Biorefineries pp 247-280 | Cite as

Syngas Biorefinery and Syngas Utilization

  • Sashini De Tissera
  • Michael Köpke
  • Sean D. Simpson
  • Christopher Humphreys
  • Nigel P. Minton
  • Peter DürreEmail author
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 166)


Autotrophic acetogenic bacteria are able to capture carbon (CO or CO2) through gas fermentation, allowing them to grow on a spectrum of waste gases from industry (e.g., steel manufacture and oil refining, coal, and natural gas) and to produce ethanol. They can also consume syn(thesis) gas (CO and H2) made from the gasification of renewable/sustainable resources, such as biomass and domestic/agricultural waste. Acetogenic gas fermentation can, therefore, produce ethanol in any geographic region without competing for food or land. The commercialization of the process is now at an advanced stage. The real potential of acetogens, however, resides in their capacity to produce chemicals and fuels other than ethanol. This requires the redesign and implementation of more efficient metabolic pathways, adapting them to high performing manufacturing processes. Respective species, their bioenergetics, the genetic tools developed for their metabolic engineering, culture techniques and fermenter set-ups, as well as the commercialization, are comprehensively described and discussed in this chapter.


Autotrophic acetogens CO CO2 Syngas Wood-Ljungdahl pathway 



Work in the authors’ laboratories was funded by the ERA-Net IB 5 project CO2CHEM. Work in PD’s laboratory was supported by grants from the BMBF Gas-Fermentation project (FKZ 031A468A), the ERA-IB 3 project REACTIF (FKZ 22029612), the MWK-BW project Nachhaltige und effiziente Biosynthesen (AZ 33-7533-6-195/7/9), and the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement no 311815 (SYNPOL project). Work in NPM’s laboratory was additionally funded by the BBSRC sLoLa GASCHEM (Grant no. BB/K00283X/1), the BBSRC/EPSRC Synthetic Biology Research Centre (Grant no. BB/L013940/1), and a BBSRC China Partnership Award (Grant no. BB/L01081X/1). LanzaTech thanks the following investors in its technology: Sir Stephen Tindall, Khosla Ventures, Qiming Venture Partners, Softbank China, the Malaysian Life Sciences Capital Fund, Mitsui, Primetals, CICC Growth Capital Fund I, L.P., and the New Zealand Superannuation Fund.


  1. 1.
    Fischer F, Lieske R, Winzer K (1932) Biologische Gasreaktionen. II. Mitteilung: Über die Bildung von Essigsäure bei der biologischen Umsetzung von Kohlenoxyd und Kohlensäure mit Wasserstoff zu Methan. Biochem Z 245:2–12Google Scholar
  2. 2.
    Wieringa KT (1936) Over het verdwijnen van waterstof en koolzuur onder anaerobe voorwaarden. Ant Leeuwenhoek 3:263–273. doi: 10.1007/BF02059556 CrossRefGoogle Scholar
  3. 3.
    Wieringa KT (1940) The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Ant Leeuwenhoek J Microbiol Serol 6:251–262CrossRefGoogle Scholar
  4. 4.
    Wieringa KT (1941) Über die Bildung von Essigsäure aus Kohlensäure und Wasserstoff durch anaerobe Bazillen. Brennst-Chem 14:161–164Google Scholar
  5. 5.
    Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int J Syst Bacteriol 27:355–361. doi: 10.1099/00207713-27-4-355 CrossRefGoogle Scholar
  6. 6.
    Braun M, Mayer F, Gottschalk G (1981) Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch Microbiol 128:288–293. doi: 10.1007/BF00422532 CrossRefPubMedGoogle Scholar
  7. 7.
    Drake HL, Küsel K, Matthies C (2006) Acetogenic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, et al. (eds) The prokaryotes, 3rd edn. Springer, New York, pp. 354–420CrossRefGoogle Scholar
  8. 8.
    Drake HL, Gössner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125:100–128. doi: 10.1196/annals.1419.016 CrossRefPubMedGoogle Scholar
  9. 9.
    Schiel-Bengelsdorf B, Dürre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586:2191–2198. doi: 10.1016/j.febslet.2012.04.043 CrossRefPubMedGoogle Scholar
  10. 10.
    Bengelsdorf FR, Straub M, Dürre P (2013) Bacterial synthesis gas (syngas) fermentation. Environ Technol 34:1639–1651. doi: 10.1080/09593330.2013.827747 CrossRefGoogle Scholar
  11. 11.
    Dürre P, Eikmanns BJ (2015) C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 35:63–72. doi: 10.1016/j.copbio.2015.03.008 CrossRefPubMedGoogle Scholar
  12. 12.
    Poehlein A, Schmidt S, Kaster A-K, et al (2012) An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS One 7:e33439. doi: 10.1371/journal.pone.0033439 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Pierce E, Xie G, Barabote RD, et al (2008) The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ Microbiol 10:2550–2573. doi: 10.1111/j.1462-2920.2008.01679.x CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Köpke M, Held C, Hujer S, et al (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 107:13087–13092. doi: 10.1073/pnas.1004716107 CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Bruno-Barcena JM, Chinn MS, Grunden AM (2013) Genome sequence of the autotrophic acetogen Clostridium autoethanogenum JA1-1 strain DSM 10061, a producer of ethanol from carbon monoxide. Genome Announc 1:e00628–e00613. doi: 10.1128/genomeA.00628-13 CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Li N, Yang J, Chai C, et al (2015) Complete genome sequence of Clostridium carboxidivorans P7T, a syngas-fermenting bacterium capable of producing long-chain alcohols. J Biotechnol 211:44–45. doi: 10.1016/j.jbiotec.2015.06.430 CrossRefPubMedGoogle Scholar
  17. 17.
    Poehlein A, Bengelsdorf FR, Schiel-Bengelsdorf B, et al (2015) Complete genome sequence of Rnf- and cytochrome-containing autotrophic acetogen Clostridium aceticum DSM 1496. Genome Announc 3:e00786-15. doi: 10.1128/genomeA.00786-15 CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Roh H, Ko H-J, Kim D, et al (2011) Complete genome sequence of a carbon monoxide-utilizing acetogen, Eubacterium limosum KIST612. J Bacteriol 193:307–308. doi: 10.1128/JB.01217-10 CrossRefPubMedGoogle Scholar
  19. 19.
    Sebaihia M, Wren BW, Mullany P, et al (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786. doi: 10.1038/ng1830 CrossRefPubMedGoogle Scholar
  20. 20.
    Lux MF, Drake HL (1992) Re-examination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum: chemolithoautotrophic and aromatic-dependent growth. FEMS Microbiol Lett 74:49–56CrossRefPubMedGoogle Scholar
  21. 21.
    Adamse A (1980) New isolation of Clostridium aceticum (Wieringa). Ant Leeuwenhoek 46:523–531CrossRefGoogle Scholar
  22. 22.
    Poehlein A, Cebulla M, Ilg MM, et al (2015) The complete genome sequence of Clostridium aceticum: a missing link between Rnf- and cytochrome-containing autotrophic acetogens. mBio 6:e01168-15. doi: 10.1128/mBio.01186-15 CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Heise R, Müller V, Gottschalk G (1989) Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii. J Bacteriol 171:5473–5478CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Müller V, Aufurth S, Rahlfs S (2001) The Na+ cycle in Acetobacterium woodii: identification and characterization of a Na+ translocating F1F0-ATPase with a mixed oligomer of 8 and 16 kDa proteolipids. Biochim Biophys Acta 1505:108–120CrossRefPubMedGoogle Scholar
  25. 25.
    Biegel E, Müller V (2010) Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc Natl Acad Sci U S A 107:18138–18142. doi: 10.1073/pnas.1010318107 CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Schuchmann K, Müller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12:809–821. doi: 10.1038/nrmicro3365 CrossRefPubMedGoogle Scholar
  27. 27.
    Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol 43:232–236CrossRefPubMedGoogle Scholar
  28. 28.
    Köpke M, Mihalcea C, Liew F, et al (2011) 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77:5467–5475. doi: 10.1128/AEM.00355-11 CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Tremblay P, Zhang T, Dar SA, et al (2012) The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth. mBio 4:e00406-12. doi: 10.1128/mBio.00406-12 CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Leang C, Ueki T, Nevin KP, Lovley DR (2013) A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl Environ Microbiol 79:1102–1109. doi: 10.1128/AEM.02891-12 CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Köpke M, Gerth ML, Maddock DJ, et al (2014) Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl Environ Microbiol 80:3394–3403. doi: 10.1128/AEM.00301-14 CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Fontaine FE, Peterson WH, McCoy E, et al (1942) A new type of glucose fermentation by Clostridium thermoaceticum. J Bacteriol 43:701–715PubMedCentralPubMedGoogle Scholar
  33. 33.
    Daniel SL, Hsu T, Dean SI, Drake HL (1990) Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 172:4464–4471CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Das A, Ljungdahl LG (2003) Electron-transport systems in acetogens. In: Ljungdahl LG, Adams MW, Barton LL, Ferry JG, Johnson MK (eds) Biochemistry and physiology of anaerobic bacteria. Springer, New York, pp. 191–204CrossRefGoogle Scholar
  35. 35.
    Seifritz C, Daniel SL, Gössner A, Drake HL (1993) Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J Bacteriol 175:8008–8013CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Seifritz C, Drake HL, Daniel SL (2003) Nitrite as an energy-conserving electron sink for the acetogenic bacterium Moorella thermoacetica. Curr Microbiol 46:329–333. doi: 10.1007/s00284-002-3830-6 CrossRefPubMedGoogle Scholar
  37. 37.
    Fröstl JM, Seifritz C, Drake HL (1996) Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum. J Bacteriol 178:4597–4603CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Zeikus JG, Lynd LH, Thompson TE, et al (1980) Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the marburg strain. Curr Microbiol 3:381–386. doi: 10.1007/BF02601907 CrossRefGoogle Scholar
  39. 39.
    Lynd L, Kerby R, Zeikus JG (1982) Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum. J Bacteriol 149:255–263PubMedCentralPubMedGoogle Scholar
  40. 40.
    Shen G-J, Shieh J-S, Grethlein AJ, et al (1999) Biochemical basis for carbon monoxide tolerance and butanol production by Butyribacterium methylotrophicum. Appl Microbiol Biotechnol 51:827–832. doi: 10.1007/s002530051469 CrossRefGoogle Scholar
  41. 41.
    Grethlein AJ, Worden RM, Jain MK, Datta R (1991) Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum. J Ferment Bioeng 72:58–60. doi: 10.1016/0922-338X(91)90147-9 CrossRefGoogle Scholar
  42. 42.
    Worden RM, Grethlein AJ, Jain MK, Datta R (1991) Production of butanol and ethanol from synthesis gas via fermentation. Fuel 70:615–619. doi: 10.1016/0016-2361(91)90175-A CrossRefGoogle Scholar
  43. 43.
    Heiskanen H, Virkajärvi I, Viikari L (2007) The effect of syngas composition on the growth and product formation of Butyribacterium methylotrophicum. Enzym Microb Technol 41:362–367. doi: 10.1016/j.enzmictec.2007.03.004 CrossRefGoogle Scholar
  44. 44.
    Sharak Genthner BR, Davis CL, Bryant MP (1981) Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species. Appl Environ Microbiol 42:12–19Google Scholar
  45. 45.
    Sharak Genthner BR, Bryant MP (1982) Growth of Eubacterium limosum with carbon monoxide as the energy source. Appl Environ Microbiol 43:70–74Google Scholar
  46. 46.
    Chang IS, Kim BH, Kim DH, et al (1999) Formulation of defined media for carbon monoxide fermentation by Eubacterium limosum KIST612 and the growth characteristics of the bacterium. J Biosci Bioeng 88:682–685. doi: 10.1016/S1389-1723(00)87102-9 CrossRefPubMedGoogle Scholar
  47. 47.
    Chang IS, Kim D, Kim BH, Lovitt RW (2007) Use of an industrial grade medium and medium enhancing effects on high cell density CO fermentation by Eubacterium limosum KIST612. Biotechnol Lett 29:1183–1187. doi: 10.1007/s10529-007-9382-x CrossRefPubMedGoogle Scholar
  48. 48.
    Jeong J, Bertsch J, Hess V et al (2015) A model for energy conservation based on genomic and experimental analyses in a carbon monoxide-utilizing, butyrate-forming acetogen, Eubacterium limosum KIST612. Appl Environ Microbiol 81:4782–4790. doi:  10.1128/AEM.00675-15 CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Song Y, Cho B-K (2015) Draft genome sequence of chemolithoautotrophic acetogenic butanol-producing Eubacterium limosum ATCC 8486. Genome Announc 3:e01564–e01514. doi: 10.1128/genomeA.01564-14 CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351. doi: 10.1007/BF00303591 CrossRefGoogle Scholar
  51. 51.
    Brown SD, Nagaraju S, Utturkar S, et al (2014) Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant clostridia. Biotechnol Biofuels 7:40. doi: 10.1186/1754-6834-7-40 CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Utturkar SM, Klingeman DM, Bruno-Barcena JM, et al (2015) Sequence data for Clostridium autoethanogenum using three generations of sequencing technologies. Sci Data 2:150014. doi: 10.1038/sdata.2015.14 CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Zahn JA, Saxena J, Do Y et al (2010) P155: Clostridium coskatii, sp. nov., an anaerobic bacterium that produces ethanol from synthesis gas. 60th annual meeting of the society for industrial microbiology, San Franscisco, CA, August 1st, 2010. Accessed 26 Jun 2015
  54. 54.
    Zahn JA, Saxena J (2011) Novel ethanologenic Clostridium species, Clostridium coskatii. US Patent 20110229947 A1Google Scholar
  55. 55.
    Saxena J, Zahn JA (2012) A novel ethanologenic Clostridium species, Clostridium coskatii. Patent WO 2011116124 A3Google Scholar
  56. 56.
    Huhnke RL, Lewis RS, Tanner RS (2010) Isolation and characterization of novel clostridial species. US Patent 7704723 B2Google Scholar
  57. 57.
    Saxena J, Tanner RS (2011) Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. J Ind Microbiol Biotechnol 38:513–521. doi: 10.1007/s10295-010-0794-6 CrossRefPubMedGoogle Scholar
  58. 58.
    Isom CE, Nanny MA, Tanner RS (2015) Improved conversion efficiencies for n-fatty acid reduction to primary alcohols by the solventogenic acetogen “Clostridium ragsdalei”. J Ind Microbiol Biotechnol 42:29–38. doi: 10.1007/s10295-014-1543-z CrossRefPubMedGoogle Scholar
  59. 59.
    Liou JS-C, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing Clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091. doi: 10.1099/ijs.0.63482-0 CrossRefPubMedGoogle Scholar
  60. 60.
    Phillips JR, Atiyeh HK, Tanner RS, et al (2015) Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques. Bioresour Technol 190:114–121CrossRefPubMedGoogle Scholar
  61. 61.
    Leigh JA, Mayer F, Wolfe RS (1981) Acetogenium kivui, a new thermophilic hydrogen-oxidizing acetogenic bacterium. Arch Microbiol 129:275–280. doi: 10.1007/BF00414697 CrossRefGoogle Scholar
  62. 62.
    Yang H, Drake HL (1990) Differential effects of sodium on hydrogen- and glucose-dependent growth of the acetogenic bacterium Acetogenium kivui. Appl Environ Microbiol 56:81–86PubMedCentralPubMedGoogle Scholar
  63. 63.
    Hess V, Poehlein A, Weghoff MC, et al (2014) A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui. BMC Genomics 15:1139. doi: 10.1186/1471-2164-15-1139 CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Allen TD, Caldwell ME, Lawson PA, et al (2010) Alkalibaculum bacchi gen. nov., sp. nov., a CO-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil. Int J Syst Evol Microbiol 60:2483–2489. doi: 10.1099/ijs.0.018507-0 CrossRefPubMedGoogle Scholar
  65. 65.
    Liu K, Atiyeh HK, Stevenson BS, et al (2014) Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols. Bioresour Technol 152:337–346. doi: 10.1016/j.biortech.2013.11.015 CrossRefPubMedGoogle Scholar
  66. 66.
    Liu K, Atiyeh HK, Stevenson BS, et al (2014) Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol. Bioresour Technol 151:69–77. doi: 10.1016/j.biortech.2013.10.059 CrossRefPubMedGoogle Scholar
  67. 67.
    Lorowitz WH, Bryant MP (1984) Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl Environ Microbiol 47:961–964PubMedCentralPubMedGoogle Scholar
  68. 68.
    Misoph M, Drake HL (1996) Effect of CO2 on the fermentation capacities of the acetogen Peptostreptococcus productus U-1. J Bacteriol 178:3140–3145CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Geerligs G, Aldrich HC, Harder W, et al (1987) Isolation and characterization of a carbon monoxide utilizing strain of the acetogen Peptostreptococcus productus. Arch Microbiol 148:305–313CrossRefGoogle Scholar
  70. 70.
    Ma K, Wohlfarth G, Diekert G (1991) Acetate formation from CO and CO2 by cell extracts of Peptostreptococcus productus (strain Marburg). Arch Microbiol 156:75–80CrossRefGoogle Scholar
  71. 71.
    Bott M, Thauer RK (1989) The active species of “CO2” formed by carbon monoxide dehydrogenase from Peptostreptococcus productus. Z Naturforsch C 44:392–396CrossRefPubMedGoogle Scholar
  72. 72.
    Freeman J, Bauer MP, Baines SD, et al (2010) The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev 23:529–549. doi: 10.1128/CMR.00082-09 CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Maier R, Pepper I, Gerba C (2009) Environmental microbiology. Academic Press, San DiegoCrossRefGoogle Scholar
  74. 74.
    Rieu-Lesme F, Dauga C, Fonty G, Dore J (1998) Isolation from the rumen of a new acetogenic bacterium phylogenetically closely related to Clostridium difficile. Anaerobe 4:89–94. doi: 10.1006/anae.1998.0153 CrossRefPubMedGoogle Scholar
  75. 75.
    Köpke M, Straub M, Dürre P (2013) Clostridium difficile is an autotrophic bacterial pathogen. PLoS One 8:e62157. doi: 10.1371/journal.pone.0062157 CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Russell MJ, Martin W (2004) The rocky roots of the acetyl-CoA pathway. Trends Biochem Sci 29:358–363. doi: 10.1016/j.tibs.2004.05.007 CrossRefPubMedGoogle Scholar
  77. 77.
    Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65:631–658CrossRefPubMedGoogle Scholar
  78. 78.
    Herrmann G, Jayamani E, Mai G, Buckel W (2008) Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J Bacteriol 190:784–791. doi: 10.1128/JB.01422-07 CrossRefPubMedGoogle Scholar
  79. 79.
    Buckel W, Thauer RK (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta 1827:94–113. doi: 10.1016/j.bbabio.2012.07.002 CrossRefPubMedGoogle Scholar
  80. 80.
    Schuchmann K, Müller V (2012) A bacterial electron-bifurcating hydrogenase. J Biol Chem 287:31165–31171. doi: 10.1074/jbc.M112.395038 CrossRefPubMedCentralPubMedGoogle Scholar
  81. 81.
    Wang S, Huang H, Kahnt J, et al (2013) A reversible electron-bifurcating ferredoxin- and NAD-dependent [FeFe]-hydrogenase (HydABC) in Moorella thermoacetica. J Bacteriol 195:1267–1275. doi: 10.1128/JB.02158-12 CrossRefPubMedCentralPubMedGoogle Scholar
  82. 82.
    Huang H, Wang S, Moll J, et al (2012) Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2. J Bacteriol 194:3689–3699. doi: 10.1128/JB.00385-12 CrossRefPubMedCentralPubMedGoogle Scholar
  83. 83.
    Bertsch J, Parthasarathy A, Buckel W, et al (2013) An electron-bifurcating caffeyl-CoA reductase. J Biol Chem 288:11304–11311. doi: 10.1074/jbc.M112.444919 CrossRefPubMedCentralPubMedGoogle Scholar
  84. 84.
    Wang S, Huang H, Kahnt J, et al (2013) An NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J Bacteriol 195:4373–4386. doi: 10.1128/JB.00678-13 CrossRefPubMedCentralPubMedGoogle Scholar
  85. 85.
    Weghoff MC, Bertsch J, Müller V (2015) A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ Microbiol 17:670–677. doi: 10.1111/1462-2920.12493 CrossRefPubMedGoogle Scholar
  86. 86.
    Dürre P (2015) Clostridium. In: Goldman E, Green LH (eds) Practical handbook of microbiology, 3rd edn. CRC Press, Boca Raton, pp. 467–485Google Scholar
  87. 87.
    Müller V, Imkamp F, Biegel E, et al (2008) Discovery of a ferredoxin:NAD+-oxidoreductase (Rnf) in Acetobacterium woodii: a novel potential coupling site in acetogens. Ann N Y Acad Sci 1125:137–146. doi: 10.1196/annals.1419.011 CrossRefPubMedGoogle Scholar
  88. 88.
    Wohlfarth G, Diekert G (1991) Thermodynamics of methylenetetrahydrofolate reduction to methyltetrahydrofolate and its implications for the energy metabolism of homoacetogenic bacteria. Arch Microbiol 155:378–381. doi: 10.1007/BF00243458 CrossRefGoogle Scholar
  89. 89.
    Mock J, Zheng Y, Mueller AP, et al (2015) Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. J Bacteriol 197(18):2965–2980. doi: 10.1128/JB.00399-15 CrossRefPubMedCentralPubMedGoogle Scholar
  90. 90.
    Purdy D, O’Keeffe TAT, Elmore M, et al (2002) Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier. Mol Microbiol 46:439–452. doi: 10.1046/j.1365-2958.2002.03134.x CrossRefPubMedGoogle Scholar
  91. 91.
    Heap JT, Pennington OJ, Cartman ST, et al (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70:452–464. doi: 10.1016/j.mimet.2007.05.021 CrossRefPubMedGoogle Scholar
  92. 92.
    Heap JT, Kuehne SA, Ehsaan M, et al (2010) The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Methods 80:49–55. doi: 10.1016/j.mimet.2009.10.018 CrossRefPubMedGoogle Scholar
  93. 93.
    Ueki T, Nevin KP, Woodard TL, et al (2014) Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. mBio 5:e01636–e01614. doi: 10.1128/mBio.01636-14 CrossRefPubMedCentralPubMedGoogle Scholar
  94. 94.
    Hartman AH, Liu HL, Melville SB (2011) Construction and characterization of a lactose-inducible promoter system for controlled gene expression in Clostridium perfringens. Appl Environ Microbiol 77:471–478. doi: 10.1128/Aem.01536-10 CrossRefPubMedGoogle Scholar
  95. 95.
    Al-Hinai MA, Fast AG, Papoutsakis ET (2012) Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration. Appl Environ Microbiol 78:8112–8121. doi: 10.1128/Aem.02214-12 CrossRefPubMedCentralPubMedGoogle Scholar
  96. 96.
    Banerjee A, Leang C, Ueki T, et al (2014) Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii. Appl Environ Microbiol 80:2410–2416. doi: 10.1128/Aem.03666-13 CrossRefPubMedCentralPubMedGoogle Scholar
  97. 97.
    Dilling S, Imkamp F, Schmidt S, et al (2007) Regulation of caffeate respiration in the acetogenic bacterium Acetobacterium woodii. Appl Environ Microbiol 73:3630–3636. doi: 10.1128/Aem.02060-06 CrossRefPubMedCentralPubMedGoogle Scholar
  98. 98.
    Imkamp F, Müller V (2002) Chemiosmotic energy conservation with Na+ as the coupling ion during hydrogen-dependent caffeate reduction by Acetobacterium woodii. J Bacteriol 184:1947–1951. doi: 10.1128/Jb.184.7.1947-1951.2002 CrossRefPubMedCentralPubMedGoogle Scholar
  99. 99.
    Strätz M, Sauer U, Kuhn A, et al (1994) Plasmid transfer into the homoacetogen Acetobacterium woodii by electroporation and conjugation. Appl Environ Microbiol 60:1033–1037PubMedCentralPubMedGoogle Scholar
  100. 100.
    Straub M, Demler M, Weuster-Botz D, et al (2014) Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii. J Biotechnol 178:67–72. doi: 10.1016/j.jbiotec.2014.03.005 CrossRefPubMedGoogle Scholar
  101. 101.
    Kita A, Iwasaki Y, Sakai S, et al (2013) Development of genetic transformation and heterologous expression system in carboxydotrophic thermophilic acetogen Moorella thermoacetica. J Biosci Bioeng 115:347–352. doi: 10.1016/j.jbiosc.2012.10.013 CrossRefPubMedGoogle Scholar
  102. 102.
    Tsukahara K, Kita A, Nakashimada Y, et al (2014) Genome-guided analysis of transformation efficiency and carbon dioxide assimilation by Moorella thermoacetica Y72. Gene 535:150–155. doi: 10.1016/j.gene.2013.11.045 CrossRefPubMedGoogle Scholar
  103. 103.
    Iwasaki Y, Kita A, Sakai S, et al (2013) Engineering of a functional thermostable kanamycin resistance marker for use in Moorella thermoacetica ATCC39073. FEMS Microbiol Lett 343:8–12. doi: 10.1111/1574-6968.12113 CrossRefPubMedGoogle Scholar
  104. 104.
    Heap JT, Ehsaan M, Cooksley CM, et al (2012) Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res 40:e59. doi: 10.1093/nar/gkr1321 CrossRefPubMedCentralPubMedGoogle Scholar
  105. 105.
    Tripathi SA, Olson DG, Argyros DA, et al (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 76:6591–6599. doi: 10.1128/Aem.01484-10 CrossRefPubMedCentralPubMedGoogle Scholar
  106. 106.
    Ng YK, Ehsaan M, Philip S, et al (2013) Expanding the repertoire of gene tools for precise manipulation of the Clostridium difficile genome: allelic exchange using pyrE alleles. PLoS One 8:e56051. doi: 10.1371/journal.pone.0056051 CrossRefPubMedCentralPubMedGoogle Scholar
  107. 107.
    Nevin KP, Hensley SA, Franks AE, et al (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77:2882–2886. doi: 10.1128/AEM.02642-10 CrossRefPubMedCentralPubMedGoogle Scholar
  108. 108.
    Rabaey K, Girguis P, Nielsen LK (2011) Metabolic and practical considerations on microbial electrosynthesis. Curr Opin Biotechnol 22:371–377. doi: 10.1016/j.copbio.2011.01.010 CrossRefPubMedGoogle Scholar
  109. 109.
    Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotechnol 24:385–390. doi: 10.1016/j.copbio.2013.02.012 CrossRefPubMedGoogle Scholar
  110. 110.
    Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31:1796–1807. doi: 10.1016/j.biotechadv.2013.10.001 CrossRefPubMedGoogle Scholar
  111. 111.
    Tremblay P-L, Zhang T (2015) Electrifying microbes for the production of chemicals. Front Microbiol 6:1–10. doi: 10.3389/fmicb.2015.00201 CrossRefGoogle Scholar
  112. 112.
    Fast AG, Schmidt ED, Jones SW, Tracy BP (2015) Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemicals production. Curr Opin Biotechnol 33:60–72. doi: 10.1016/j.copbio.2014.11.014 CrossRefPubMedGoogle Scholar
  113. 113.
    Simpson SD, Collet C, Tran PL et al (2009) Microbial alcohol production process. US Patent 8119378 B2Google Scholar
  114. 114.
    Perez JM, Richter H, Loftus SE, Angenent LT (2013) Biocatalytic reduction of short-chain carboxylic acids into their corresponding alcohols with syngas fermentation. Biotechnol Bioeng 110:1066–1077. doi: 10.1002/bit.24786 CrossRefPubMedGoogle Scholar
  115. 115.
    Xie B-T, Liu Z-Y, Tian L, et al (2014) Physiological response of Clostridium ljungdahlii DSM 13528 of ethanol production under different fermentation conditions. Bioresour Technol 177:302–307. doi: 10.1016/j.biortech.2014.11.101 CrossRefPubMedGoogle Scholar
  116. 116.
    Richter H, Loftus SE, Angenent LT (2013) Integrating syngas fermentation with the carboxylate platform and yeast fermentation to reduce medium cost and improve biofuel productivity. Environ Technol 34:1983–1994. doi: 10.1080/09593330.2013.826255 CrossRefPubMedGoogle Scholar
  117. 117.
    Müller V, Frerichs J (2013) Acetogenic bacteria. In: Encyclopedia of Life Sciences. doi:  10.1002/9780470015902.a0020086.pub2
  118. 118.
    Huhnke RL, Lewis RS, Tanner RS (2008) Isolation and characterization of novel clostridial species. Patent WO2008/028055Google Scholar
  119. 119.
    Sharak Genthner BR, Bryant MP (1987) Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl Environ Microbiol 53:471–476PubMedCentralPubMedGoogle Scholar
  120. 120.
    Baronofsky JJ, Schreurs WJ, Kashket ER (1984) Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermoaceticum. Appl Environ Microbiol 48:1134–1139PubMedCentralPubMedGoogle Scholar
  121. 121.
    Grethlein AJ, Worden RM, Jain MK, Datta R (1990) Continuous production of mixed alcohols and acids from carbon monoxide. Appl Biochem Biotechnol 24/25:875–884. doi: 10.1007/BF02920301 CrossRefGoogle Scholar
  122. 122.
    Phillips JR, Klasson KT, Claussen EC, Gaddy JL (1993) Biological production of ethanol from coal synthesis gas. Appl Biochem Biotechnol 39(40):559–571CrossRefGoogle Scholar
  123. 123.
    Gaddy JL, Claussen EC (1992) Clostridium ljungdahlii, an anaerobic ethanol and acetate producing microorganism. US Patent 5173429 AGoogle Scholar
  124. 124.
    Abubackar HN, Veiga MC, Kennes C (2015) Ethanol and acetic acid production from carbon monoxide in a Clostridium strain in batch and continuous gas-fed bioreactors. Int J Environ Res Public Health 12:1029–1043. doi: 10.3390/ijerph120101029 CrossRefPubMedGoogle Scholar
  125. 125.
    Richter H, Martin ME, Angenent LT (2013) A two-stage continuous fermentation system for conversion of syngas into ethanol. Energies 6:3987–4000. doi: 10.3390/en6083987 CrossRefGoogle Scholar
  126. 126.
    Guo Y, Xu J, Zhang Y, et al (2010) Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source. Bioresour Technol 101:8784–8789. doi: 10.1016/j.biortech.2010.06.072 CrossRefPubMedGoogle Scholar
  127. 127.
    Abubackar HN, Veiga MC, Kennes C (2012) Biological conversion of carbon monoxide to ethanol: effect of pH, gas pressure, reducing agent and yeast extract. Bioresour Technol 114:518–522. doi: 10.1016/j.biortech.2012.03.027 CrossRefPubMedGoogle Scholar
  128. 128.
    Kundiyana DK, Wilkins MR, Maddipati P, Huhnke RL (2011) Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by “Clostridium ragsdalei”. Bioresour Technol 102:5794–5799. doi: 10.1016/j.biortech.2011.02.032 CrossRefPubMedGoogle Scholar
  129. 129.
    Vega JL, Holmberg VL, Clausen EC, Gaddy JL (1988) Fermentation parameters of Peptostreptococcus productus on gaseous substrates (CO, H2/CO2). Arch Microbiol 151:65–70. doi: 10.1007/BF00444671 CrossRefGoogle Scholar
  130. 130.
    Hurst KM, Lewis RS (2010) Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation. Biochem Eng J 48:159–165. doi: 10.1016/j.bej.2009.09.004 CrossRefGoogle Scholar
  131. 131.
    Gaddy JL, Chen G (1998) Bioconversion of waste biomass to useful products. US Patent US 5821111 AGoogle Scholar
  132. 132.
    Klasson KT, Ackerson MD, Clausen EC, Gaddy JL (1991) Bioreactor design for synthesis gas fermentations. Fuel 70:605–614CrossRefGoogle Scholar
  133. 133.
    Skidmore BE, Baker RA, Banjade DR, et al (2013) Syngas fermentation to biofuels: effects of hydrogen partial pressure on hydrogenase efficiency. Biomass Bioenergy 55:156–162. doi: 10.1016/j.biombioe.2013.01.034 CrossRefGoogle Scholar
  134. 134.
    Demler M, Weuster-Botz D (2011) Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii. Biotechnol Bioeng 108:470–474. doi: 10.1002/bit.22935 CrossRefPubMedGoogle Scholar
  135. 135.
    Kantzow C, Mayer A, Weuster-Botz D (2015) Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention. J Biotechnol 212:11–18. doi: 10.1016/j.jbiotec.2015.07.020 CrossRefPubMedGoogle Scholar
  136. 136.
    Cotter JL, Chinn MS, Grunden AM (2009) Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas. Enzym Microb Technol 44:281–288. doi: 10.1016/j.enzmictec.2008.11.002 CrossRefGoogle Scholar
  137. 137.
    Simpson SD, Warner IL, Fung JMY, Köpke M (2010) Optimised fermentation media. Patent WO 2010064932 A1Google Scholar
  138. 138.
    Abubackar HN, Veiga MC, Kennes C (2015) Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Bioresour Technol 186:122–127. doi: 10.1016/j.biortech.2015.02.113 CrossRefPubMedGoogle Scholar
  139. 139.
    Babu BK, Atiyeh HK, Wilkins MR, Huhnke RL (2010) Effect of the reducing agent dithiothreitol on ethanol and acetic acid production by Clostridium strain P11 using simulated biomass-based syngas. Biol Eng Trans 3:19–35. doi: 10.13031/2013.35924 CrossRefGoogle Scholar
  140. 140.
    Panneerselvam A, Wilkins MR, Delorme MJM, et al (2010) Effects of various reducing agents on syngas fermentation by “Clostridium ragsdalei”. Biol Eng 2:135–144. doi: 10.13031/2013.34831 CrossRefGoogle Scholar
  141. 141.
    Kundiyana DK, Huhnke RL, Maddipati P, et al (2010) Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation. Bioresour Technol 101:9673–9680. doi: 10.1016/j.biortech.2010.07.054 CrossRefPubMedGoogle Scholar
  142. 142.
    Phillips JR, Hall A, Remondet NM et al (2011) Designing syngas fermentation medium for fuels and bulk chemicals production. Am Soc Agr Biol Eng Meeting Louisville, Kentucky. doi: 10.13031/2013.37400
  143. 143.
    Maddipati P, Atiyeh HK, Bellmer DD, Huhnke RL (2011) Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresour Technol 102:6494–6501. doi: 10.1016/j.biortech.2011.03.047 CrossRefPubMedGoogle Scholar
  144. 144.
    Saxena J, Tanner RS (2012) Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei. World J Microbiol Biotechnol 28:1553–1561. doi: 10.1007/s11274-011-0959-0 CrossRefPubMedGoogle Scholar
  145. 145.
    Sim JH, Kamaruddin AH (2008) Optimization of acetic acid production from synthesis gas by chemolithotrophic bacterium--Clostridium aceticum using statistical approach. Bioresour Technol 99:2724–2735. doi: 10.1016/j.biortech.2007.07.004 CrossRefPubMedGoogle Scholar
  146. 146.
    Lundie LL, Drake HL (1984) Development of a minimally defined medium for the acetogen Clostridium thermoaceticum. J Bacteriol 159:700–703PubMedCentralPubMedGoogle Scholar
  147. 147.
    Savage MD, Drake HL (1986) Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium. J Bacteriol 165:315–318CrossRefPubMedCentralPubMedGoogle Scholar
  148. 148.
    Ragsdale SW (2008) Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci 1125:129–136. doi: 10.1196/annals.1419.015 CrossRefPubMedCentralPubMedGoogle Scholar
  149. 149.
    Bender G, Pierce E, Hill J, et al (2011) Metal centers in the anaerobic microbial metabolism of CO and CO2. Metallomics 3:797–815. doi: 10.1039/c1mt00042j CrossRefPubMedCentralPubMedGoogle Scholar
  150. 150.
    Ragsdale SW, Kumar M (1996) Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase. Chem Rev 96:2515–2540CrossRefPubMedGoogle Scholar
  151. 151.
    Klasson KT, Ackerson MD, Clausen EC, Gaddy JL (1992) Bioconversion of synthesis gas into liquid or gaseous fuels. Enzym Microb Technol 14:602–608CrossRefGoogle Scholar
  152. 152.
    Sim JH, Kamaruddin AH, Long WS (2008) Biocatalytic conversion of CO to acetic acid by Clostridium aceticum—medium optimization using response surface methodology (RSM). Biochem Eng J 40:337–347. doi: 10.1016/j.bej.2008.01.006 CrossRefGoogle Scholar
  153. 153.
    Atiyeh HK, Hall A, Wilkins MR, Huhnke RL (2009) Effect of the reducing agent dithiothreitol on ethanol and acetic acid production by Clostridium strain P11 using simulated biomass-based syngas. 2009 Bioener Eng Conf, Seattle. BIO-097917. doi:  10.13031/2013.28893
  154. 154.
    Tirado-Acevedo O, Cotter J, Chinn M (2011) Influence of carbon source pre-adaptation on Clostridium ljungdahlii growth and product formation. J Bioprocess Biotechniq S2:001. doi: 10.4172/2155-9821.S2-001 CrossRefGoogle Scholar
  155. 155.
    Ramachandriya KD, Delorme MJ, Wilkins MR (2010) Heat shocking of Clostridium ragsdalei to promote sporulation and ethanol production. Biol Eng 2:115–131CrossRefGoogle Scholar
  156. 156.
    Bredwell MD, Telgenhoff MD, Barnard S, Worden RM (1997) Effect of surfactants on carbon monoxide fermentations by Butyribacterium methylotrophicum. Appl Biochem Biotechnol 63/65:637–647. doi: 10.1007/BF02920462 CrossRefGoogle Scholar
  157. 157.
    Zhu H, Shanks BH, Heindel TJ (2008) Enhancing CO−water mass transfer by functionalized MCM41 nanoparticles. Ind Eng Chem Res 47:7881–7887CrossRefGoogle Scholar
  158. 158.
    Kim YK, Park SE, Lee H, Yun JY (2014) Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles. Bioresour Technol 159:446–450. doi: 10.1016/j.biortech.2014.03.046 CrossRefPubMedGoogle Scholar
  159. 159.
    Bredwell MD, Srivastava P, Wordon RM (1999) Reactor design issues for synthesis-gas fermentations. Biotechnol Prog 15:834–844. doi: 10.1021/bp990108m CrossRefPubMedGoogle Scholar
  160. 160.
    Ungerman AJ, Heindel TJ (2007) Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations. Biotechnol Prog 23:613–620. doi: 10.1021/bp060311z CrossRefPubMedGoogle Scholar
  161. 161.
    Orgill JJ, Atiyeh HK, Devarapalli M, et al (2013) A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors. Bioresour Technol 133:340–346CrossRefPubMedGoogle Scholar
  162. 162.
    Kundiyana DK, Huhnke RL, Wilkins MR (2010) Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations. J Biosci Bioeng 109:492–498. doi: 10.1016/j.jbiosc.2009.10.022 CrossRefPubMedCentralPubMedGoogle Scholar
  163. 163.
    Xu D, Tree DR, Lewis RS (2011) The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenergy 35:2690–2696CrossRefGoogle Scholar
  164. 164.
    Griffin DW, Schultz MA, Irving E, Road P (2012) Fuel and chemical products from biomass syngas: a comparison of gas fermentation to thermochemical conversion routes. Environ Prog Sustain Energy 31:219–224CrossRefGoogle Scholar
  165. 165.
    Vega JL, Klasson KT, Claussen EC, Gaddy JL (1990) Sulphur gas tolerance and toxicity of CO-utilizing and methanogenic bacteria. Appl Biochem Biotechnol 24(25):329–340CrossRefGoogle Scholar
  166. 166.
    Smith KD, Klasson KT, Ackerson MD, et al (1991) COS degradation by selected CO-utilizing bacteria. Appl Biochem Biotechnol 28-29:787–796CrossRefPubMedGoogle Scholar
  167. 167.
    Grethlein AJ, Soni BK, Worden RM, Jain MK (1992) Influence of hydrogen sulfide on the growth and metabolism of Butyribacterium methylotrophicum and Clostridium acetobutylicum. Appl Biochem Biotechnol 34/35:233–246. doi: 10.1007/BF02920548 CrossRefGoogle Scholar
  168. 168.
    Datar RP, Shenkman RM, Cateni BG, et al (2004) Fermentation of biomass-generated producer gas to ethanol. Biotechnol Bioeng 86:587–594. doi: 10.1002/bit.20071 CrossRefPubMedGoogle Scholar
  169. 169.
    Ahmed A, Cateni BG, Huhnke RL, Lewis RS (2006) Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T. Biomass Bioenergy 30:665–672. doi: 10.1016/j.biombioe.2006.01.007 CrossRefGoogle Scholar
  170. 170.
    Krasna AI, Rittenberg D (1954) The inhibition of hydrogenase by nitric oxide. Proc Natl Acad Sci U S A 40:225–227CrossRefPubMedCentralPubMedGoogle Scholar
  171. 171.
    Smith LA, Hill S, Yates MG (1976) Inhibition by acetylene of conventional hydrogenase in nitrogen-fixing bacteria. Nature 262:209–210CrossRefPubMedGoogle Scholar
  172. 172.
    Wang S, Huang H, Moll J, Thauer RK (2010) NADP+ reduction with reduced ferredoxin and NADP+ reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri. J Bacteriol 192:5115–5123. doi: 10.1128/JB.00612-10 CrossRefPubMedCentralPubMedGoogle Scholar
  173. 173.
  174. 174.
  175. 175.
  176. 176.
  177. 177.
  178. 178.
  179. 179.
  180. 180.
  181. 181.
  182. 182.
  183. 183.
  184. 184.
  185. 185.
    Köpke M, Havill A (2014) LanzaTech’s route to bio-butadiene. Catal Rev 27:7–12Google Scholar
  186. 186.
  187. 187.
  188. 188.
  189. 189.
  190. 190.
  191. 191.
    Kircher M (2015) Sustainability of biofuels and renewable chemicals production from biomass. Curr Opin Chem Biol 29:26–31. doi: 10.1016/j.cbpa.2015.07.010 CrossRefPubMedGoogle Scholar
  192. 192.

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Sashini De Tissera
    • 1
  • Michael Köpke
    • 1
  • Sean D. Simpson
    • 1
  • Christopher Humphreys
    • 2
  • Nigel P. Minton
    • 2
  • Peter Dürre
    • 3
    Email author
  1. 1.LanzaTechSkokieUSA
  2. 2.BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular SciencesUniversity of Nottingham, University ParkNottinghamUK
  3. 3.Institute of Microbiology and Biotechnology, University of UlmUlmGermany

Personalised recommendations