimicrobial activity and cytotoxicity of piperazinium- and guanidinium-based ionic liquids. J Hazard Mater 307:73–81.  https://doi.org/10.1016/j.jhazmat.2015.12.028CrossRefGoogle Scholar
  105. 105.
    Kunduracioglu A, Gube O, Hames-Kocabas EE, Eyupoglu V, Sonmez F (2016) Synthesis, structural analysis and antimicrobial activities of novel water soluble ionic liquids derived from N-heterocyclic carbene salts. Croat Chem Acta 89:105–110.  https://doi.org/10.5562/cca2599CrossRefGoogle Scholar
  106. 106.
    Siopa F et al (2016) Choline-based ionic liquids: improvement of antimicrobial activity. ChemistrySelect 1:5909–5916.  https://doi.org/10.1002/slct.201600864CrossRefGoogle Scholar
  107. 107.
    Garcia MT, Gathergood N, Scammells PJ (2005) Biodegradable ionic liquids—part II. Effect of the anion and toxicology. Green Chem 7:9–14.  https://doi.org/10.1039/b411922cCrossRefGoogle Scholar
  108. 108.
    Romero A, Santos A, Tojo J, Rodriguez A (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater 151:268–273.  https://doi.org/10.1016/j.jhazmat.2007.10.079CrossRefGoogle Scholar
  109. 109.
    Couling DJ, Bernot RJ, Docherty KM, Dixon JK, Maginn EJ (2006) Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling. Green Chem 8:82–90.  https://doi.org/10.1039/b511333dCrossRefGoogle Scholar
  110. 110.
    Docherty KM, Kulpa CF (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189.  https://doi.org/10.1039/b419172bCrossRefGoogle Scholar
  111. 111.
    Stolte S et al (2007) Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem 9:1170–1179.  https://doi.org/10.1039/b711119cCrossRefGoogle Scholar
  112. 112.
    Pinto P, Costa SPF, Lima J, Saraiva M (2012) Automated high-throughput Vibrio fischeri assay for (eco)toxicity screening: application to ionic liquids. Ecotoxicol Environ Saf 80:97–102.  https://doi.org/10.1016/j.ecoenv.2012.02.013CrossRefGoogle Scholar
  113. 113.
    Silva FAE et al (2014) Sustainable design for environment-friendly mono and dicationic cholinium-based ionic liquids. Ecotoxicol Environ Saf 108:302–310.  https://doi.org/10.1016/j.ecoenv.2014.07.003CrossRefGoogle Scholar
  114. 114.
    Fan Y, Liu SS, Qu R, Li K, Liu HL (2017) Polymyxin B sulfate inducing time-dependent antagonism of the mixtures of pesticide, ionic liquids, and antibiotics to Vibrio qinghaiensis sp.-Q67. RSC Adv 7:6080–6088.  https://doi.org/10.1039/c6ra25843cCrossRefGoogle Scholar
  115. 115.
    Rantamaki AH, Ruokonen SK, Sklavounos E, Kyllonen L, King AWT, Wiedmer SK (2017) Impact of surface-active guanidinium-, tetramethylguanidinium-, and cholinium-based ionic liquids on Vibrio fischeri cells and dipalmitoylphosphatidylcholine liposomes. Sci Rep 7:46673.  https://doi.org/10.1038/srep46673CrossRefGoogle Scholar
  116. 116.
    Stepnowski P, Skladanowski AC, Ludwiczak A, Laczynska E (2004) Evaluating the cytotoxicity of ionic liquids using human cell line HeLa. Hum Exp Toxicol 23:513–517.  https://doi.org/10.1191/0960327104ht480oaCrossRefGoogle Scholar
  117. 117.
    Frade RFM, Matias A, Branco LC, Afonso CAM, Duarte CMM (2007) Effect of ionic liquids on human colon carcinoma HT-29 and CaCo-2 cell lines. Green Chem 9:873–877.  https://doi.org/10.1039/b617526kCrossRefGoogle Scholar
  118. 118.
    Stolte S et al (2006) Anion effects on the cytotoxicity of ionic liquids. Green Chem 8:621–629.  https://doi.org/10.1039/b602161aCrossRefGoogle Scholar
  119. 119.
    Ranke J et al (2007) Lipophilicity parameters for ionic liquid cations and their correlation to in vitro cytotoxicity. Ecotoxicol Environ Saf 67:430–438.  https://doi.org/10.1016/j.ecoenv.2006.08.008CrossRefGoogle Scholar
  120. 120.
    Stolte S et al (2007) Effects of different head groups and functionalised side chains on the cytotoxicity of ionic liquids. Green Chem 9:760–767.  https://doi.org/10.1039/b615326gCrossRefGoogle Scholar
  121. 121.
    Stolte S, Steudte S, Areitioaurtena O, Pagano F, Thoming J, Stepnowski P, Igartua A (2012) Ionic liquids as lubricants or lubrication additives: an ecotoxicity and biodegradability assessment. Chemosphere 89:1135–1141.  https://doi.org/10.1016/j.chemosphere.2012.05.102CrossRefGoogle Scholar
  122. 122.
    Pernak J et al (2011) Synthesis, toxicity, biodegradability and physicochemical properties of 4-benzyl-4-methylmorpholinium-based ionic liquids. Green Chem 13:2901–2910.  https://doi.org/10.1039/c1gc15468kCrossRefGoogle Scholar
  123. 123.
    Garcia-Lorenzo A, Tojo E, Tojo J, Teijeira M, Rodriguez-Berrocal FJ, Gonzalez MP, Martinez-Zorzano VS (2008) Cytotoxicity of selected imidazolium-derived ionic liquids in the human Caco-2 cell line. Sub-structural toxicological interpretation through a QSAR study. Green Chem 10:508–516.  https://doi.org/10.1039/b718860aCrossRefGoogle Scholar
  124. 124.
    Li XY, Jing CQ, Zang XY, Yang SA, Wang JJ (2012) Toxic cytological alteration and mitochondrial dysfunction in PC12 cells induced by 1-octyl-3-methylimidazolium chloride. Toxicol in Vitro 26:1087–1092.  https://doi.org/10.1016/j.tiv.2012.07.006CrossRefGoogle Scholar
  125. 125.
    Bubalo MC, Radosevic K, Srcek VG, Das RN, Popelier P, Roy K (2015) Cytotoxicity towards CCO cells of imidazolium ionic liquids with functionalized side chains: preliminary QSTR modeling using regression and classification based approaches. Ecotoxicol Environ Saf 112:22–28.  https://doi.org/10.1016/j.ecoenv.2014.10.029CrossRefGoogle Scholar
  126. 126.
    Cvjetko M, Radosevic K, Tomica A, Slivac I, Vorkapic-Furac J, Srcek VG (2012) Cytotoxic effects of imidazolium ionic liquids on fish and human cell lines. Arh Hig Rada Toksikol 63:15–20.  https://doi.org/10.2478/10004-1254-63-2012-2132CrossRefGoogle Scholar
  127. 127.
    Radosevic K, Cvjetko M, Kopjar N, Novak R, Dumic J, Srcek VG (2013) In vitro cytotoxicity assessment of imidazolium ionic liquids: biological effects in fish channel catfish ovary (CCO) cell line. Ecotoxicol Environ Saf 92:112–118.  https://doi.org/10.1016/j.ecoenv.2013.03.002CrossRefGoogle Scholar
  128. 128.
    Ruokonen SK et al (2016) Effect of ionic liquids on zebrafish (Danio rerio) viability, behavior, and histology; correlation between toxicity and ionic liquid aggregation. Environ Sci Technol 50:7116–7125.  https://doi.org/10.1021/acs.est.5b06107CrossRefGoogle Scholar
  129. 129.
    Cho C-W, Pham TPT, Kim S, Kim Y-R, Jeon Y-C, Yun Y-S (2009) Toxicity assessment of common organic solvents using a biosensor based on algal photosynthetic activity measurement. J Appl Phycol 21:683–689.  https://doi.org/10.1007/s10811-009-9401-5CrossRefGoogle Scholar
  130. 130.
    Quraishi KS et al (2017) Ionic liquids toxicity on fresh water microalgae, Scenedesmus quadricauda, Chlorella vulgaris & Botryococcus braunii; selection criterion for use in a two-phase partitioning bioreactor (TPPBR). Chemosphere 184:642–651.  https://doi.org/10.1016/j.chemosphere.2017.06.037CrossRefGoogle Scholar
  131. 131.
    Deng XY, Chen B, Li D, Hu XL, Cheng J, Gao K, Wang CH (2017) Growth and physiological responses of a marine diatom (Phaeodactylum tricornutum) against two imidazolium-based ionic liquids (C(4)mim BF4 and C(8)mim BF4). Aquat Toxicol 189:115–122.  https://doi.org/10.1016/j.aquatox.2017.05.016CrossRefGoogle Scholar
  132. 132.
    Deng XY, Li D, Wang L, Hu XL, Cheng J, Gao K (2017) Potential toxicity of ionic liquid (C(12)mim BF4) on the growth and biochemical characteristics of a marine diatom Phaeodactylum tricornuturn. Sci Total Environ 586:675–684.  https://doi.org/10.1016/j.scitotenv.2017.02.043CrossRefGoogle Scholar
  133. 133.
    Liu HJ, Zhang XQ, Dong Y, Chen CD, Zhu SM, Ma XJ (2015) Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methyl imidazolium tartrate on Scenedesmus obliquus. Aquat Toxicol 169:179–187.  https://doi.org/10.1016/j.aquatox.2015.10.024CrossRefGoogle Scholar
  134. 134.
    Latala A, Stepnowski P, Nedzi M, Mrozik W (2005) Marine toxicity assessment of imidazolium ionic liquids: acute effects on the Baltic algae Oocystis submarina and Cyclotella meneghiniana. Aquat Toxicol 73:91–98.  https://doi.org/10.1016/j.aquatox.2005.03.008CrossRefGoogle Scholar
  135. 135.
    Wells AS, Coombe VT (2006) On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids. Org Process Res Dev 10:794–798.  https://doi.org/10.1021/op060048iCrossRefGoogle Scholar
  136. 136.
    Cho CW, Pham TPT, Jeon YC, Vijayaraghavan K, Choe WS, Yun YS (2007) Toxicity of imidazolium salt with anion bromide to a phytoplankton Selenastrum capricornutum: effect of alkyl-chain length. Chemosphere 69:1003–1007.  https://doi.org/10.1016/j.chemosphere.2007.06.023CrossRefGoogle Scholar
  137. 137.
    Matzke M, Stolte S, Boschen A, Filser J (2008) Mixture effects and predictability of combination effects of imidazolium based ionic liquids as well as imidazolium based ionic liquids and cadmium on terrestrial plants (Triticum aestivum) and limnic green algae (Scenedesmus vacuolatus). Green Chem 10:784–792.  https://doi.org/10.1039/b802350fCrossRefGoogle Scholar
  138. 138.
    Kulacki KJ, Lamberti GA (2008) Toxicity of imidazolium ionic liquids to freshwater algae. Green Chem 10:104–110.  https://doi.org/10.1039/b709289jCrossRefGoogle Scholar
  139. 139.
    Latala A, Nedzi M, Stepnowski P (2009) Toxicity of imidazolium and pyridinium based ionic liquids towards algae. Bacillaria paxillifer (a microphytobenthic diatom) and Geitlerinema amphibium (a microphytobenthic blue green alga). Green Chem 11:1371–1376.  https://doi.org/10.1039/b901887eCrossRefGoogle Scholar
  140. 140.
    Latala A, Nedzi M, Stepnowski P (2009) Toxicity of imidazolium and pyridinium based ionic liquids towards algae. Chlorella vulgaris, Oocystis submarina (green algae) and Cyclotella meneghiniana, Skeletonema marinoi (diatoms). Green Chem 11:580–588.  https://doi.org/10.1039/b821140jCrossRefGoogle Scholar
  141. 141.
    Pretti C, Chiappe C, Baldetti I, Brunini S, Monni G, Intorre L (2009) Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicol Environ Saf 72:1170–1176.  https://doi.org/10.1016/j.ecoenv.2008.09.010CrossRefGoogle Scholar
  142. 142.
    Latala A, Nedzi M, Stepnowski P (2010) Toxicity of imidazolium ionic liquids towards algae. Influence of salinity variations. Green Chem 12:60–64.  https://doi.org/10.1039/b918355hCrossRefGoogle Scholar
  143. 143.
    Sena DW, Kulacki KJ, Chaloner DT, Lamberti GA (2010) The role of the cell wall in the toxicity of ionic liquids to the alga Chlamydomonas reinhardtii. Green Chem 12:1066–1071.  https://doi.org/10.1039/c000899kCrossRefGoogle Scholar
  144. 144.
    Ma JM, Cai LL, Zhang BJ, Hu LW, Li XY, Wang JJ (2010) Acute toxicity and effects of 1-alkyl-3-methylimidazolium bromide ionic liquids on green algae. Ecotoxicol Environ Saf 73:1465–1469.  https://doi.org/10.1016/j.ecoenv.2009.10.004CrossRefGoogle Scholar
  145. 145.
    Ventura SPM, Goncalves AMM, Sintra T, Pereira JL, Goncalves F, Coutinho JAP (2013) Designing ionic liquids: the chemical structure role in the toxicity. Ecotoxicology 22:1–12.  https://doi.org/10.1007/s10646-012-0997-xCrossRefGoogle Scholar
  146. 146.
    Chen H, Zou YQ, Zhang LJ, Wen YZ, Liu WP (2014) Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methylimidazolium lactate to aquatic algae. Aquat Toxicol 154:114–120.  https://doi.org/10.1016/j.aquatox.2014.05.010CrossRefGoogle Scholar
  147. 147.
    Hajfarajollah H, Mokhtarani B, Sharifi A, Mirzaei M, Afaghi A (2014) Toxicity of various kinds of ionic liquids towards the cell growth and end product formation of the probiotic strain, Propionibacterium freudenreichii. RSC Adv 4:13153–13160.  https://doi.org/10.1039/c4ra00925hCrossRefGoogle Scholar
  148. 148.
    Salchner R et al (2015) Structural and ecotoxicological profile of n-alkoxymorpholinhjm-based ionic liquids. Heterocycles 90:1018–1037.  https://doi.org/10.3987/com-14-s(k)73CrossRefGoogle Scholar
  149. 149.
    Deng Y, Beadham I, Wu J, Chen XD, Hu L, Gu J (2015) Chronic effects of the ionic liquid C(4)mim Cl towards the microalga Scenedesmus quadricauda. Environ Pollut 204:248–255.  https://doi.org/10.1016/j.envpol.2015.05.011CrossRefGoogle Scholar
  150. 150.
    Liu HJ, Zhang XQ, Chen CD, Du ST, Dong Y (2015) Effects of imidazolium chloride ionic liquids and their toxicity to Scenedesmus obliquus. Ecotoxicol Environ Saf 122:83–90.  https://doi.org/10.1016/j.ecoenv.2015.07.010CrossRefGoogle Scholar
  151. 151.
    Samori C et al (2015) Pyrrolidinium-based ionic liquids: aquatic ecotoxicity, biodegradability, and algal subinhibitory stimulation. ACS Sustain Chem Eng 3:1860–1865.  https://doi.org/10.1021/acssuschemeng.5b00458CrossRefGoogle Scholar
  152. 152.
    Tsarpali V, Dailianis S (2015) Toxicity of two imidazolium ionic liquids, bmim BF4 and omim BF4, to standard aquatic test organisms: role of acetone in the induced toxicity. Ecotoxicol Environ Saf 117:62–71.  https://doi.org/10.1016/j.ecoenv.2015.03.026CrossRefGoogle Scholar
  153. 153.
    Tsarpali V, Harbi K, Dailianis S (2016) Physiological response of the green microalgae Dunaliella tertiolecta against imidazolium ionic liquids bmim BF4 and/or omim BF4: the role of salinity on the observed effects. J Appl Phycol 28:979–990.  https://doi.org/10.1007/s10811-015-0613-6CrossRefGoogle Scholar
  154. 154.
    Pham TPT, Cho CW, Yun YS (2016) Structural effects of ionic liquids on microalgal growth inhibition and microbial degradation. Environ Sci Pollut Res 23:4294–4300.  https://doi.org/10.1007/s11356-015-5287-8CrossRefGoogle Scholar
  155. 155.
    Reddy GKK, Nancharaiah YV, Venugopalan VP (2017) Long alkyl-chain imidazolium ionic liquids: antibiofilm activity against phototrophic biofilms. Coll Surf 155:487–496.  https://doi.org/10.1016/j.colsurfb.2017.04.040CrossRefGoogle Scholar
  156. 156.
    Deng XY, Cheng J, Hu XL, Gao K, Wang CH (2015) Physiological and biochemical responses of a marine diatom Phaeodactylum tricornutum exposed to 1-octyl-3-methylimidazolium bromide. Aquat Biol 24:109–115.  https://doi.org/10.3354/ab00643CrossRefGoogle Scholar
  157. 157.
    Bernot RJ, Brueseke MA, Evans-White MA, Lamberti GA (2005) Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environ Toxicol Chem 24:87–92.  https://doi.org/10.1897/03-635.1CrossRefGoogle Scholar
  158. 158.
    Costa SPF, Pinto P, Saraiva M, Rocha FRP, Santos JRP, Monteiro RTR (2015) The aquatic impact of ionic liquids on freshwater organisms. Chemosphere 139:288–294.  https://doi.org/10.1016/j.chemosphere.2015.05.100CrossRefGoogle Scholar
  159. 159.
    Wang C, Wei ZB, Wang LS, Sun P, Wang ZY (2015) Assessment of bromide-based ionic liquid toxicity toward aquatic organisms and QSAR analysis. Ecotoxicol Environ Saf 115:112–118.  https://doi.org/10.1016/j.ecoenv.2015.02.012CrossRefGoogle Scholar
  160. 160.
    Bado-Nilles A et al (2015) Coupling of OECD standardized test and immunomarkers to select the most environmentally benign ionic liquids option—towards an innovative “safety by design” approach. J Hazard Mater 283:202–210.  https://doi.org/10.1016/j.jhazmat.2014.09.023CrossRefGoogle Scholar
  161. 161.
    Luo YR, Li XY, Chen XX, Zhang BJ, Sun ZJ, Wang JJ (2008) The developmental toxicity of 1-methyl-3-octylimidazolium bromide on Daphnia magna. Environ Toxicol 23:736–744.  https://doi.org/10.1002/tox.20382CrossRefGoogle Scholar
  162. 162.
    Yu M, Wang SH, Luo YR, Han YW, Li XY, Zhang BJ, Wang JJ (2009) Effects of the 1-alkyl-3-methylimidazolium bromide ionic liquids on the antioxidant defense system of Daphnia magna. Ecotoxicol Environ Saf 72:1798–1804.  https://doi.org/10.1016/j.ecoenv.2009.05.002CrossRefGoogle Scholar
  163. 163.
    Ventura SPM, Goncalves AMM, Goncalves F, Coutinho JAP (2010) Assessing the toxicity on C(3)mim Tf2N to aquatic organisms of different trophic levels. Aquat Toxicol 96:290–297.  https://doi.org/10.1016/j.aquatox.2009.11.008CrossRefGoogle Scholar
  164. 164.
    Samori C et al (2010) Introduction of oxygenated side chain into imidazolium ionic liquids: evaluation of the effects at different biological organization levels. Ecotoxicol Environ Saf 73:1456–1464.  https://doi.org/10.1016/j.ecoenv.2010.07.020CrossRefGoogle Scholar
  165. 165.
    Docherty KM, Joyce MV, Kulacki KJ, Kulpa CF (2010) Microbial biodegradation and metabolite toxicity of three pyridinium-based cation ionic liquids. Green Chem 12:701–712.  https://doi.org/10.1039/b919154bCrossRefGoogle Scholar
  166. 166.
    Santos JI et al (2015) Environmental safety of cholinium-based ionic liquids: assessing structure-ecotoxicity relationships. Green Chem 17:4657–4668.  https://doi.org/10.1039/c5gc01129aCrossRefGoogle Scholar
  167. 167.
    Pretti C, Chiappe C, Pieraccini D, Gregori M, Abramo F, Monni G, Intorre L (2006) Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chem 8:238–240.  https://doi.org/10.1039/b511554jCrossRefGoogle Scholar
  168. 168.
    Dumitrescu G, Petculescu-Ciochină L, Bencsik I, Dronca D, Boca L (2010) Evaluation on acute toxicity of tetrabuthylammonium bromide ionic liquid at histological structure of some organs in zebrafish (Danio rerio). AACL Bioflux 3:404–414Google Scholar
  169. 169.
    Li XY, Zeng SH, Zhang WH, Liu L, Ma S, Wang JJ (2013) Acute toxicity and superficial damage to goldfish from the ionic liquid 1-methyl-3-octylimidazolium bromide. Environ Toxicol 28:207–214.  https://doi.org/10.1002/tox.20712CrossRefGoogle Scholar
  170. 170.
    Perez CJ, Tata A, de Campos ML, Peng C, Ifa DR (2017) Monitoring toxic ionic liquids in Zebrafish (Danio rerio) with desorption electrospray ionization mass spectrometry imaging (DESI-MSI). J Am Soc Mass Spectrom 28:1136–1148.  https://doi.org/10.1007/s13361-016-1515-9CrossRefGoogle Scholar
  171. 171.
    Wang LS, Wang L, Wang L, Wang G, Li ZH, Wang JJ (2009) Effect of 1-butyl-3-methylimidazolium tetrafluoroborate on the wheat (Triticum aestivum L.) seedlings. Environ Toxicol 24:296–303.  https://doi.org/10.1002/tox.20435CrossRefGoogle Scholar
  172. 172.
    Du ZK, Zhu LS, Dong MA, Wang JH, Wang J, Xie H, Zhu SY (2012) Effects of the ionic liquid Omim PF6 on antioxidant enzyme systems, ROS and DNA damage in zebrafish (Danio rerio). Aquat Toxicol 124:91–93.  https://doi.org/10.1016/j.aquatox.2012.08.002CrossRefGoogle Scholar
  173. 173.
    Dong M, Zhu LS, Zhu SY, Wang JH, Wang J, Xie H, Du ZK (2013) Toxic effects of 1-decyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system and DNA in zebrafish (Danio rerio) livers. Chemosphere 91:1107–1112.  https://doi.org/10.1016/j.chemosphere.2013.01.013CrossRefGoogle Scholar
  174. 174.
    Hafez NFM, Mutalib MIA, Bustam MA, El-Harbawi M, Leveque JM (2016) Ecotoxicity of pyridinium based ILs towards guppy fish and four bacterial strains. Procedia Eng 148:830–838Google Scholar
  175. 175.
    Baharuddin SH, Mustahil NA, Abdullah AA, Sivapragasam M, Moniruzzaman M (2016) Ecotoxicity study of amino acid ionic liquids towards danio rerio fish: effect of cations. Procedia Eng 148:401–408Google Scholar
  176. 176.
    Li XY, Zeng SH, Dong XY, Ma JG, Wang JJ (2012) Acute toxicity and responses of antioxidant systems to 1-methyl-3-octylimidazolium bromide at different developmental stages of goldfish. Ecotoxicology 21:253–259.  https://doi.org/10.1007/s10646-011-0785-zCrossRefGoogle Scholar
  177. 177.
    Larson JH, Frost PC, Lamberti GA (2008) Variable toxicity of ionic liquid–forming chemicals to Lemna minor and the influence of dissolved organic matter. Environ Toxicol Chem 27:676–681.  https://doi.org/10.1897/06-540.1CrossRefGoogle Scholar
  178. 178.
    Studzinska S, Buszewski B (2009) Study of toxicity of imidazolium ionic liquids to watercress (Lepidium sativum L.). Anal Bioanal Chem 393:983–990.  https://doi.org/10.1007/s00216-008-2523-9CrossRefGoogle Scholar
  179. 179.
    Liu HJ, Zhang SX, Zhang XQ, Chen CD (2015) Growth inhibition and effect on photosystem by three imidazolium chloride ionic liquids in rice seedlings. J Hazard Mater 286:440–448.  https://doi.org/10.1016/j.jhazmat.2015.01.008CrossRefGoogle Scholar
  180. 180.
    Matzke M, Stolte S, Arning U, Uebers U, Filser J (2008) Imidazolium based ionic liquids in soils: effects of the side chain length on wheat (Triticum aestivum) and cress (Lepidium sativum) as affected by different clays and organic matter. Green Chem 10:584–591.  https://doi.org/10.1039/b717811eCrossRefGoogle Scholar
  181. 181.
    Balczewski P, Bachowska B, Bialas T, Biczak R, Wieczorek WM, Balinska A (2007) Synthesis and phytotoxicity of new ionic liquids incorporating chiral cations and/or chiral anions. J Agric Food Chem 55:1881–1892.  https://doi.org/10.1021/jf062849qCrossRefGoogle Scholar
  182. 182.
    Bubalo MC, Hanousek K, Radosevic K, Srcek VG, Jakovljevic T, Redovnikovic IR (2014) Imidiazolium based ionic liquids: effects of different anions and alkyl chains lengths on the barley seedlings. Ecotoxicol Environ Saf 101:116–123.  https://doi.org/10.1016/j.ecoenv.2013.12.022CrossRefGoogle Scholar
  183. 183.
    Matzke M, Stolte S, Arning J, Uebers U, Filser J (2009) Ionic liquids in soils: effects of different anion species of imidazolium based ionic liquids on wheat (Triticum aestivum) as affected by different clay minerals and clay concentrations. Ecotoxicology 18:197–203.  https://doi.org/10.1007/s10646-008-0272-3CrossRefGoogle Scholar
  184. 184.
    Liu P, Ding Y, Liu H, Sun L, Li X, Wang J (2010) Toxic effects of 1-methyl-3-octylimidazolium bromide on the wheat seedling. J Environ Sci 22:1974–1979.  https://doi.org/10.1016/S1001-0742(09)60348-XCrossRefGoogle Scholar
  185. 185.
    Liu HJ, Zhang SX, Hu XN, Chen CD (2013) Phytotoxicity and oxidative stress effect of 1-octyl-3-methylimidazolium chloride ionic liquid on rice seedlings. Environ Pollut 181:242–249.  https://doi.org/10.1016/j.envpol.2013.06.007CrossRefGoogle Scholar
  186. 186.
    Biczak R, Balczewski P, Bachowska B, Pawlowska B, Kazmierczak-Baranska J, Cieslak M, Nawrot B (2013) Phytotoxicity and cytotoxicity of imidazolium ionic liquids containing sulfur atom. Phosphorus Sulfur Silicon Relat Elem 188:459–461.  https://doi.org/10.1080/10426507.2012.737880CrossRefGoogle Scholar
  187. 187.
    Biczak R, Balczewski P, Pawlowska B, Bachowska B, Rychter P (2014) Comparison of phytotoxicity of selected phosphonium ionic liquid. Ecol Chem Eng 21:281–295.  https://doi.org/10.2478/eces-2014-0022CrossRefGoogle Scholar
  188. 188.
    Liu T, Zhu LS, Xie H, Wang JH, Wang J, Sun FX, Wang FH (2014) Effects of the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate on the growth of wheat seedlings. Environ Sci Pollut Res 21:3936–3945.  https://doi.org/10.1007/s11356-013-2348-8CrossRefGoogle Scholar
  189. 189.
    Biczak R, Pawlowska B, Feder-Kubis J (2015) The phytotoxicity of ionic liquids from natural pool of (-)-menthol with tetrafluoroborate anion. Environ Sci Pollut Res 22:11740–11754.  https://doi.org/10.1007/s11356-015-4327-8CrossRefGoogle Scholar
  190. 190.
    Liu T, Zhu LS, Wang JH, Wang J, Xie H (2015) The genotoxic and cytotoxic effects of 1-butyl-3-methylimidazolium chloride in soil on Vicia faba seedlings. J Hazard Mater 285:27–36.  https://doi.org/10.1016/j.jhazmat.2014.11.028CrossRefGoogle Scholar
  191. 191.
    Biczak R (2016) Quaternary ammonium salts with tetrafluoroborate anion: phytotoxicity and oxidative stress in terrestrial plants. J Hazard Mater 304:173–185.  https://doi.org/10.1016/j.jhazmat.2015.10.055CrossRefGoogle Scholar
  192. 192.
    Biczak R, Telesinski A, Pawlowska B (2016) Oxidative stress in spring barley and common radish exposed to quaternary ammonium salts with hexafluorophosphate anion. Plant Physiol Biochem 107:248–256.  https://doi.org/10.1016/j.plaphy.2016.05.016CrossRefGoogle Scholar
  193. 193.
    Biczak R, Pawlowska B, Telesinski A, Ciesielski W (2016) The effect of the number of alkyl substituents on imidazolium ionic liquids phytotoxicity and oxidative stress in spring barley and common radish seedlings. Chemosphere 165:519–528.  https://doi.org/10.1016/j.chemosphere.2016.09.074CrossRefGoogle Scholar
  194. 194.
    Liu T, Wang JH, Wang J, Zhu LS, Zhang J, Sun X (2016) Growth and physiological and biochemical responses of wheat seedlings to imidazolium-based ionic liquids 1-octyl-3-methylimidazolium chloride and 1-octyl-3-methylimidazolium bromide. Bull Environ Contam Toxicol 96:544–549.  https://doi.org/10.1007/s00128-016-1747-1CrossRefGoogle Scholar
  195. 195.
    Liu T, Zhu LS, Wang JH, Wang J, Tan MY (2016) Phytotoxicity of imidazolium-based ILs with different anions in soil on Vicia faba seedlings and the influence of anions on toxicity. Chemosphere 145:269–276.  https://doi.org/10.1016/j.chemosphere.2015.11.055CrossRefGoogle Scholar
  196. 196.
    Pawlowska B, Biczak R (2016) Evaluation of the effect of tetraethylammonium bromide and chloride on the growth and development of terrestrial plants. Chemosphere 149:24–33.  https://doi.org/10.1016/j.chemosphere.2016.01.072CrossRefGoogle Scholar
  197. 197.
    Biczak R, Pawlowska B, Platkowski M, Strek M, Telesinski A (2017) Effect of quaternary ammonium salts with fluorine atoms on selected weed species. Bull Environ Contam Toxicol 98:567–573.  https://doi.org/10.1007/s00128-017-2033-6CrossRefGoogle Scholar
  198. 198.
    Biczak R, Pawlowska B, Telesinski A, Kapusniak J (2017) Role of cation structure in the phytotoxicity of ionic liquids: growth inhibition and oxidative stress in spring barley and common radish. Environ Sci Pollut Res 24:18444–18457.  https://doi.org/10.1007/s11356-017-9439-xCrossRefGoogle Scholar
  199. 199.
    Biczak R, Snioszek M, Telesinski A, Pawlowska B (2017) Growth inhibition and efficiency of the antioxidant system in spring barley and common radish grown on soil polluted ionic liquids with iodide anions. Ecotoxicol Environ Saf 139:463–471.  https://doi.org/10.1016/j.ecoenv.2017.02.016CrossRefGoogle Scholar
  200. 200.
    Stepnowski P, Storoniak P (2005) Lipophilicity and metabolic route prediction of imidazollum ionic liquids. Environ Sci Pollut Res 12:199–204.  https://doi.org/10.1065/espr2005.05.255CrossRefGoogle Scholar
  201. 201.
    Luis P, Ortiz I, Aldaco R, Irabien A (2007) A novel group contribution method in the development of a QSAR for predicting the toxicity (Vibrio fischeri EC50) of ionic liquids. Ecotoxicol Environ Saf 67:423–429.  https://doi.org/10.1016/j.ecoenv.2006.06.010CrossRefGoogle Scholar
  202. 202.
    Lacrama AM, Putz MV, Ostafe V (2007) A spectral-SAR model for the anionic-cationic interaction in ionic liquids: application to Vibrio fischeri ecotoxicity. Int J Mol Sci 8:842–863.  https://doi.org/10.3390/i8080842CrossRefGoogle Scholar
  203. 203.
    Luis P, Garea A, Irabien A (2010) Quantitative structure–activity relationships (QSARs) to estimate ionic liquids ecotoxicity EC50 (Vibrio fischeri). J Mol Liq 152:28–33.  https://doi.org/10.1016/j.molliq.2009.12.008CrossRefGoogle Scholar
  204. 204.
    Alvarez-Guerra M, Irabien A (2011) Design of ionic liquids: an ecotoxicity (Vibrio fischeri) discrimination approach. Green Chem 13:1507–1516.  https://doi.org/10.1039/c0gc00921kCrossRefGoogle Scholar
  205. 205.
    Bruzzone S, Chiappe C, Focardi SE, Pretti C, Renzi M (2011) Theoretical descriptor for the correlation of aquatic toxicity of ionic liquids by quantitative structure–toxicity relationships. Chem Eng J 175:17–23.  https://doi.org/10.1016/j.cej.2011.08.073CrossRefGoogle Scholar
  206. 206.
    Sosnowska A, Barycki M, Zaborowska M, Rybinska A, Puzyn T (2014) Towards designing environmentally safe ionic liquids: the influence of the cation structure. Green Chem 16:4749–4757.  https://doi.org/10.1039/c4gc00526kCrossRefGoogle Scholar
  207. 207.
    Yan FY, Shang QY, Xia SQ, Wang Q, Ma PS (2015) Topological study on the toxicity of ionic liquids on Vibrio fischeri by the quantitative structure–activity relationship method. J Hazard Mater 286:410–415.  https://doi.org/10.1016/j.jhazmat.2015.01.016CrossRefGoogle Scholar
  208. 208.
    Ma SY, Lv M, Deng FF, Zhang XY, Zhai HL, Lv WJ (2015) Predicting the ecotoxicity of ionic liquids towards Vibrio fischeri using genetic function approximation and least squares support vector machine. J Hazard Mater 283:591–598.  https://doi.org/10.1016/j.jhazmat.2014.10.011CrossRefGoogle Scholar
  209. 209.
    Cho CW et al (2013) In silico modelling for predicting the cationic hydrophobicity and cytotoxicity of ionic liquids towards the leukemia rat cell line, Vibrio fischeri and Scenedesmus vacuolatus based on molecular interaction potentials of ions. SAR QSAR Environ Res 24:863–882.  https://doi.org/10.1080/1062936x.2013.821092CrossRefGoogle Scholar
  210. 210.
    Das RN, Roy K (2012) Development of classification and regression models for Vibrio fischeri toxicity of ionic liquids: green solvents for the future. Toxicol Res 1:186–195.  https://doi.org/10.1039/c2tx20020aCrossRefGoogle Scholar
  211. 211.
    Cho CW, Stolte S, Yun YS (2016) Comprehensive approach for predicting toxicological effects of ionic liquids on several biological systems using unified descriptors. Sci Rep 6:33403.  https://doi.org/10.1038/srep33403CrossRefGoogle Scholar
  212. 212.
    Grzonkowska M, Sosnowska A, Barycki M, Rybinska A, Puzyn T (2016) How the structure of ionic liquid affects its toxicity to Vibrio fischeri? Chemosphere 159:199–207.  https://doi.org/10.1016/j.chemosphere.2016.06.004CrossRefGoogle Scholar
  213. 213.
    Paterno A, Scire S, Musumarra G (2016) A QSPR approach to the ecotoxicity of ionic liquids (Vibrio fischeri) using VolSurf principal properties. Toxicol Res 5:1090–1096.  https://doi.org/10.1039/c6tx00071aCrossRefGoogle Scholar
  214. 214.
    Das RN, Sintra TE, Coutinho JAP, Ventura SPM, Roy K, Popelier PLA (2016) Development of predictive QSAR models for Vibrio fischeri toxicity of ionic liquids and their true external and experimental validation tests. Toxicol Res 5:1388–1399.  https://doi.org/10.1039/c6tx00180gCrossRefGoogle Scholar
  215. 215.
    Ben Ghanem O, Mutalib MIA, Leveque JM, El-Harbawi M (2017) Development of QSAR model to predict the ecotoxicity of Vibrio fischeri using COSMO-RS descriptors. Chemosphere 170:242–250.  https://doi.org/10.1016/j.chemosphere.2016.12.003CrossRefGoogle Scholar
  216. 216.
    Torrecilla JS, Garcia J, Rojo E, Rodriguez F (2009) Estimation of toxicity of ionic liquids in leukemia rat cell line and acetylcholinesterase enzyme by principal component analysis, neural networks and multiple lineal regressions. J Hazard Mater 164:182–194.  https://doi.org/10.1016/j.jhazmat.2008.08.022CrossRefGoogle Scholar
  217. 217.
    Yan F, Xia S, Wang Q, Ma P (2012) Predicting toxicity of ionic liquids in acetylcholinesterase enzyme by the quantitative structure–activity relationship method using topological indexes. J Chem Eng Data 57:2252–2257.  https://doi.org/10.1021/je3002046CrossRefGoogle Scholar
  218. 218.
    Das RN, Roy K (2014) Predictive in silico modeling of ionic liquids toward inhibition of the acetyl cholinesterase enzyme of electrophorus electricus: a predictive toxicology approach. Ind Eng Chem Res 53:1020–1032.  https://doi.org/10.1021/ie403636qCrossRefGoogle Scholar
  219. 219.
    Kurtanjek Z (2014) Chemometric versus random forest predictors of ionic liquid toxicity. Chem Biochem Eng Q 28:459–463Google Scholar
  220. 220.
    Peric B, Sierra J, Marti E, Cruanas R, Antonia Garau M (2015) Quantitative structure–activity relationship (QSAR) prediction of (eco)toxicity of short aliphatic protic ionic liquids. Ecotoxicol Environ Saf 115:257–262.  https://doi.org/10.1016/j.ecoenv.2015.02.027CrossRefGoogle Scholar
  221. 221.
    Basant N, Gupta S, Singh KP (2015) Predicting acetyl cholinesterase enzyme inhibition potential of ionic liquids using machine learning approaches: an aid to green chemicals designing. J Mol Liq 209:404–412.  https://doi.org/10.1016/j.molliq.2015.06.001CrossRefGoogle Scholar
  222. 222.
    Cho CW, Yun YS (2016) Interpretation of toxicological activity of ionic liquids to acetylcholinesterase inhibition via in silico modelling. Chemosphere 159:178–183.  https://doi.org/10.1016/j.chemosphere.2016.06.005CrossRefGoogle Scholar
  223. 223.
    Paterno A, Bocci G, Cruciani G, Fortuna CG, Goracci L, Scire S, Musumarra G (2016) Cyto- and enzyme toxicities of ionic liquids modelled on the basis of VolSurf+ descriptors and their principal properties. SAR QSAR Environ Res 27:221–244.  https://doi.org/10.1080/1062936x.2016.1156571CrossRefGoogle Scholar
  224. 224.
    Torrecilla JS, Palomar J, Lemus J, Rodriguez F (2010) A quantum-chemical-based guide to analyze/quantify the cytotoxicity of ionic liquids. Green Chem 12:123–134.  https://doi.org/10.1039/b919806gCrossRefGoogle Scholar
  225. 225.
    Fatemi MH, Izadiyan P (2011) Cytotoxicity estimation of ionic liquids based on their effective structural features. Chemosphere 84:553–563.  https://doi.org/10.1016/j.chemosphere.2011.04.021CrossRefGoogle Scholar
  226. 226.
    Yan F, Xia S, Wang Q, Ma P (2012) Predicting the toxicity of ionic liquids in leukemia rat cell line by the quantitative structure–activity relationship method using topological indexes. Ind Eng Chem Res 51:13897–13901.  https://doi.org/10.1021/ie301764jCrossRefGoogle Scholar
  227. 227.
    Zhao YS, Zhao JH, Huang Y, Zhou Q, Zhang XP, Zhang SJ (2014) Toxicity of ionic liquids: database and prediction via quantitative structure–activity relationship method. J Hazard Mater 278:320–329.  https://doi.org/10.1016/j.jhazmat.2014.06.018CrossRefGoogle Scholar
  228. 228.
    Das RN, Roy K, Popelier PLA (2015) Exploring simple, transparent, interpretable and predictive QSAR models for classification and quantitative prediction of rat toxicity of ionic liquids using OECD recommended guidelines. Chemosphere 139:163–173.  https://doi.org/10.1016/j.chemosphere.2015.06.022CrossRefGoogle Scholar
  229. 229.
    Gupta S, Basant N, Singh KP (2015) Nonlinear QSAR modeling for predicting cytotoxicity of ionic liquids in leukemia rat cell line: an aid to green chemicals designing. Environ Sci Pollut Res 22:12699–12710.  https://doi.org/10.1007/s11356-015-4526-3CrossRefGoogle Scholar
  230. 230.
    Sosnowska A, Grzonkowska M, Puzyn T (2017) Global versus local QSAR models for predicting ionic liquids toxicity against IPC-81 leukemia rat cell line: the predictive ability. J Mol Liq 231:333–340.  https://doi.org/10.1016/j.molliq.2017.02.025CrossRefGoogle Scholar
  231. 231.
    Salam MA, Abdullah B, Ramli A, Mujtaba IM (2016) Structural feature based computational approach of toxicity prediction of ionic liquids: cationic and anionic effects on ionic liquids toxicity. J Mol Liq 224:393–400.  https://doi.org/10.1016/j.molliq.2016.09.120CrossRefGoogle Scholar
  232. 232.
    Hossain MI, Samir BB, El-Harbawi M, Masri AN, Mutalib MIA, Hefter G, Yin CY (2011) Development of a novel mathematical model using a group contribution method for prediction of ionic liquid toxicities. Chemosphere 85:990–994.  https://doi.org/10.1016/j.chemosphere.2011.06.088CrossRefGoogle Scholar
  233. 233.
    Roy K, Das RN (2013) QSTR with extended topochemical atom (ETA) indices. 16. Development of predictive classification and regression models for toxicity of ionic liquids towards Daphnia magna. J Hazard Mater 254:166–178.  https://doi.org/10.1016/j.jhazmat.2013.03.023CrossRefGoogle Scholar
  234. 234.
    Roy K, Das RN, Popelier PLA (2014) Quantitative structure–activity relationship for toxicity of ionic liquids to Daphnia magna: aromaticity vs. lipophilicity. Chemosphere 112:120–127.  https://doi.org/10.1016/j.chemosphere.2014.04.002CrossRefGoogle Scholar
  235. 235.
    Das RN, Roy K, Popelier PLA (2015) Interspecies quantitative structure-toxicity-toxicity (QSTTR) relationship modeling of ionic liquids. Toxicity of ionic liquids to V. fischeri, D. magna and S. vacuolatus. Ecotoxicol Environ Saf 122:497–520.  https://doi.org/10.1016/j.ecoenv.2015.09.014CrossRefGoogle Scholar
  236. 236.
    Singh KP, Gupta S, Basant N (2014) Predicting toxicities of ionic liquids in multiple test species—an aid in designing green chemicals. RSC Adv 4:64443–64456.  https://doi.org/10.1039/c4ra11252kCrossRefGoogle Scholar
  237. 237.
    Cho CW, Yun YS (2016) Correlating toxicological effects of ionic liquids on Daphnia magna with in silico calculated linear free energy relationship descriptors. Chemosphere 152:207–213.  https://doi.org/10.1016/j.chemosphere.2016.02.108CrossRefGoogle Scholar
  238. 238.
    Cho CW, Park JS, Stolte S, Yun YS (2016) Modelling for antimicrobial activities of ionic liquids towards Escherichia coli, Staphylococcus aureus and Candida albicans using linear free energy relationship descriptors. J Hazard Mater 311:168–175.  https://doi.org/10.1016/j.jhazmat.2016.03.006CrossRefGoogle Scholar
  239. 239.
    Das RN, Roy K (2016) Computation of chromatographic lipophilicity parameter logk(0) of ionic liquid cations from “ETA” descriptors: application in modeling of toxicity of ionic liquids to pathogenic bacteria. J Mol Liq 216:754–763.  https://doi.org/10.1016/j.molliq.2016.02.013CrossRefGoogle Scholar
  240. 240.
    Hodyna D, Kovalishyn V, Rogalsky S, Blagodatnyi V, Petko K, Metelytsia L (2016) Antibacterial activity of imidazolium-based ionic liquids investigated by QSAR modeling and experimental studies. Chem Biol Drug Des 88:422–433.  https://doi.org/10.1111/cbdd.12770CrossRefGoogle Scholar
  241. 241.
    Abraham MH, Acree WE (2010) Solute descriptors for phenoxide anions and their use to establish correlations of rates of reaction of anions with iodomethane. J Org Chem 75:3021–3026.  https://doi.org/10.1021/jo100292jCrossRefGoogle Scholar
  242. 242.
    Cho CW, Stolte S, Yun YS, Krossing I, Thoming J (2015) In silico prediction of linear free energy relationship descriptors of neutral and ionic compounds. RSC Adv 5:80634–80642.  https://doi.org/10.1039/c5ra13595hCrossRefGoogle Scholar
  243. 243.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  244. 244.
    Klamt A, Schuurmann G (1993) COSMO—a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc 2:799–805.  https://doi.org/10.1039/p29930000799CrossRefGoogle Scholar
  245. 245.
    O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33.  https://doi.org/10.1186/1758-2946-3-33CrossRefGoogle Scholar
  246. 246.
    COSMOlogic (1989–2007) Turbomole V5.10. University of Karlsruhe, KarlsruheGoogle Scholar
  247. 247.
    Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error measures. Further studies on validation of predictive QSAR models. Chemom Intell Lab Syst 152:18–33.  https://doi.org/10.1016/j.chemolab.2016.01.008CrossRefGoogle Scholar
  248. 248.
    Roy K, Mitra I, Kar S, Ojha PK, Das RN, Kabir H (2012) Comparative studies on some metrics for external validation of QSPR models. J Chem Inf Model 52:396–408.  https://doi.org/10.1021/ci200520gCrossRefGoogle Scholar
  249. 249.
    OECD (2006) Revised introduction to the OECD guidelines for testing of chemicals, Section 3. OECD Publishing, ParisGoogle Scholar
  250. 250.
    Wright KA, Cain RB (1972) Microbial metabolism of pyridinium compounds—radioisotope studies of metabolic fate of 4-carboxy-1-methylpyridinium chloride. Biochem J 128:561–568Google Scholar
  251. 251.
    Wright KA, Cain RB (1972) Microbial metabolism of pyridinium compounds—metabolism of 4-carboxy-1-methylpyridinium chloride, a photolytic product of paraquat. Biochem J 128:543–559Google Scholar
  252. 252.
    Kumar S, Ruth W, Sprenger B, Kragl U (2006) On the biodegradation of ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate. Chim Oggi 24:24–26Google Scholar
  253. 253.
    Docherty KM, Dixon JK, Kulpa CF (2007) Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community. Biodegradation 18:481–493.  https://doi.org/10.1007/s10532-006-9081-7CrossRefGoogle Scholar
  254. 254.
    Stolte S et al (2008) Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds. Green Chem 10:214–224.  https://doi.org/10.1039/b713095cCrossRefGoogle Scholar
  255. 255.
    Neumann J, Grundmann O, Thoming J, Schulte M, Stolte S (2010) Anaerobic biodegradability of ionic liquid cations under denitrifying conditions. Green Chem 12:620–627.  https://doi.org/10.1039/b918453hCrossRefGoogle Scholar
  256. 256.
    Gotvajn AZ, Tratar-Pirc E, Bukovec P, Plazl PZ (2014) Evaluation of biotreatability of ionic liquids in aerobic and anaerobic conditions. Water Sci Technol 70:698–704.  https://doi.org/10.2166/wst.2014.283CrossRefGoogle Scholar
  257. 257.
    Neumann J, Steudte S, Cho CW, Thoming J, Stolte S (2014) Biodegradability of 27 pyrrolidinium, morpholinium, piperidinium, imidazolium and pyridinium ionic liquid cations under aerobic conditions. Green Chem 16:2174–2184.  https://doi.org/10.1039/c3gc41997eCrossRefGoogle Scholar
  258. 258.
    Quijano G et al (2011) Toxicity and biodegradability of ionic liquids: new perspectives towards whole-cell biotechnological applications. Chem Eng J 174:27–32.  https://doi.org/10.1016/j.cej.2011.07.055CrossRefGoogle Scholar
  259. 259.
    Radosevic K, Bubalo MC, Srcek VG, Grgas D, Dragicevic TL, Redovnikovic IR (2015) Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol Environ Saf 112:46–53.  https://doi.org/10.1016/j.ecoenv.2014.09.034CrossRefGoogle Scholar
  260. 260.
    Gathergood N, Scammells PJ (2002) Design and preparation of room-temperature ionic liquids containing biodegradable side chains. Aust J Chem 55:557–560.  https://doi.org/10.1071/ch02148CrossRefGoogle Scholar
  261. 261.
    Gathergood N, Garcia MT, Scammells PJ (2004) Biodegradable ionic liquids: part I. Concept, preliminary targets and evaluation. Green Chem 6:166–175.  https://doi.org/10.1039/b315270gCrossRefGoogle Scholar
  262. 262.
    Liwarska-Bizukojc E, Gendaszewska D (2013) Removal of imidazolium ionic liquids by microbial associations: study of the biodegradability and kinetics. J Biosci Bioeng 115:71–75.  https://doi.org/10.1016/j.jbiosc.2012.08.002CrossRefGoogle Scholar
  263. 263.
    Gathergood N, Scammells PJ, Garcia MT (2006) Biodegradable ionic liquids—part III. The first readily biodegradable ionic liquids. Green Chem 8:156–160.  https://doi.org/10.1039/b516206hCrossRefGoogle Scholar
  264. 264.
    Harjani JR, Singer RD, Garcia MT, Scammells PJ (2008) The design and synthesis of biodegradable pyridinium ionic liquids. Green Chem 10:436–438.  https://doi.org/10.1039/b800534fCrossRefGoogle Scholar
  265. 265.
    Harjani JR, Singer RD, Garciac MT, Scammells PJ (2009) Biodegradable pyridinium ionic liquids: design, synthesis and evaluation. Green Chem 11:83–90.  https://doi.org/10.1039/b811814kCrossRefGoogle Scholar
  266. 266.
    Harjani JR, Farrell J, Garcia MT, Singer RD, Scammells PJ (2009) Further investigation of the biodegradability of imidazolium ionic liquids. Green Chem 11:821–829.  https://doi.org/10.1039/b900787cCrossRefGoogle Scholar
  267. 267.
    Morrissey S, Pegot B, Coleman D, Garcia MT, Ferguson D, Quilty B, Gathergood N (2009) Biodegradable, non-bactericidal oxygen-functionalised imidazolium esters: a step towards ‘greener’ ionic liquids. Green Chem 11:475–483.  https://doi.org/10.1039/b812809jCrossRefGoogle Scholar
  268. 268.
    Al-Mohammed NN, Hussen RSD, Ali TH, Alias Y, Abdullah Z (2015) Tetrakis-imidazolium and benzimidazolium ionic liquids: a new class of biodegradable surfactants. RSC Adv 5:21865–21876.  https://doi.org/10.1039/c4ra16811aCrossRefGoogle Scholar
  269. 269.
    Atefi F, Garcia MT, Singer RD, Scammells PJ (2009) Phosphonium ionic liquids: design, synthesis and evaluation of biodegradability. Green Chem 11:1595–1604.  https://doi.org/10.1039/b913057hCrossRefGoogle Scholar
  270. 270.
    Gore RG, Myles L, Spulak M, Beadham I, Garcia MT, Connon SJ, Gathergood N (2013) A new generation of aprotic yet Bronsted acidic imidazolium salts: effect of ester/amide groups in the C-2, C-4 and C-5 on antimicrobial toxicity and biodegradation. Green Chem 15:2747–2760.  https://doi.org/10.1039/c3gc40992aCrossRefGoogle Scholar
  271. 271.
    Yu YH, Lu XM, Zhou Q, Dong K, Yao HW, Zhang SJ (2008) Biodegradable naphthenic acid ionic liquids: synthesis, characterization, and quantitative structure–biodegradation relationship. Chem Eur J 14:11174–11182.  https://doi.org/10.1002/chem.200800620CrossRefGoogle Scholar
  272. 272.
    Klein R et al (2013) Biodegradability and cytotoxicity of choline soaps on human cell lines: effects of chain length and the cation. RSC Adv 3:23347–23354.  https://doi.org/10.1039/c3ra42812eCrossRefGoogle Scholar
  273. 273.
    Ferlin N et al (2013) Biomass derived ionic liquids: synthesis from natural organic acids, characterization, toxicity, biodegradation and use as solvents for catalytic hydrogenation processes. Tetrahedron 69:6150–6161.  https://doi.org/10.1016/j.tet.2013.05.054CrossRefGoogle Scholar
  274. 274.
    Boissou F et al (2014) Transition of cellulose crystalline structure in biodegradable mixtures of renewably-sourced levulinate alkyl ammonium ionic liquids, gamma-valerolactone and water. Green Chem 16:2463–2471.  https://doi.org/10.1039/c3gc42396dCrossRefGoogle Scholar
  275. 275.
    Ford L, Harjani JR, Atefi F, Garcia MT, Singer RD, Scammells PJ (2010) Further studies on the biodegradation of ionic liquids. Green Chem 12:1783–1789.  https://doi.org/10.1039/c0gc00082eCrossRefGoogle Scholar
  276. 276.
    Ford L, Ylijoki KEO, Garcia MT, Singer RD, Scammells PJ (2015) Nitrogen-containing ionic liquids: biodegradation studies and utility in base-mediated reactions. Aust J Chem 68:849–857.  https://doi.org/10.1071/ch14499CrossRefGoogle Scholar
  277. 277.
    Haiss A, Jordan A, Westphal J, Logunova E, Gathergood N, Kummerer K (2016) On the way to greener ionic liquids: identification of a fully mineralizable phenylalanine-based ionic liquid. Green Chem 18:4361–4373.  https://doi.org/10.1039/c6gc00417bCrossRefGoogle Scholar
  278. 278.
    Ferlin N et al (2013) Tetrabutylammonium prolinate-based ionic liquids: a combined asymmetric catalysis, antimicrobial toxicity and biodegradation assessment. RSC Adv 3:26241–26251.  https://doi.org/10.1039/c3ra43785jCrossRefGoogle Scholar
  279. 279.
    Liwarska-Bizukojc E, Maton C, Stevens C (2015) Biodegradation of imidazolium ionic liquids by activated sludge microorganisms. Biodegradation 26:453–463.  https://doi.org/10.1007/s10532-015-9747-0CrossRefGoogle Scholar
  280. 280.
    Liwarska-Bizukojc E, Maton C, Stevens CV, Gendaszewska D (2014) Biodegradability and kinetics of the removal of new peralkylated imidazolium ionic liquids. J Chem Technol Biotechnol 89:763–768.  https://doi.org/10.1002/jctb.4187CrossRefGoogle Scholar
  281. 281.
    Pham TPT, Cho CW, Jeon CO, Chung YJ, Lee MW, Yun YS (2009) Identification of metabolites involved in the biodegradation of the ionic liquid 1-butyl-3-methylpyridinium bromide by activated sludge microorganisms. Environ Sci Technol 43:516–521.  https://doi.org/10.1021/es703004hCrossRefGoogle Scholar
  282. 282.
    Docherty KM, Aiello SW, Buehler BK, Jones SE, Szymczyna BR, Walker KA (2015) Ionic liquid biodegradability depends on specific wastewater microbial consortia. Chemosphere 136:160–166.  https://doi.org/10.1016/j.chemosphere.2015.05.016CrossRefGoogle Scholar
  283. 283.
    Markiewicz M, Piszora M, Caicedo N, Jungnickel C, Stolte S (2013) Toxicity of ionic liquid cations and anions towards activated sewage sludge organisms from different sources—consequences for biodegradation testing and wastewater treatment plant operation. Water Res 47:2921–2928.  https://doi.org/10.1016/j.watres.2013.02.055CrossRefGoogle Scholar
  284. 284.
    Cho CW, Pham TPT, Kim S, Song MH, Chung YJ, Yun YS (2016) Three degradation pathways of 1-octyl-3-methylimidazolium cation by activated sludge from wastewater treatment process. Water Res 90:294–300.  https://doi.org/10.1016/j.watres.2015.11.065CrossRefGoogle Scholar
  285. 285.
    Niemczak M, Chrzanowski L, Praczyk T, Pernak J (2017) Biodegradable herbicidal ionic liquids based on synthetic auxins and analogues of betaine. New J Chem 41:8066–8077.  https://doi.org/10.1039/c7nj01474kCrossRefGoogle Scholar
  286. 286.
    Lawniczak L, Materna K, Framski G, Szulc A, Syguda A (2015) Comparative study on the biodegradability of morpholinium herbicidal ionic liquids. Biodegradation 26:327–340.  https://doi.org/10.1007/s10532-015-9737-2CrossRefGoogle Scholar
  287. 287.
    Modelli A, Sali A, Galletti P, Samori C (2008) Biodegradation of oxygenated and non-oxygenated imidazolium-based ionic liquid in soil. Chemosphere 73:1332–1327.  https://doi.org/10.1016/j.chemosphere.2008.07.012CrossRefGoogle Scholar
  288. 288.
    Deive FJ et al (2011) Impact of ionic liquids on extreme microbial biotypes from soil. Green Chem 13:687–696.  https://doi.org/10.1039/c0gc00369gCrossRefGoogle Scholar
  289. 289.
    Garbaczewska S, Hupko J (2007) Determination of ionic liquids by HPLC method. Involvement in biodegradation test. Pestycydy 3-4:61–66Google Scholar
  290. 290.
    Sydow M et al (2015) Persistence of selected ammonium- and phosphonium-based ionic liquids in urban park soil microcosms. Int Biodeterior Biodegrad 103:91–96.  https://doi.org/10.1016/j.ibiod.2015.04.019CrossRefGoogle Scholar
  291. 291.
    Esquivel-Viveros A, Ponce-Vargas F, Esponda-Aguilar P, Prado-Barragan LA, Gutierrez-Rojas M, Lye GJ, Huerta-Ochoa S (2009) Biodegradation of bmim PF6 using Fusarium sp. Rev Mex Ing Quim 8:163–168Google Scholar
  292. 292.
    Abrusci C, Palomar J, Pablos JL, Rodriguez F, Catalina F (2011) Efficient biodegradation of common ionic liquids by Sphingomonas paucimobilis bacterium. Green Chem 13:709–717.  https://doi.org/10.1039/c0gc00766hCrossRefGoogle Scholar
  293. 293.
    Zhang C, Wang H, Malhotra SV, Dodge CJ, Francis AJ (2010) Biodegradation of pyridinium-based ionic liquids by an axenic culture of soil Corynebacteria. Green Chem 12:851–858.  https://doi.org/10.1039/b924264cCrossRefGoogle Scholar
  294. 294.
    Markiewicz M, Henke J, Brillowska-Dabrowska A, Stolte S, Luczak J, Jungnickel C (2014) Bacterial consortium and axenic cultures isolated from activated sewage sludge for biodegradation of imidazolium-based ionic liquid. Int J Environ Sci Technol 11:1919–1926.  https://doi.org/10.1007/s13762-013-0390-1CrossRefGoogle Scholar
  295. 295.
    Deng Y et al (2015) When can ionic liquids be considered readily biodegradable? Biodegradation pathways of pyridinium, pyrrolidinium and ammonium-based ionic liquids. Green Chem 17:1479–1491.  https://doi.org/10.1039/c4gc01904kCrossRefGoogle Scholar
  296. 296.
    Thamke VR, Kodam KM (2016) Toxicity study of ionic liquid, 1-butyl-3-methylimidazolium bromide on guppy fish, Poecilia reticulata and its biodegradation by soil bacterium Rhodococcus hoagii VRT1. J Hazard Mater 320:408–416.  https://doi.org/10.1016/j.jhazmat.2016.08.056CrossRefGoogle Scholar
  297. 297.
    Crosthwaite JM, Ropel LJ, Anthony JL, Aki S, Maginn EJ, Brennecke JF (2005) Phase equilibria with gases and liquids of 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. In: Rogers RD, Seddon KR (eds) Ionic liquids III A: fundamentals, progress, challenges, and opportunities, properties and structure. ACS Symposium Series, vol 901, pp 292–300Google Scholar
  298. 298.
    Deng Y et al (2012) Relevant parameters for assessing the environmental impact of some pyridinium, ammonium and pyrrolidinium based ionic liquids. Chemosphere 89:327–333.  https://doi.org/10.1016/j.chemosphere.2012.04.050CrossRefGoogle Scholar
  299. 299.
    Cho CW et al (2011) Ionic liquids: predictions of physicochemical properties with experimental and/or DFT-calculated LFER parameters to understand molecular interactions in solution. J Phys Chem B 115:6040–6050.  https://doi.org/10.1021/jp200042fCrossRefGoogle Scholar
  300. 300.
    Cho CW, Stolte S, Ranke J, Preiss U, Krossing I, Thoming J (2014) Quantitative analysis of molecular interaction potentials of ionic liquid anions using multi-functionalized stationary phases in HPLC. ChemPhysChem 15:2351–2358.  https://doi.org/10.1002/cphc.201402092CrossRefGoogle Scholar
  301. 301.
    Cho CW, Song MH, Yun YS (2017) Comment on “Filling environmental data gaps with QSPR for ionic liquids: modeling n-octanol/water coefficient”. J Hazard Mater 329:348–350.  https://doi.org/10.1016/j.jhazmat.2016.10.060CrossRefGoogle Scholar
  302. 302.
    Cho CW, Stolte S, Yun YS (2018) Validation and updating of QSAR models for partitioning coeffcieints of ionic liquids in octanol–water and development of a new LFER model. Sci Total Environ 633:920–928.  https://doi.org/10.1016/j.scitotenv.2018.03.225CrossRefGoogle Scholar
  303. 303.
    Rybinska A, Sosnowska A, Grzonkowska M, Barycki M, Puzyn T (2016) Filling environmental data gaps with QSPR for ionic liquids: modeling n-octanol/water coefficient. J Hazard Mater 303:137–144.  https://doi.org/10.1016/j.jhazmat.2015.10.023CrossRefGoogle Scholar
  304. 304.
    Cornmell R, Winder CL, Tiddy GJ, Coodacre R, Stephens G (2008) Accumulation of ionic liquids in Escherchia coli. Green Chem 10:836–841.  https://doi.org/10.1039/B807214KCrossRefGoogle Scholar
  305. 305.
    Nedzi M, Latala A, Nichthauser J, Stepnowski P (2013) Bioaccumulation of 1-butyl-3-methylimidazolium chloride ionic liquid in a simple marine trophic chain. Oceanol Hydrobiol Stud 42:149–154.  https://doi.org/10.2478/s13545-013-0068-9CrossRefGoogle Scholar
  306. 306.
    Dolzonek J, Cho CW, Stepnowski P, Markiewicz M, Thoming J, Stolte S (2017) Membrane partitioning of ionic liquid cations, anions and ion pairs—estimating the bioconcentration potential of organic ions. Environ Pollut 228:378–389.  https://doi.org/10.1016/j.envpol.2017.04.079CrossRefGoogle Scholar
  307. 307.
    Gorman-Lewis DJ, Fein JB (2004) Experimental study of the adsorption of an ionic liquid onto bacterial and mineral surfaces. Environ Sci Technol 38:2491–2495.  https://doi.org/10.1021/es0350841CrossRefGoogle Scholar
  308. 308.
    Stepnowski P (2005) Preliminary assessment of the sorption of some alkyl imidazolium cations as used in ionic liquids to soils and sediments. Aust J Chem 58:170–173.  https://doi.org/10.1071/ch05018CrossRefGoogle Scholar
  309. 309.
    Stepnowski P, Mrozik W, Nichthauser J (2007) Adsorption of alkylimidazolium and alkylpyridinium ionic liquids onto natural soils. Environ Sci Technol 41:511–516.  https://doi.org/10.1021/es062014wCrossRefGoogle Scholar
  310. 310.
    Mrozik W, Jungnickel C, Ciborowski T, Pitner WR, Kumirska J, Kaczynski Z, Stepnowski P (2009) Predicting mobility of alkylimidazolium ionic liquids in soils. J Soils Sediments 9:237–245.  https://doi.org/10.1007/s11368-009-0057-1CrossRefGoogle Scholar
  311. 311.
    Mrozik W, Kotlowska A, Kamysz W, Stepnowski P (2012) Sorption of ionic liquids onto soils: experimental and chernometric studies. Chemosphere 88:1202–1207.  https://doi.org/10.1016/j.chemosphere.2012.03.070CrossRefGoogle Scholar
  312. 312.
    Reinert L, Batouche K, Leveque J-M, Muller F, Beny J-M, Kebabi B, Duclaux L (2012) Adsorption of imidazolium and pyridinium ionic liquids onto montmorillonite: characterisation and thermodynamic calculations. Chem Eng J 209:13–19.  https://doi.org/10.1016/j.cej.2012.07.128CrossRefGoogle Scholar
  313. 313.
    Greenland DJ, Quirk JP (1962) Adsorption on 1-n-alkylpyridinium bromides by montmorillonites. Proceedings of the Ninth National Conference on Clays and Clay Minerals. Pergamon, New York, pp 484–499Google Scholar
  314. 314.
    Markiewicz M, Jungnickel C, Markowska A, Szczepaniak U, Paszkiewicz M, Hupka J (2009) 1-methyl-3-octylimidazolium chloride-sorption and primary biodegradation analysis in activated sewage sludge. Molecules 14:4396–4405.  https://doi.org/10.3390/molecules14114396CrossRefGoogle Scholar
  315. 315.
    Markiewicz M, Stolte S, Lustig Z, Luczak J, Skup M, Hupka J, Jungnickel C (2011) Influence of microbial adaption and supplementation of nutrients on the biodegradation of ionic liquids in sewage sludge treatment processes. J Hazard Mater 195:378–382.  https://doi.org/10.1016/j.jhazmat.2011.08.053CrossRefGoogle Scholar
  316. 316.
    Alvarez MS, Rodriguez A, Sanroman MA, Deive FJ (2015) Microbial adaptation to ionic liquids. RSC Adv 5:17379–17382.  https://doi.org/10.1039/c4ra10283eCrossRefGoogle Scholar
  317. 317.
    Gendaszewska D, Liwarska-Bizukojc E (2016) Adaptation of microbial communities in activated sludge to 1-decyl-3-methylimidazolium bromide. Water Sci Technol 74:1227–1234.  https://doi.org/10.2166/wst.2016.317CrossRefGoogle Scholar
  318. 318.
    Anthony JL, Maginn EJ, Brennecke JF (2001) Solution thermodynamics of imidazolium-based ionic liquids and water. J Phys Chem B 105:10942–10949.  https://doi.org/10.1021/jp0112368CrossRefGoogle Scholar
  319. 319.
    Palomar J, Lemus J, Gilarranz MA, Rodriguez JJ (2009) Adsorption of ionic liquids from aqueous effluents by activated carbon. Carbon 47:1846–1856.  https://doi.org/10.1016/j.carbon.2009.03.028CrossRefGoogle Scholar
  320. 320.
    Farooq A, Reinert L, Leveque JM, Papaiconomou N, Irfan N, Duclaux L (2012) Adsorption of ionic liquids onto activated carbons: effect of pH and temperature. Microporous Mesoporous Mater 158:55–63.  https://doi.org/10.1016/j.micromeso.2012.03.008CrossRefGoogle Scholar
  321. 321.
    Hassan S, Duclaux L, Leveque JM, Reinert L, Farooq A, Yasin T (2014) Effect of cation type, alkyl chain length, adsorbate size on adsorption kinetics and isotherms of bromide ionic liquids from aqueous solutions onto microporous fabric and granulated activated carbons. J Environ Manag 144:108–117.  https://doi.org/10.1016/j.jenvman.2014.05.005CrossRefGoogle Scholar
  322. 322.
    Lemus J, Palomar J, Heras F, Gilarranz MA, Rodriguez JJ (2012) Developing criteria for the recovery of ionic liquids from aqueous phase by adsorption with activated carbon. Sep Purif Technol 97:11–19.  https://doi.org/10.1016/j.seppur.2012.02.027CrossRefGoogle Scholar
  323. 323.
    Lemus J, Neves C, Marques CFC, Freire MG, Coutinho JAP, Palomar J (2013) Composition and structural effects on the adsorption of ionic liquids onto activated carbon. Environ Sci 15:1752–1759.  https://doi.org/10.1039/c3em00230fCrossRefGoogle Scholar
  324. 324.
    Lemus J, Palomar J, Gilarranz MA, Rodriguez JJ (2013) On the kinetics of ionic liquid adsorption onto activated carbons from aqueous solution. Ind Eng Chem Res 52:2969–2976.  https://doi.org/10.1021/ie3028729CrossRefGoogle Scholar
  325. 325.
    Qi XH, Li LY, Tan TF, Chen WT, Smith RL (2013) Adsorption of 1-butyl-3-methylimidazolium chloride ionic liquid by functional carbon microspheres from hydrothermal carbonization of cellulose. Environ Sci Technol 47:2792–2798.  https://doi.org/10.1021/es304873tCrossRefGoogle Scholar
  326. 326.
    Qi XH, Li LY, Wang Y, Liu N, Smith RL (2014) Removal of hydrophilic ionic liquids from aqueous solutions by adsorption onto high surface area oxygenated carbonaceous material. Chem Eng J 256:407–414.  https://doi.org/10.1016/j.cej.2014.07.020CrossRefGoogle Scholar
  327. 327.
    Xu M, Ao YY, Wang SJ, Peng J, Li JQ, Zhai ML (2015) Efficient adsorption of 1-alkyl-3-methylimidazolium chloride ionic liquids onto modified cellulose microspheres. Carbohydr Polym 128:171–178.  https://doi.org/10.1016/j.carbpol.2015.04.018CrossRefGoogle Scholar
  328. 328.
    Yu F et al (2016) Effective removal of ionic liquid using modified biochar and its biological effects. J Taiwan Inst Chem Eng 67:318–324.  https://doi.org/10.1016/j.jtice.2016.07.038CrossRefGoogle Scholar
  329. 329.
    Shi KS, Qiu YP, Li B, Stenstrom MK (2016) Effectiveness and potential of straw- and wood-based biochars for adsorption of imidazolium-type ionic liquids. Ecotoxicol Environ Saf 130:155–162.  https://doi.org/10.1016/j.ecoenv.2016.04.017CrossRefGoogle Scholar
  330. 330.
    Choi SB, Won SW, Yun YS (2013) Use of ion-exchange resins for the adsorption of the cationic part of ionic liquid, 1-ethyl-3-methylimidazolium. Chem Eng J 214:78–82.  https://doi.org/10.1016/j.cej.2012.10.035CrossRefGoogle Scholar
  331. 331.
    Li LY, Wang Y, Qi XH (2015) Adsorption of imidazolium-based ionic liquids with different chemical structures onto various resins from aqueous solutions. RSC Adv 5:41352–41358.  https://doi.org/10.1039/c5ra04191kCrossRefGoogle Scholar
  332. 332.
    Won SW, Choi SB, Mao J, Yun YS (2013) Removal of 1-ethyl-3-methylimidazolium cations with bacterial biosorbents from aqueous media. J Hazard Mater 244:130–134.  https://doi.org/10.1016/j.jhazmat.2012.11.018CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Chul-Woong Cho
    • 1
    • 2
  • Myung-Hee Song
    • 1
  • Thi Phuong Thuy Pham
    • 3
  • Yeoung-Sang Yun
    • 1
    Email author
  1. 1.School of Chemical EngineeringChonbuk National UniversityJeonjuSouth Korea
  2. 2.Department of Bioenergy Science and TechnologyChonnam National UniversityGwangjuKorea
  3. 3.Faculty of BiotechnologyHoChiMihn University of Food IndustryGo Chi Minh CityVietnam

Personalised recommendations