Advertisement

Biorefineries pp 469-518 | Cite as

Biotechnological and Biochemical Utilization of Lignin

  • Dominik Rais
  • Susanne Zibek
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 166)

Abstract

This chapter provides an overview of the biosynthesis and structure of lignin. Moreover, examples of the commercial use of lignin and its promising future implementation are briefly described. Many applications are still hampered by the properties of technical lignins. Thus, the major challenge is the conversion of lignins into suitable building blocks or aromatics in order to open up new avenues for the usage of this renewable raw material. This chapter focuses on details about natural lignin degradation by fungi and bacteria, which harbor potential tools for lignin degradation and modification, which might help to develop eco-efficient processes for lignin utilization.

Keywords

Aromatics Enzymes Lignin Lignin degradation Lignin utilization 

Notes

Acknowledgements

We would like to thank Prof. Dr. Thomas Hirth for making this work possible at Fraunhofer IGB and IGVP, University Stuttgart and Dr. Steffen Rupp for the support at the department.

References

  1. 1.
    Martone PT, Estevez JM, Lu F, et al (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19:169–175. doi: 10.1016/j.cub.2008.12.031 CrossRefGoogle Scholar
  2. 2.
    Espiñeira JM, Novo Uzal E, Gómez Ros LV, et al (2011) Distribution of lignin monomers and the evolution of lignification among lower plants. Plant Biol (Stuttg) 13:59–68. doi: 10.1111/j.1438-8677.2010.00345.x CrossRefGoogle Scholar
  3. 3.
    Oinonen P, Zhang L, Lawoko M, Henriksson G (2014) On the formation of lignin polysaccharide networks in Norway spruce. Phytochemistry. doi: 10.1016/j.phytochem.2014.10.027 CrossRefGoogle Scholar
  4. 4.
    Delaux P-M, Nanda AK, Mathé C, et al (2012) Molecular and biochemical aspects of plant terrestrialization. Perspect Plant Ecol Evol Syst 14:49–59. doi: 10.1016/j.ppees.2011.09.001 CrossRefGoogle Scholar
  5. 5.
    Vanholme R, Demedts B, Morreel K, et al (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905. doi: 10.1104/pp.110.155119 CrossRefGoogle Scholar
  6. 6.
    Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44:337–363. doi: 10.1146/annurev-genet-102209-163508 CrossRefGoogle Scholar
  7. 7.
    Ek M, Gellerstedt G, Henriksson G (2009) Wood chemistry and biotechnology. Walter de Gruyter, BerlinCrossRefGoogle Scholar
  8. 8.
    Schuetz M, Benske A, Smith RA, et al (2014) Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol 166:798–807. doi: 10.1104/pp.114.245597 CrossRefGoogle Scholar
  9. 9.
    Zhao Q, Nakashima J, Chen F, et al (2013) LACCASE is necessary and nonredundant with PEROXIDASE for lignin polymerization during vascular development in arabidopsis. Plant Cell 25:3976–3987. doi: 10.1105/tpc.113.117770 CrossRefGoogle Scholar
  10. 10.
    Sangha AK, Petridis L, Smith JC, et al (2012) Molecular simulation as a tool for studying lignin. Environ Prog Sustain Energy 31:47–54. doi: 10.1002/ep.10628 CrossRefGoogle Scholar
  11. 11.
    Wang Y, Chantreau M, Sibout R, Hawkins S (2013) Plant cell wall lignification and monolignol metabolism. Front Plant Sci. doi: 10.3389/fpls.2013.00220 CrossRefGoogle Scholar
  12. 12.
    Davin LB, Lewis NG (2005) Lignin primary structures and dirigent sites. Curr Opin Biotechnol 16:407–415. doi: 10.1016/j.copbio.2005.06.011 CrossRefGoogle Scholar
  13. 13.
    Hatfield R, Vermerris W (2001) Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol 126:1351–1357. doi: 10.1104/pp.126.4.1351 CrossRefGoogle Scholar
  14. 14.
    Sangha AK, Parks JM, Standaert RF, et al (2012) Radical coupling reactions in lignin synthesis: a density functional theory study. J Phys Chem B 116:4760–4768. doi: 10.1021/jp2122449 CrossRefGoogle Scholar
  15. 15.
    Sangha AK, Davison BH, Standaert RF, et al (2014) Chemical factors that control lignin polymerization. J Phys Chem B 118:164–170. doi: 10.1021/jp411998t CrossRefGoogle Scholar
  16. 16.
    Ralph J, Lundquist K, Brunow G, et al (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochem Rev 3:29–60. doi: 10.1023/B:PHYT.0000047809.65444.a4 CrossRefGoogle Scholar
  17. 17.
    Saake B, Lehnen R (2000) Lignin. In: Ullmanns encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  18. 18.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599. doi: 10.1021/cr900354u CrossRefGoogle Scholar
  19. 19.
    Joffres B, Laurenti D, Charon N, et al (2013) Thermochemical conversion of lignin for fuels and chemicals: a review. Oil Gas Sci Technol – Rev D’IFP Energies Nouv 68:753–763. doi: 10.2516/ogst/2013132 CrossRefGoogle Scholar
  20. 20.
    Sette M, Wechselberger R, Crestini C (2011) Elucidation of lignin structure by quantitative 2D NMR. Chem Eur J 17:9529–9535. doi: 10.1002/chem.201003045 CrossRefGoogle Scholar
  21. 21.
    Vanholme R, Morreel K, Darrah C, et al (2012) Metabolic engineering of novel lignin in biomass crops. New Phytol 196:978–1000. doi: 10.1111/j.1469-8137.2012.04337.x CrossRefGoogle Scholar
  22. 22.
    Ragauskas AJ, Beckham GT, Biddy MJ, et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843. doi: 10.1126/science.1246843 CrossRefGoogle Scholar
  23. 23.
    Matsushita Y (2015) Conversion of technical lignins to functional materials with retained polymeric properties. J Wood Sci 61:230–250. doi: 10.1007/s10086-015-1470-2 CrossRefGoogle Scholar
  24. 24.
    Klamrassamee T, Laosiripojana N, Cronin D, et al (2015) Effects of mesostructured silica catalysts on the depolymerization of organosolv lignin fractionated from woody eucalyptus. Bioresour Technol 180:222–229. doi: 10.1016/j.biortech.2014.12.098 CrossRefGoogle Scholar
  25. 25.
    Vishtal A (2011) Challenges in industrial applications of technical lignins. Bioresources 6(3):3547–3468Google Scholar
  26. 26.
    Strassberger Z, Tanase S, Rothenberg G (2014) The pros and cons of lignin valorisation in an integrated biorefinery. RSC Adv 4:25310–25318. doi: 10.1039/C4RA04747H CrossRefGoogle Scholar
  27. 27.
    Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod 33:259–276. doi: 10.1016/j.indcrop.2010.10.022 CrossRefGoogle Scholar
  28. 28.
    Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10:39–48. doi: 10.1023/A:1021070006895 CrossRefGoogle Scholar
  29. 29.
    Paul R, Burwell D, Dai X et al (2015) Recent progress in producing #11; lignin-based carbon fibers for functional applications. GrafTech International Holdings Inc., Brooklyn HeightsGoogle Scholar
  30. 30.
    Gomes FJB, Santos FA, Colodette JL, et al (2014) Literature review on biorefinery processes integrated to the pulp industry. Nat Resour 5:419–432. doi: 10.4236/nr.2014.59039 CrossRefGoogle Scholar
  31. 31.
    Upton BM, Kasko AM (2015) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116:2275–2306. doi: 10.1021/acs.chemrev.5b00345 CrossRefGoogle Scholar
  32. 32.
    Berlin A, Balakshin M (2014) Industrial lignins: analysis, properties, and applications. Bioenergy Res Adv Appl 2014:315–336. doi: 10.1016/B978-0-444-59561-4.00018-8 CrossRefGoogle Scholar
  33. 33.
    De Wild PJ, Huijgen WJJ, Gosselink RJA (2014) Lignin pyrolysis for profitable lignocellulosic biorefineries. Biofuels Bioprod Biorefin 8:645–657. doi: 10.1002/bbb.1474 CrossRefGoogle Scholar
  34. 34.
    Smaranda A, Tucu D (2011) Different industrial applications of lignin as a sustainable material. Buletinul Agir - Numere Publicate. http://www.buletinulagir.agir.ro/articol.php?id=1293. Accessed 22 Apr 2017
  35. 35.
    Norgren M, Edlund H (2014) Lignin: recent advances and emerging applications. Curr Opin Colloid Interface Sci 19:409–416. doi: 10.1016/j.cocis.2014.08.004 CrossRefGoogle Scholar
  36. 36.
    Calvo-Flores FG, Dobado JA, Isac-García J et al (2015) Lignin and lignans as renewable raw materials: chemistry, technology and applications. Wiley, Chichester. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118597869.html. Accessed 11 Jan 2016CrossRefGoogle Scholar
  37. 37.
    Zhu W (2015) Precipitation of kraft lignin: yield and equilibrium. Doctoral thesis, Chalmers University of TechnologyGoogle Scholar
  38. 38.
    Rosas JM, Berenguer R, Valero-Romero MJ, et al (2014) Preparation of different carbon materials by thermochemical conversion of lignin. Front Mater. doi: 10.3389/fmats.2014.00029
  39. 39.
    Burkhardt-Karrenbrock A, Seegmüller S, Burk R (2001) Flüssigholz – Ein Überblick. Eur J Wood Wood Prod 59:13–18. doi: 10.1007/s001070050465 CrossRefGoogle Scholar
  40. 40.
    Nägele H, Pfitzer J, Ziegler L et al (2013) Lignin Matrix Composites from natural resources–ARBOFORM. In: Kabasci S (ed) Bio-based plastics: materials and applications. Wiley, Chichester pp 89–115Google Scholar
  41. 41.
    White JF (2007) Top value-added chemicals from biomass. In: Results of screening for potential candidates from biorefinery lignin, vol II. U.S. Department of Energy, Oak RidgeGoogle Scholar
  42. 42.
    Perez-Cantu L, Liebner F, Smirnova I (2014) Preparation of aerogels from wheat straw lignin by cross-linking with oligo(alkylene glycol)-α,ω-diglycidyl ethers. Microporous Mesoporous Mater 195:303–310. doi: 10.1016/j.micromeso.2014.04.018 CrossRefGoogle Scholar
  43. 43.
    Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro- and nano-structured materials. React Funct Polym 85:78–96. doi: 10.1016/j.reactfunctpolym.2014.09.017 CrossRefGoogle Scholar
  44. 44.
    Xiao S, Feng J, Zhu J, et al (2013) Preparation and characterization of lignin-layered double hydroxide/styrene-butadiene rubber composites. J Appl Polym Sci 130:1308–1312. doi: 10.1002/app.39311 CrossRefGoogle Scholar
  45. 45.
    Ten E, Vermerris W (2015) Recent developments in polymers derived from industrial lignin. J Appl Polym Sci 132:42069. doi: 10.1002/app.42069 CrossRefGoogle Scholar
  46. 46.
    Chung Y-L, Olsson JV, Li RJ, et al (2013) A renewable lignin–lactide copolymer and application in biobased composites. ACS Sustain Chem Eng 1:1231–1238. doi: 10.1021/sc4000835 CrossRefGoogle Scholar
  47. 47.
    Laurichesse S, Huillet C, Avérous L (2014) Original polyols based on organosolv lignin and fatty acids: new bio-based building blocks for segmented polyurethane synthesis. Green Chem 16:3958–3970. doi: 10.1039/C4GC00596A CrossRefGoogle Scholar
  48. 48.
    Kudanga T, Nyanhongo GS, Guebitz GM, Burton S (2011) Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzyme Microb Technol 48:195–208. doi: 10.1016/j.enzmictec.2010.11.007 CrossRefGoogle Scholar
  49. 49.
    Sena-Martins G, Almeida-Vara E, Duarte JC (2008) Eco-friendly new products from enzymatically modified industrial lignins. Ind Crops Prod 27:189–195. doi: 10.1016/j.indcrop.2007.07.016CrossRefGoogle Scholar
  50. 50.
    Hüttermann A, Mai C, Kharazipour A (2001) Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol 55:387–394CrossRefGoogle Scholar
  51. 51.
    Johansson K, Gillgren T, Winestrand S, et al (2014) Comparison of lignin derivatives as substrates for laccase-catalyzed scavenging of oxygen in coatings and films. J Biol Eng 8:1. doi: 10.1186/1754-1611-8-1CrossRefGoogle Scholar
  52. 52.
    Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28:1883–1896. doi: 10.1039/c1np00042j CrossRefGoogle Scholar
  53. 53.
    Smolarski N (2012) High-value opportunities for lignin: unlocking its potential - bio-based news–the portal for bio-based economy and industrial biotechnology. In: Bio-based news. http://news.bio-based.eu/high-value-opportunities-for-lignin-unlocking-its-potential/. Accessed 18 May 2015
  54. 54.
    Mota MIF, Pinto PCR, Loureiro JM, Rodrigues AE (2016) Recovery of vanillin and syringaldehyde from lignin oxidation: a review of separation and purification processes. Sep Purif Rev 45:227–259. doi: 10.1080/15422119.2015.1070178 CrossRefGoogle Scholar
  55. 55.
    Fache M, Boutevin B, Caillol S (2016) Epoxy thermosets from model mixtures of the lignin-to-vanillin process. Green Chem 18:712–725. doi: 10.1039/C5GC01070E CrossRefGoogle Scholar
  56. 56.
    Xu C, Arancon RAD, Labidi J, Luque R (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 43:7485–7500. doi: 10.1039/c4cs00235k CrossRefGoogle Scholar
  57. 57.
    Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34:29–41. doi: 10.1002/ceat.201000270 CrossRefGoogle Scholar
  58. 58.
    Li C, Zhao X, Wang A, et al (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624. doi: 10.1021/acs.chemrev.5b00155 CrossRefGoogle Scholar
  59. 59.
    Papadopoulos AN (2011) Sorption of acetylated pine wood decayed by brown rot, white rot and soft rot: different fungi—different behaviours. Wood Sci Technol 46:919–926. doi: 10.1007/s00226-011-0450-y CrossRefGoogle Scholar
  60. 60.
    Martínez AT, Speranza M, Ruiz-Dueñas FJ, et al (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol Off J Span Soc Microbiol 8:195–204Google Scholar
  61. 61.
    Wang W, Yuan T, Cui B (2014) Biological pretreatment with white rot fungi and their co-culture to overcome lignocellulosic recalcitrance for improved enzymatic digestion. Bioresources 9:3968–3976. doi: 10.15376/biores.9.3.3968-3976 CrossRefGoogle Scholar
  62. 62.
    Sundman V, Näse L (1972) The synergistic ability of some wood-degrading fungi to transform lignins and lignosulfonates on various media. Arch Mikrobiol 86:339–348. doi: 10.1007/BF00424990 CrossRefGoogle Scholar
  63. 63.
    Qi-he C, Krügener S, Hirth T, et al (2011) Co-cultured production of lignin-modifying enzymes with white-rot fungi. Appl Biochem Biotechnol 165:700–718. doi: 10.1007/s12010-011-9289-9 CrossRefGoogle Scholar
  64. 64.
    Chi Y, Hatakka A, Maijala P (2007) Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes? Int Biodeterior Biodegrad 59:32–39. doi: 10.1016/j.ibiod.2006.06.025 CrossRefGoogle Scholar
  65. 65.
    Boddy L (2000) Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol Ecol 31:185–194. doi: 10.1111/j.1574-6941.2000.tb00683.x CrossRefGoogle Scholar
  66. 66.
    Prewitt L, Kang Y, Kakumanu ML, Williams M (2014) Fungal and bacterial community succession differs for three wood types during decay in a forest soil. Microb Ecol 68:212–221. doi: 10.1007/s00248-014-0396-3 CrossRefGoogle Scholar
  67. 67.
    Rajala T, Peltoniemi M, Pennanen T, Mäkipää R (2012) Fungal community dynamics in relation to substrate quality of decaying Norway spruce (Picea abies [L.] Karst.) logs in boreal forests. FEMS Microbiol Ecol 81:494–505. doi: 10.1111/j.1574-6941.2012.01376.x CrossRefGoogle Scholar
  68. 68.
    Zhou L-W, Wei Y-L, Dai Y-C (2014) Phylogenetic analysis of ligninolytic peroxidases: preliminary insights into the alternation of white-rot and brown-rot fungi in their lineage. Mycology 5:29–42. doi: 10.1080/21501203.2014.895784 CrossRefGoogle Scholar
  69. 69.
    Floudas D, Binder M, Riley R, et al (2012) The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719. doi: 10.1126/science.1221748 CrossRefGoogle Scholar
  70. 70.
    Riley R, Salamov AA, Brown DW, et al (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci U S A 111:9923–9928. doi: 10.1073/pnas.1400592111 CrossRefGoogle Scholar
  71. 71.
    Raghavan R, Adusumalli R-B, Buerki G, et al (2012) Deformation of the compound middle lamella in spruce latewood by micro-pillar compression of double cell walls. J Mater Sci 47:6125–6130. doi: 10.1007/s10853-012-6531-y CrossRefGoogle Scholar
  72. 72.
    Schwarze FWMR (2007) Wood decay under the microscope. Fungal Biol Rev 21:133–170. doi: 10.1016/j.fbr.2007.09.001 CrossRefGoogle Scholar
  73. 73.
    Zeng Y, Zhao S, Yang S, Ding S-Y (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:38–45. doi: 10.1016/j.copbio.2013.09.008 CrossRefGoogle Scholar
  74. 74.
    Pandey KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeterior Biodegrad 52:151–160. doi: 10.1016/S0964-8305(03)00052-0 CrossRefGoogle Scholar
  75. 75.
    Janusz G, Kucharzyk KH, Pawlik A, et al (2013) Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzym Microb Technol 52:1–12. doi: 10.1016/j.enzmictec.2012.10.003 CrossRefGoogle Scholar
  76. 76.
    Furukawa T, Bello FO, Horsfall L (2014) Microbial enzyme systems for lignin degradation and their transcriptional regulation. Front Biol 9:448–471. doi: 10.1007/s11515-014-1336-9 CrossRefGoogle Scholar
  77. 77.
    Floudas D, Held BW, Riley R, et al (2015) Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii. Fungal Genet Biol 76:78–92. doi: 10.1016/j.fgb.2015.02.002 CrossRefGoogle Scholar
  78. 78.
    Alfaro M, Oguiza JA, Ramírez L, Pisabarro AG (2014) Comparative analysis of secretomes in basidiomycete fungi. J Proteome 102:28–43. doi: 10.1016/j.jprot.2014.03.001 CrossRefGoogle Scholar
  79. 79.
    Kellner H, Luis P, Pecyna MJ, et al (2014) Widespread occurrence of expressed fungal secretory peroxidases in forest soils. PLoS ONE 9:e95557. doi: 10.1371/journal.pone.0095557 CrossRefGoogle Scholar
  80. 80.
    Pointing S (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33. doi: 10.1007/s002530100745 CrossRefGoogle Scholar
  81. 81.
    Christiane Liers TA (2011) Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol Ecol 78:91–102. doi: 10.1111/j.1574-6941.2011.01144.x CrossRefGoogle Scholar
  82. 82.
    Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355. doi: 10.1016/j.pbi.2008.02.003 CrossRefGoogle Scholar
  83. 83.
    Liers C, Aranda E, Strittmatter E, et al (2014) Phenol oxidation by DyP-type peroxidases in comparison to fungal and plant peroxidases. J Mol Catal B Enzym 103:41–46. doi: 10.1016/j.molcatb.2013.09.025 CrossRefGoogle Scholar
  84. 84.
    Hastrup ACS, Howell C, Larsen FH, et al (2012) Differences in crystalline cellulose modification due to degradation by brown and white rot fungi. Fungal Biol 116:1052–1063. doi: 10.1016/j.funbio.2012.07.009 CrossRefGoogle Scholar
  85. 85.
    de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811. doi: 10.1016/j.femsre.2004.11.005 CrossRefGoogle Scholar
  86. 86.
    Blanchette RA (2000) A review of microbial deterioration found in archaeological wood from different environments. Int Biodeterior Biodegrad 46:189–204. doi: 10.1016/S0964-8305(00)00077-9 CrossRefGoogle Scholar
  87. 87.
    Kües U (2007) Wood production, wood technology, and biotechnological impacts. Universitätsverlag Göttingen, GöttingenCrossRefGoogle Scholar
  88. 88.
    Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50Google Scholar
  89. 89.
    Hernández-Ortega A, Ferreira P, Martínez AT (2012) Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol 93:1395–1410. doi: 10.1007/s00253-011-3836-8 CrossRefGoogle Scholar
  90. 90.
    Ludwig R, Harreither W, Tasca F, Gorton L (2010) Cellobiose dehydrogenase: a versatile catalyst for electrochemical applications. ChemPhysChem 11:2674–2697. doi: 10.1002/cphc.201000216 CrossRefGoogle Scholar
  91. 91.
    Pollegioni L, Tonin F, Rosini E (2015) Lignin-degrading enzymes. FEBS J 282:1190–1213. doi: 10.1111/febs.13224 CrossRefGoogle Scholar
  92. 92.
    Hammel KE, Mozuch MD, Jensen KA, Kersten PJ (1994) H2O2 recycling during oxidation of the arylglycerol beta-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase. Biochemistry (Mosc) 33:13349–13354CrossRefGoogle Scholar
  93. 93.
    Giardina P, Sannia G (2015) Laccases: old enzymes with a promising future. Cell Mol Life Sci 72:855–856. doi: 10.1007/s00018-014-1821-y CrossRefGoogle Scholar
  94. 94.
    Giardina P, Faraco V, Pezzella C, et al (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385. doi: 10.1007/s00018-009-0169-1 CrossRefGoogle Scholar
  95. 95.
    Reiss R, Ihssen J, Richter M, et al (2013) Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS ONE 8:e65633. doi: 10.1371/journal.pone.0065633 CrossRefGoogle Scholar
  96. 96.
    Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209. doi: 10.1007/s12010-008-8279-z CrossRefGoogle Scholar
  97. 97.
    Jones SM, Solomon EI (2015) Electron transfer and reaction mechanism of laccases. Cell Mol Life Sci 72:869–883. doi: 10.1007/s00018-014-1826-6 CrossRefGoogle Scholar
  98. 98.
    Yoon J, Solomon EI (2007) Electronic structure of the peroxy intermediate and its correlation to the native intermediate in the multicopper oxidases: insights into the reductive cleavage of the O−O bond. J Am Chem Soc 129:13127–13136. doi: 10.1021/ja073947a CrossRefGoogle Scholar
  99. 99.
    Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705. doi: 10.1016/j.biotechadv.2010.05.002 CrossRefGoogle Scholar
  100. 100.
    Munk L, Sitarz AK, Kalyani DC, et al (2015) Can laccases catalyze bond cleavage in lignin? Biotechnol Adv 33:13–24. doi: 10.1016/j.biotechadv.2014.12.008 CrossRefGoogle Scholar
  101. 101.
    Daroch M, Houghton CA, Moore JK, et al (2014) Glycosylated yellow laccases of the basidiomycete Stropharia aeruginosa. Enzym Microb Technol 58–59:1–7. doi: 10.1016/j.enzmictec.2014.02.003 CrossRefGoogle Scholar
  102. 102.
    Chaurasia PK, Bharati SL, Singh SK (2013) Comparative studies on the blue and yellow laccases. Res Plant Sci 1:32–37. doi: 10.1007/s12010-011-9289-9 CrossRefGoogle Scholar
  103. 103.
    Passardi F, Bakalovic N, Teixeira FK, et al (2007) Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes. Genomics 89:567–579. doi: 10.1016/j.ygeno.2007.01.006 CrossRefGoogle Scholar
  104. 104.
    Zámocký M, Hofbauer S, Schaffner I, et al (2015) Independent evolution of four heme peroxidase superfamilies. Arch Biochem Biophys 574:108–119. doi: 10.1016/j.abb.2014.12.025 CrossRefGoogle Scholar
  105. 105.
    Passardi F, Theiler G, Zamocky M, et al (2007) PeroxiBase: the peroxidase database. Phytochemistry 68:1605–1611. doi: 10.1016/j.phytochem.2007.04.005 CrossRefGoogle Scholar
  106. 106.
    Lundell TK, Mäkelä MR, Hildén K (2010) Lignin-modifying enzymes in filamentous basidiomycetes–ecological, functional and phylogenetic review. J Basic Microbiol 50:5–20. doi: 10.1002/jobm.200900338 CrossRefGoogle Scholar
  107. 107.
    Sugano Y (2008) DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci 66:1387–1403. doi: 10.1007/s00018-008-8651-8 CrossRefGoogle Scholar
  108. 108.
    Nakasone KK, Hibbett DS, Goranova G (2009) Neocampanella, a new corticioid fungal genus, and a note on Dendrothele bispora. Botany 87:875–882. doi: 10.1139/B09-046 CrossRefGoogle Scholar
  109. 109.
    Zámocký M, Gasselhuber B, Furtmüller PG, Obinger C (2014) Turning points in the evolution of peroxidase–catalase superfamily: molecular phylogeny of hybrid heme peroxidases. Cell Mol Life Sci 71:4681–4696. doi: 10.1007/s00018-014-1643-y CrossRefGoogle Scholar
  110. 110.
    Fernández-Fueyo E, Ruiz-Dueñas FJ, Miki Y, et al (2012) Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora. J Biol Chem 287:16903–16916. doi: 10.1074/jbc.M112.356378 CrossRefGoogle Scholar
  111. 111.
    Morales M, Mate MJ, Romero A, et al (2012) Two oxidation sites for low redox potential substrates. J Biol Chem 287:41053–41067. doi: 10.1074/jbc.M112.405548 CrossRefGoogle Scholar
  112. 112.
    Ruiz-Dueñas FJ, Lundell T, Floudas D, et al (2013) Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes. Mycologia 105:1428–1444. doi: 10.3852/13-059 CrossRefGoogle Scholar
  113. 113.
    Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192. doi: 10.1038/nrmicro2519 CrossRefGoogle Scholar
  114. 114.
    Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30:454–466. doi: 10.1016/S0141-0229(01)00528-2 CrossRefGoogle Scholar
  115. 115.
    Abdel-Hamid AM, Solbiati JO, Cann IKO (2013) Insights into lignin degradation and its potential industrial applications. Adv Appl Microbiol 82:1–28. doi: 10.1016/B978-0-12-407679-2.00001-6 CrossRefGoogle Scholar
  116. 116.
    Hildén L, Johansson G, Pettersson G, et al (2000) Do the extracellular enzymes cellobiose dehydrogenase and manganese peroxidase form a pathway in lignin biodegradation? FEBS Lett 477:79–83. doi: 10.1016/S0014-5793(00)01757-9 CrossRefGoogle Scholar
  117. 117.
    Lundell T, Wever R, Floris R, et al (1993) Lignin peroxidase L3 from Phlebia radiata. Pre-steady-state and steady-state studies with veratryl alcohol and a non-phenolic lignin model compound 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol. Eur J Biochem FEBS 211:391–402CrossRefGoogle Scholar
  118. 118.
    Salvachúa D, Prieto A, Martínez ÁT, Martínez MJ (2013) Characterization of a novel dye-decolorizing peroxidase (DyP)-type enzyme from Irpex lacteus and its application in enzymatic hydrolysis of wheat straw. Appl Environ Microbiol 79:4316–4324. doi: 10.1128/AEM.00699-13 CrossRefGoogle Scholar
  119. 119.
    Liers C, Pecyna MJ, Kellner H, et al (2013) Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood- and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases. Appl Microbiol Biotechnol 97:5839–5849. doi: 10.1007/s00253-012-4521-2 CrossRefGoogle Scholar
  120. 120.
    Yoshida T, Tsuge H, Konno H, et al (2011) The catalytic mechanism of dye-decolorizing peroxidase DyP may require the swinging movement of an aspartic acid residue. FEBS J 278:2387–2394. doi: 10.1111/j.1742-4658.2011.08161.x CrossRefGoogle Scholar
  121. 121.
    Piontek K, Smith AT, Blodig W (2001) Lignin peroxidase structure and function. Biochem Soc Trans 29:111–116. doi: 10.1042/0300-5127:0290111 CrossRefGoogle Scholar
  122. 122.
    Heinfling A, Ruiz-Dueñas FJ, Martınez MJ, et al (1998) A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett 428:141–146. doi: 10.1016/S0014-5793(98)00512-2 CrossRefGoogle Scholar
  123. 123.
    Garcia-Ruiz E, Gonzalez-Perez D, Ruiz-Dueñas FJ, et al (2012) Directed evolution of a temperature-, peroxide- and alkaline pH-tolerant versatile peroxidase. Biochem J 441:487–498. doi: 10.1042/BJ20111199 CrossRefGoogle Scholar
  124. 124.
    Bugg TDH, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:394–400. doi: 10.1016/j.copbio.2010.10.009 CrossRefGoogle Scholar
  125. 125.
    Hofrichter M, Ullrich R, Pecyna MJ, et al (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87:871–897. doi: 10.1007/s00253-010-2633-0 CrossRefGoogle Scholar
  126. 126.
    Hofrichter M, Ullrich R (2014) Oxidations catalyzed by fungal peroxygenases. Curr Opin Chem Biol 19:116–125. doi: 10.1016/j.cbpa.2014.01.015 CrossRefGoogle Scholar
  127. 127.
    Dana I, Colpa MWF (2013) DyP-type peroxidases: a promising and versatile class of enzymes. J Ind Microbiol Biotechnol 41:1–7. doi: 10.1007/s10295-013-1371-6 CrossRefGoogle Scholar
  128. 128.
    Yoshida T, Sugano Y (2015) A structural and functional perspective of DyP-type peroxidase family. Arch Biochem Biophys 574:49–55. doi: 10.1016/j.abb.2015.01.022 CrossRefGoogle Scholar
  129. 129.
    Martin Hofrichter RU (2009) New trends in fungal biooxidation. Ind Appl 10:425–449. doi: 10.1007/978-3-642-11458-8_21 CrossRefGoogle Scholar
  130. 130.
    Piontek K, Strittmatter E, Ullrich R, et al (2013) Structural basis of substrate conversion in a new aromatic peroxygenase cytochrome P450 functionality with benefits. J Biol Chem 288:34767–34776. doi: 10.1074/jbc.M113.514521 CrossRefGoogle Scholar
  131. 131.
    Peter S, Kinne M, Wang X, et al (2011) Selective hydroxylation of alkanes by an extracellular fungal peroxygenase. FEBS J 278:3667–3675. doi: 10.1111/j.1742-4658.2011.08285.x CrossRefGoogle Scholar
  132. 132.
    Scheibner M, Hülsdau B, Zelena K, et al (2007) Novel peroxidases of Marasmius scorodonius degrade β-carotene. Appl Microbiol Biotechnol 77:1241–1250. doi: 10.1007/s00253-007-1261-9 CrossRefGoogle Scholar
  133. 133.
    Vincenza Faraco AP (2007) Identification of a new member of the dye-decolorizing peroxidase family from Pleurotus ostreatus. World J Microbiol Biotechnol 23:889–893. doi: 10.1007/s11274-006-9303-5 CrossRefGoogle Scholar
  134. 134.
    Singh R, Eltis LD (2015) The multihued palette of dye-decolorizing peroxidases. Arch Biochem Biophys 574:56–65. doi: 10.1016/j.abb.2015.01.014 CrossRefGoogle Scholar
  135. 135.
    Strittmatter E, Liers C, Ullrich R, et al (2013) First crystal structure of a fungal high-redox potential dye-decolorizing peroxidase: substrate interaction sites and long-range electron transfer. J Biol Chem 288:4095–4102. doi: 10.1074/jbc.M112.400176 CrossRefGoogle Scholar
  136. 136.
    Strittmatter E, Serrer K, Liers C, et al (2015) The toolbox of Auricularia auricula-judae dye-decolorizing peroxidase–identification of three new potential substrate-interaction sites. Arch Biochem Biophys 574:75–85. doi: 10.1016/j.abb.2014.12.016 CrossRefGoogle Scholar
  137. 137.
    Linde D, Pogni R, Cañellas M, et al (2015) Catalytic surface radical in dye-decolorizing peroxidase: a computational, spectroscopic and site-directed mutagenesis study. Biochem J 466:253–262. doi: 10.1042/BJ20141211 CrossRefGoogle Scholar
  138. 138.
    Liers C, Bobeth C, Pecyna M, et al (2010) DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl Microbiol Biotechnol 85:1869–1879. doi: 10.1007/s00253-009-2173-7 CrossRefGoogle Scholar
  139. 139.
    Fernández-Fueyo E, Linde D, Almendral D, et al (2015) Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II). Appl Microbiol Biotechnol 99:8927–8942. doi: 10.1007/s00253-015-6665-3 CrossRefGoogle Scholar
  140. 140.
    Levasseur A, Drula E, Lombard V, et al (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41. doi: 10.1186/1754-6834-6-41 CrossRefGoogle Scholar
  141. 141.
    Yamada Y, Wang J, Kawagishi H, Hirai H (2014) Improvement of ligninolytic properties by recombinant expression of glyoxal oxidase gene in hyper lignin-degrading fungus Phanerochaete sordida YK-624. Biosci Biotechnol Biochem 78:2128–2133. doi: 10.1080/09168451.2014.946398 CrossRefGoogle Scholar
  142. 142.
    Kersten P, Cullen D (2014) Copper radical oxidases and related extracellular oxidoreductases of wood-decay agaricomycetes. Fungal Genet Biol 72:124–130. doi: 10.1016/j.fgb.2014.05.011 CrossRefGoogle Scholar
  143. 143.
    Ruiz-Dueñas FJ, Martínez AT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2:164–177. doi: 10.1111/j.1751-7915.2008.00078.x CrossRefGoogle Scholar
  144. 144.
    Gibson A, Malek L, Dekker RFH, Ross B (2015) Detecting volatile compounds from Kraft lignin degradation in the headspace of microbial cultures by selected ion flow tube mass spectrometry (SIFT-MS). J Microbiol Methods 112:40–45. doi: 10.1016/j.mimet.2015.03.008 CrossRefGoogle Scholar
  145. 145.
    Hammel KE, Kapich AN, Jensen KAJ, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzym Microb Technol 30:445–453. doi: 10.1016/S0141-0229(02)00011-X CrossRefGoogle Scholar
  146. 146.
    Henriksson G, Johansson G, Pettersson G (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78:93–113CrossRefGoogle Scholar
  147. 147.
    Gómez-Toribio V, García-Martín AB, Martínez MJ, et al (2009) Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling. Appl Environ Microbiol 75:3944–3953. doi: 10.1128/AEM.02137-08 CrossRefGoogle Scholar
  148. 148.
    Brown ME, Chang MC (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1–7. doi: 10.1016/j.cbpa.2013.11.015 CrossRefGoogle Scholar
  149. 149.
    Wu D, Hugenholtz P, Mavromatis K, et al (2009) A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature 462:1056–1060. doi: 10.1038/nature08656 CrossRefGoogle Scholar
  150. 150.
    Zimmermann W (1990) Degradation of lignin by bacteria. J Biotechnol 13:119–130. doi: 10.1016/0168-1656(90)90098-V CrossRefGoogle Scholar
  151. 151.
    Tian J-H, Pourcher A-M, Bouchez T, et al (2014) Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Appl Microbiol Biotechnol 98:9527–9544. doi: 10.1007/s00253-014-6142-4 CrossRefGoogle Scholar
  152. 152.
    Ahmad M, Taylor CR, Pink D, et al (2010) Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol BioSyst 6:815–821. doi: 10.1039/b908966g CrossRefGoogle Scholar
  153. 153.
    Taylor CR, Hardiman EM, Ahmad M, et al (2012) Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. J Appl Microbiol 113:521–530. doi: 10.1111/j.1365-2672.2012.05352.x CrossRefGoogle Scholar
  154. 154.
    Scully ED, Geib SM, Carlson JE, et al (2014) Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles. BMC Genomics 15:1096. doi: 10.1186/1471-2164-15-1096 CrossRefGoogle Scholar
  155. 155.
    Scully ED, Geib SM, Hoover K, et al (2013) Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PLoS ONE 8:e73827. doi: 10.1371/journal.pone.0073827 CrossRefGoogle Scholar
  156. 156.
    Odier E, Janin G, Monties B (1981) Poplar lignin decomposition by gram-negative aerobic bacteria. Appl Environ Microbiol 41:337–341Google Scholar
  157. 157.
    McCarthy AJ, Broda P (1984) Screening for lignin-degrading actinomycetes and characterization of their activity against (14C)lignin-labelled wheat lignocellulose. Microbiology 130:2905–2913CrossRefGoogle Scholar
  158. 158.
    Haider K, Trojanowski J, Sundman V (1978) Screening for lignin degrading bacteria by means of 14C-labelled lignins. Arch Microbiol 119:103–106. doi: 10.1007/BF00407936 CrossRefGoogle Scholar
  159. 159.
    Pasti MB, Pometto AL, Nuti MP, Crawford DL (1990) Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut. Appl Environ Microbiol 56:2213–2218Google Scholar
  160. 160.
    Pometto AL, Crawford DL (1986) Effects of pH on lignin and cellulose degradation by Streptomyces viridosporus. Appl Environ Microbiol 52:246–250Google Scholar
  161. 161.
    Crawford DL (1978) Lignocellulose decomposition by selected Streptomyces strains. Appl Environ Microbiol 35:1041–1045Google Scholar
  162. 162.
    McCarthy AJ, MacDonald MJ, Paterson A, Broda P (1984) Degradation of [14C]lignin-labelled wheat lignocellulose by white-rot fungi. J Gen Microbiol 130:1023–1030. doi: 10.1099/00221287-130-5-1023 CrossRefGoogle Scholar
  163. 163.
    Vicuña R (1988) Bacterial degradation of lignin. Enzym Microb Technol 10:646–655. doi: 10.1016/0141-0229(88)90055-5 CrossRefGoogle Scholar
  164. 164.
    Taylor CR (2013) Isolation of environmental lignin-degrading bacteria and identification of extracellular enzymes. University of Warwick, CoventryGoogle Scholar
  165. 165.
    Shi Y, Chai L, Tang C, et al (2013) Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioprocess Biosyst Eng 36:1957–1965. doi: 10.1007/s00449-013-0972-9 CrossRefGoogle Scholar
  166. 166.
    Chai L, Chen Y, Tang C, et al (2014) Depolymerization and decolorization of kraft lignin by bacterium Comamonas sp. B-9. Appl Microbiol Biotechnol 98:1907–1912. doi: 10.1007/s00253-013-5166-5 CrossRefGoogle Scholar
  167. 167.
    Ramachandra M, Crawford DL, Hertel G (1988) Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol 54:3057–3063Google Scholar
  168. 168.
    Mason JC, Richards M, Zimmermann W, Broda P (1988) Identification of extracellular proteins from actinomycetes responsible for the solubilisation of lignocellulose. Appl Microbiol Biotechnol 28:276–280. doi: 10.1007/BF00250455 CrossRefGoogle Scholar
  169. 169.
    Magnuson TS, Crawford DL (1992) Comparison of extracellular peroxidase- and esterase-deficient mutants of Streptomyces viridosporus T7A. Appl Environ Microbiol 58:1070–1072Google Scholar
  170. 170.
    Mercer DK, Iqbal M, Miller P, McCarthy AJ (1996) Screening Actinomycetes for extracellular peroxidase activity. Appl Environ Microbiol 62:2186–2190Google Scholar
  171. 171.
    le Roes-Hill M, Khan N, Burton SG (2011) Actinobacterial peroxidases: an unexplored resource for biocatalysis. Appl Biochem Biotechnol 164:681–713. doi: 10.1007/s12010-011-9167-5 CrossRefGoogle Scholar
  172. 172.
    Majumdar S, Lukk T, Solbiati JO, et al (2014) Roles of small laccases from Streptomyces in lignin degradation. Biochemistry (Mosc) 53:4047–4058. doi: 10.1021/bi500285t CrossRefGoogle Scholar
  173. 173.
    Chandra R, Chowdhary P (2015) Properties of bacterial laccases and their application in bioremediation of industrial wastes. Evnviron Sci Process Impacts 17:326–342. doi: 10.1039/C4EM00627E CrossRefGoogle Scholar
  174. 174.
    Santhanam N, Vivanco JM, Decker SR, Reardon KF (2011) Expression of industrially relevant laccases: prokaryotic style. Trends Biotechnol 29:480–489. doi: 10.1016/j.tibtech.2011.04.005 CrossRefGoogle Scholar
  175. 175.
    Ausec L, Zakrzewski M, Goesmann A, et al (2011) Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS ONE 6:e25724. doi: 10.1371/journal.pone.0025724 CrossRefGoogle Scholar
  176. 176.
    Dwivedi UN, Singh P, Pandey VP, Kumar A (2011) Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal B Enzym 68:117–128. doi: 10.1016/j.molcatb.2010.11.002 CrossRefGoogle Scholar
  177. 177.
    Ladomersky E, Petris MJ (2015) Copper tolerance and virulence in bacteria. Metallomics 7:957–964. doi: 10.1039/c4mt00327f CrossRefGoogle Scholar
  178. 178.
    Geszvain K, McCarthy JK, Tebo BM (2013) Elimination of manganese(II,III) oxidation in pseudomonas putida GB-1 by a double knockout of two putative multicopper oxidase genes. Appl Environ Microbiol 79:357–366. doi: 10.1128/AEM.01850-12 CrossRefGoogle Scholar
  179. 179.
    Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese(II) oxidation. Trends Microbiol 13:421–428. doi: 10.1016/j.tim.2005.07.009 CrossRefGoogle Scholar
  180. 180.
    Singh G, Batish M, Sharma P, Capalash N (2009) Xenobiotics enhance laccase activity in alkali-tolerant γ-proteobacterium JB. Braz J Microbiol 40:26–30. doi: 10.1590/S1517-83822009000100004 CrossRefGoogle Scholar
  181. 181.
    Santos A, Mendes S, Brissos V, Martins LO (2013) New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: towards biotechnological applications. Appl Microbiol Biotechnol 98:2053–2065. doi: 10.1007/s00253-013-5041-4 CrossRefGoogle Scholar
  182. 182.
    Sturm A, Schierhorn A, Lindenstrauss U, et al (2006) YcdB from Escherichia coli reveals a novel class of tat-dependently translocated hemoproteins. J Biol Chem 281:13972–13978. doi: 10.1074/jbc.M511891200 CrossRefGoogle Scholar
  183. 183.
    Yu W, Liu W, Huang H, et al (2014) Application of a novel alkali-tolerant thermostable DyP-type peroxidase from Saccharomonospora viridis DSM 43017 in biobleaching of eucalyptus kraft pulp. PLoS One 9:e110319. doi: 10.1371/journal.pone.0110319 CrossRefGoogle Scholar
  184. 184.
    Létoffé S, Heuck G, Delepelaire P, et al (2009) Bacteria capture iron from heme by keeping tetrapyrrol skeleton intact. Proc Natl Acad Sci U S A 106:11719–11724. doi: 10.1073/pnas.0903842106 CrossRefGoogle Scholar
  185. 185.
    Ogola HJO, Kamiike T, Hashimoto N, et al (2009) Molecular characterization of a novel peroxidase from the cyanobacterium Anabaena sp. strain PCC 7120. Appl Environ Microbiol 75:7509–7518. doi: 10.1128/AEM.01121-09 CrossRefGoogle Scholar
  186. 186.
    Brown ME, Barros T, Chang MCY (2012) Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem Biol 7:2074–2081. doi: 10.1021/cb300383y CrossRefGoogle Scholar
  187. 187.
    van Bloois E, Pazmiño DET, Winter RT, Fraaije MW (2010) A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Biotechnol 86:1419–1430. doi: 10.1007/s00253-009-2369-x CrossRefGoogle Scholar
  188. 188.
    Sugano Y, Muramatsu R, Ichiyanagi A, et al (2007) DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family: ASP171 replaces the distal histidine of classical peroxidases. J Biol Chem 282:36652–36658. doi: 10.1074/jbc.M706996200 CrossRefGoogle Scholar
  189. 189.
    Singh R, Grigg JC, Armstrong Z, et al (2012) Distal heme pocket residues of B-type dye-decolorizing peroxidase: arginine but not aspartate is essential for peroxidase activity. J Biol Chem 287:10623–10630. doi: 10.1074/jbc.M111.332171 CrossRefGoogle Scholar
  190. 190.
    Mendes S, Brissos V, Gabriel A, et al (2015) An integrated view of redox and catalytic properties of B-type PpDyP from Pseudomonas putida MET94 and its distal variants. Arch Biochem Biophys 574:99–107. doi: 10.1016/j.abb.2015.03.009 CrossRefGoogle Scholar
  191. 191.
    Binesse J, Lindgren H, Lindgren L, et al (2015) Roles of reactive oxygen species-degrading enzymes of Francisella tularensis SCHU S4. Infect Immun 83:2255–2263. doi: 10.1128/IAI.02488-14 CrossRefGoogle Scholar
  192. 192.
    Turlin E, Débarbouillé M, Augustyniak K, et al (2013) Staphylococcus aureus FepA and FepB proteins drive heme iron utilization in Escherichia coli. PLoS ONE 8:e56529. doi: 10.1371/journal.pone.0056529 CrossRefGoogle Scholar
  193. 193.
    Ahmad M, Roberts JN, Hardiman EM, et al (2011) Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry (Mosc) 50:5096–5107. doi: 10.1021/bi101892z CrossRefGoogle Scholar
  194. 194.
    Strachan C, VanInsberghe D, Williams D (2012) Ligninase activity is not consistently predicted by the presence of manganese coordinating residues in Dyp-like proteins. J Exp Microbiol Immunol 16:66–72Google Scholar
  195. 195.
    Roberts JN, Singh R, Grigg JC, et al (2011) Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1. Biochemistry (Mosc) 50:5108–5119. doi: 10.1021/bi200427h CrossRefGoogle Scholar
  196. 196.
    Singh R, Grigg JC, Qin W, et al (2013) Improved manganese-oxidizing activity of DypB, a peroxidase from a lignolytic bacterium. ACS Chem Biol 8:700–706. doi: 10.1021/cb300608x CrossRefGoogle Scholar
  197. 197.
    Rahmanpour R, Bugg TDH (2013) Assembly in vitro of Rhodococcus jostii RHA1 encapsulin and peroxidase DypB to form a nanocompartment. FEBS J 280:2097–2104. doi: 10.1111/febs.12234 CrossRefGoogle Scholar
  198. 198.
    Min K, Gong G, Woo HM, et al (2015) A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer. Sci Rep 5:8245. doi: 10.1038/srep08245 CrossRefGoogle Scholar
  199. 199.
    Mai-Prochnow A, Lucas-Elio P, Egan S, et al (2008) Hydrogen peroxide linked to lysine oxidase activity facilitates biofilm differentiation and dispersal in several Gram-negative bacteria. J Bacteriol 190:5493–5501. doi: 10.1128/JB.00549-08 CrossRefGoogle Scholar
  200. 200.
    Jin J, Mazon H, van den Heuvel RHH, et al (2007) Discovery of a eugenol oxidase from Rhodococcus sp. strain RHA1. FEBS J 274:2311–2321. doi: 10.1111/j.1742-4658.2007.05767.x CrossRefGoogle Scholar
  201. 201.
    Phugare SS, Waghmare SR, Jadhav JP (2011) Purification and characterization of dye degrading of veratryl alcohol oxidase from Pseudomonas aeruginosa strain BCH. World J Microbiol Biotechnol 27:2415–2423. doi: 10.1007/s11274-011-0714-6 CrossRefGoogle Scholar
  202. 202.
    Tamboli DP, Telke AA, Dawkar VV, et al (2011) Purification and characterization of bacterial aryl alcohol oxidase from Sphingobacterium sp. ATM and its uses in textile dye decolorization. Biotechnol Bioprocess Eng 16:661–668. doi: 10.1007/s12257-011-0031-9 CrossRefGoogle Scholar
  203. 203.
    Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem 71:1–15CrossRefGoogle Scholar
  204. 204.
    Yoshikata T, Suzuki K, Kamimura N, et al (2014) A three-component O-demethylase system essential for catabolism of a lignin-derived biphenyl compound in Sphingobium sp. strain SYK-6. Appl Environ Microbiol 80:7142–7153. doi: 10.1128/AEM.02236-14 CrossRefGoogle Scholar
  205. 205.
    Gall DL, Kim H, Lu F, et al (2014) Stereochemical features of glutathione-dependent enzymes in the Sphingobium sp. strain SYK-6 β-aryl etherase pathway. J Biol Chem 289:8656–8667. doi: 10.1074/jbc.M113.536250 CrossRefGoogle Scholar
  206. 206.
    Mishra S, Sachan A, Sachan SG (2013) Production of natural value-added compounds: an insight into the eugenol biotransformation pathway. J Ind Microbiol Biotechnol 40:545–550. doi: 10.1007/s10295-013-1255-9 CrossRefGoogle Scholar
  207. 207.
    Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds–from one strategy to four. Nat Rev Microbiol 9:803–816. doi: 10.1038/nrmicro2652 CrossRefGoogle Scholar
  208. 208.
    Wells Jr T, Ragauskas AJ (2012) Biotechnological opportunities with the β-ketoadipate pathway. Trends Biotechnol 30:627–637. doi: 10.1016/j.tibtech.2012.09.008 CrossRefGoogle Scholar
  209. 209.
    Sainsbury PD, Hardiman EM, Ahmad M, et al (2013) Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem Biol 8:2151–2156. doi: 10.1021/cb400505a CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.IGVPUniversity StuttgartStuttgartGermany
  2. 2.Fraunhofer Institute for Interfacial Engineering and BiotechnologyStuttgartGermany

Personalised recommendations