Advertisement

Microbial Electrosynthesis I: Pure and Defined Mixed Culture Engineering

  • Miriam A. RosenbaumEmail author
  • Carola Berger
  • Simone Schmitz
  • Ronny Uhlig
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 167)

Abstract

In the past 6 years, microbial bioelectrochemistry has strongly increased in attraction and audience when expanding from mainly environmental technology applications to biotechnology. In particular, the promise to combine electrosynthesis with microbial catalysis opens attractive approaches for new sustainable redox-cofactor recycling, redox-balancing, or even biosynthesis processes. Much of this promise is still not fulfilled, but it has opened and fueled entirely new research areas in this discipline. Activities in designing, tailoring, and applying specific microbial catalysts as pure or defined co-cultures for defined target bioproductions are greatly accelerating. This chapter gives an overview of the current progress as well as the emerging trends in molecular and ecological engineering of defined microbial biocatalysts to prepare them for evolving microbial electrosynthesis processes. In addition, the multitude of microbial electrosynthetic processes with complex undefined mixed cultures is covered by ter Heijne et al. (Adv Biochem Eng Biotechnol.  https://doi.org/10.1007/10_2017_15, 2017).

Graphical Abstract

Keywords

Anodic and cathodic bioproductions Defined mixed cultures Metabolic engineering Microbial electrosynthesis Pure cultures 

References

  1. 1.
    Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1(2):e00103–e00110Google Scholar
  2. 2.
    Simonte F et al (2017) Extracellular electron transfer and biosensors. Adv Biochem Eng Biotechnol.  https://doi.org/10.1007/10_2017_34 Google Scholar
  3. 3.
    Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77(9):2882–2886PubMedPubMedCentralGoogle Scholar
  4. 4.
    Rosenbaum MA, Henrich AW (2014) Engineering microbial electrocatalysis for chemical and fuel production. Curr Opin Biotechnol 29:93–98PubMedGoogle Scholar
  5. 5.
    ter Heijne A et al (2017) Mixed culture biocathodes for production of hydrogen, methane and carboxylates. Adv Biochem Eng Biotechnol.  https://doi.org/10.1007/10_2017_15 Google Scholar
  6. 6.
    Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA (2010) Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. mBio 1(5):e00190–10PubMedPubMedCentralGoogle Scholar
  7. 7.
    Gescher JS, Cordova CD, Spormann AM (2008) Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases. Mol Microbiol 68(3):706–719PubMedGoogle Scholar
  8. 8.
    Goldbeck CP, Jensen HM, TerAvest MA, Beedle N, Appling Y, Hepler M, Cambray G, Mutalik V, Angenent LT, Ajo-Franklin CM (2013) Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli. ACS Synth Biol 2(3):150–159PubMedGoogle Scholar
  9. 9.
    Jensen HM, Albers AE, Malley KR, Londer YY, Cohen BE, Helms BA, Weigele P, Groves JT, Ajo-Franklin CM (2010) Engineering of a synthetic electron conduit in living cells. Proc Natl Acad Sci U S A 107(45):19213–19218PubMedPubMedCentralGoogle Scholar
  10. 10.
    Pitts KE, Dobbin PS, Reyes-Ramirez F, Thomson AJ, Richardson DJ, Seward HE (2003) Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: expression in Escherichia coli confers the ability to reduce soluble Fe(III) chelates. J Biol Chem 278(30):27758–27765PubMedGoogle Scholar
  11. 11.
    Schuetz B, Schicklberger M, Kuermann J, Spormann AM, Gescher J (2009) Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. Appl Environ Microbiol 75(24):7789–7796PubMedPubMedCentralGoogle Scholar
  12. 12.
    Sturm-Richter K, Golitsch F, Sturm G, Kipf E, Dittrich A, Beblawy S, Kerzenmacher S, Gescher J (2015) Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells. Bioresour Technol 186:89–96PubMedGoogle Scholar
  13. 13.
    TerAvest MA, Zajdel TJ, Ajo-Franklin CM (2014) The Mtr pathway of Shewanella oneidensis MR-1 couples substrate utilization to current production in Escherichia coli. ChemElectroChem 1(11):1874–1879Google Scholar
  14. 14.
    Loeschcke A, Thies S (2015) Pseudomonas putida-a versatile host for the production of natural products. Appl Microbiol Biotechnol 99(15):6197–6214PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hintermayer S, Yu S, Krömer JO, Weuster-Botz D (2016) Anodic respiration of Pseudomonas putida KT2440 in a stirred-tank bioreactor. Biochem Eng J 115:1–13Google Scholar
  16. 16.
    Lai B, Yu S, Bernhardt PV, Rabaey K, Virdis B, Krömer JO (2016) Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system. Biotechnol Biofuels 9:39PubMedPubMedCentralGoogle Scholar
  17. 17.
    Schmitz S, Nies S, Wierckx N, Blank LM, Rosenbaum MA (2015) Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440. Front Microbiol 6:284PubMedPubMedCentralGoogle Scholar
  18. 18.
    Venkataraman A, Rosenbaum M, Arends JBA, Halitsche R, Angenent LT (2010) Quorum sensing regulates electric current generation of Pseudomonas aeruginosa PA14 in bioelectrochemical systems. Electrochem Commun 12(3):459–462Google Scholar
  19. 19.
    Lohner ST, Deutzmann JS, Logan BE, Leigh J, Spormann AM (2014) Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. ISME J 8(8):1673–1681PubMedPubMedCentralGoogle Scholar
  20. 20.
    Ammam F, Tremblay PL, Lizak DM, Zhang T (2016) Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata. Biotechnol Biofuels 9:163PubMedPubMedCentralGoogle Scholar
  21. 21.
    Giddings CG, Nevin KP, Woodward T, Lovley DR, Butler CS (2015) Simplifying microbial electrosynthesis reactor design. Front Microbiol 6:468PubMedPubMedCentralGoogle Scholar
  22. 22.
    Li H, Opgenorth PH, Wernick DG, Rogers S, TY W, Higashide W, Malati P, Huo YX, Cho KM, Liao JC (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335:1596PubMedGoogle Scholar
  23. 23.
    Grousseau E, Lu J, Gorret N, Guillouet SE, Sinskey AJ (2014) Isopropanol production with engineered Cupriavidus necator as bioproduction platform. Appl Microbiol Biotechnol 98:4277–4290PubMedGoogle Scholar
  24. 24.
    Torella JP, Gagliardi CJ, Chen JS, Bediako DK, Colon B, Way JC, Silver PA, Nocera DG (2015) Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc Natl Acad Sci U S A 112(8):2337–2342PubMedPubMedCentralGoogle Scholar
  25. 25.
    Chandrayan SK, McTernan PM, Hopkins RC, Sun JS, Jenney FE, Adams MWW (2012) Engineering hyperthermophilic archaeon Pyrococcus furiosus to overproduce its cytoplasmic [NiFe]-hydrogenase. J Biol Chem 287(5):3257–3264PubMedGoogle Scholar
  26. 26.
    Keller MW, Schut GJ, Lipscomb GL, Menon AL, Iwuchukwu IJ, Leuko TT, Thorgersen MP, Nixon WJ, Hawkins AS, Kelly RM, Adams MWW (2013) Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc Natl Acad Sci U S A 110(15):5840–5845PubMedPubMedCentralGoogle Scholar
  27. 27.
    Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103(30):11358–11363PubMedPubMedCentralGoogle Scholar
  28. 28.
    Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6(6):596–604PubMedGoogle Scholar
  29. 29.
    Deutzmann JS, Sahin M, Spormann AM (2015) Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio 6(2):e00496–15PubMedPubMedCentralGoogle Scholar
  30. 30.
    Höffner K, Barton PI (2014) Design of microbial consortia for industrial biotechnology. Comput Aided Chem Eng 34:65–74Google Scholar
  31. 31.
    Bernstein HC, Carlson RP (2012) Microbial consortia engineering for cellular factories: in vitro to in silico systems. Comput Struct Biotechnol J 3(4):1–8Google Scholar
  32. 32.
    Yang Y, Wu Y, Hu Y, Cao Y, Poh CL, Cao B, Song H (2015) Engineering electrode-attached microbial consortia for high-performance xylose-fed microbial fuel cell. ACS Catal 5(11):6937–6945Google Scholar
  33. 33.
    Song H, Ding M-Z, Jia X-Q, Ma Q, Yuan Y-J (2014) Synthetic microbial consortia: from systematic analysis to construction and applications. Chem Soc Rev 43(20):6954–6981PubMedGoogle Scholar
  34. 34.
    Deutzmann JS, Spormann AM (2017) Enhanced microbial electrosynthesis by using defined co-cultures. ISME J 11(3):704–714PubMedGoogle Scholar
  35. 35.
    Tao L, Wang H, Xie M, Thia L, Chen WN, Wang X (2015) Improving mediated electron transport in anodic bioelectrocatalysis. Chem Commun 51(61):12170–12173Google Scholar
  36. 36.
    Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105(10):3968–3973PubMedPubMedCentralGoogle Scholar
  37. 37.
    Tokunou Y, Hashimoto K, Okamoto A (2016) Acceleration of extracellular electron transfer by alternative redox-active molecules to riboflavin for outer-membrane cytochrome c of Shewanella oneidensis MR-1. J Phys Chem C 120(29):16168–16173Google Scholar
  38. 38.
    Liu T, YY Y, Chen T, Chen WN (2016) A synthetic microbial consortium of Shewanella and Bacillus for enhanced generation of bioelectricity. Biotechnol Bioeng 114(3):526–532PubMedGoogle Scholar
  39. 39.
    Rodionov DA, Yang C, Li X, Rodionova IA, Wang Y, Obraztsova AY, Zagnitko OP, Overbeek R, Romine MF, Reed S (2010) Genomic encyclopedia of sugar utilization pathways in the Shewanella genus. BMC Genomics 11(1):1Google Scholar
  40. 40.
    Kim C, Song YE, Lee CR, Jeon B-H, Kim JR (2016) Glycerol-fed microbial fuel cell with a co-culture of Shewanella oneidensis MR-1 and Klebsiella pneumonae J2B. J Ind Microbiol Biotechnol 43(10):1397–1403PubMedGoogle Scholar
  41. 41.
    Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour Technol 102(1):324–333PubMedGoogle Scholar
  42. 42.
    Wang VB, Chua S-L, Cai Z, Sivakumar K, Zhang Q, Kjelleberg S, Cao B, Loo SCJ, Yang L (2014) A stable synergistic microbial consortium for simultaneous azo dye removal and bioelectricity generation. Bioresour Technol 155:71–76PubMedGoogle Scholar
  43. 43.
    Caccavo F, Lonergan DJ, Lovley DR, Davis M, Stolz JF, Mcinerney MJ (1994) Geobacter sulfurreducens sp-nov, a hydrogen-oxidizing and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60(10):3752–3759PubMedPubMedCentralGoogle Scholar
  44. 44.
    Qu Y, Feng Y, Wang X, Logan BE (2012) Use of a coculture to enable current production by Geobacter sulfurreducens. Appl Environ Microbiol 78(9):3484–3487PubMedPubMedCentralGoogle Scholar
  45. 45.
    Speers AM, Young JM, Reguera G (2014) Fermentation of glycerol into ethanol in a microbial electrolysis cell driven by a customized consortium. Environ Sci Technol 48(11):6350–6358PubMedGoogle Scholar
  46. 46.
    Speers AM, Reguera G (2012) Consolidated bioprocessing of AFEX-pretreated corn stover to ethanol and hydrogen in a microbial electrolysis cell. Environ Sci Technol 46(14):7875–7881PubMedGoogle Scholar
  47. 47.
    Ren Z, Ward TE, Regan JM (2007) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41(13):4781–4786PubMedGoogle Scholar
  48. 48.
    Venkataraman A, Rosenbaum MA, Perkins SD, Werner JJ, Angenent LT (2011) Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems. Energy Environ Sci 4(11):4550Google Scholar
  49. 49.
    Read ST, Dutta P, Bond PL, Keller J, Rabaey K (2010) Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbiol 10(1):1Google Scholar
  50. 50.
    Harnisch F, Rosa LF, Kracke F, Virdis B, Krömer JO (2015) Electrifying white biotechnology: engineering and economic potential of electricity-driven bio-production. ChemSusChem 8(5):758–766PubMedGoogle Scholar
  51. 51.
    Escapa A, Mateos R, Martínez E, Blanes J (2016) Microbial electrolysis cells: an emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renew Sust Energ Rev 55:942–956Google Scholar
  52. 52.
    Moscoviz R, Toledo-Alarcón J, Trably E, Bernet N (2016) Electro-fermentation: how to drive fermentation using electrochemical systems. Trends Biotechnol 34(11):856–865PubMedGoogle Scholar
  53. 53.
    Tremblay P-L, Zhang T (2015) Electrifying microbes for the production of chemicals. Front Microbiol 6:201PubMedPubMedCentralGoogle Scholar
  54. 54.
    Kiely PD, Regan JM, Logan BE (2011) The electric picnic: synergistic requirements for exoelectrogenic microbial communities. Curr Opin Biotechnol 22(3):378–385PubMedGoogle Scholar
  55. 55.
    Shong J, Diaz MRJ, Collins CH (2012) Towards synthetic microbial consortia for bioprocessing. Curr Opin Biotechnol 23(5):798–802PubMedGoogle Scholar
  56. 56.
    Miceli JF, Garcia-Peña I, Parameswaran P, Torres CI, Krajmalnik-Brown R (2014) Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell. Bioresour Technol 169:169–174PubMedPubMedCentralGoogle Scholar
  57. 57.
    Sun D, Call DF, Kiely PD, Wang A, Logan BE (2012) Syntrophic interactions improve power production in formic acid fed MFCs operated with set anode potentials or fixed resistances. Biotechnol Bioeng 109(2):405–414PubMedGoogle Scholar
  58. 58.
    Torres CI, Krajmalnik-Brown R, Parameswaran P, Marcus AK, Wanger G, Gorby YA, Rittmann BE (2009) Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Environ Sci Technol 43(24):9519–9524PubMedGoogle Scholar
  59. 59.
    Kadier A, Simayi Y, Abdeshahian P, Azman NF, Chandrasekhar K, Kalil MS (2016) A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alex Eng J 55(1):427–443Google Scholar
  60. 60.
    Baudler A, Schmidt I, Langner M, Greiner A, Schröder U (2015) Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ Sci 8(7):2048–2055Google Scholar
  61. 61.
    Gimkiewicz C, Hunger S, Harnisch F (2016) Evaluating the feasibility of microbial electrosynthesis based on Gluconobacter oxydans. ChemElectroChem 3(9):1337–1346Google Scholar
  62. 62.
    Minty JJ, Singer ME, Scholz SA, Bae CH, Ahn JH, Foster CE, Liao JC, Lin XN (2013) Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci U S A 110(36):14592–14597PubMedPubMedCentralGoogle Scholar
  63. 63.
    Schievano A, Sciarria TP, Vanbroekhoven K, De Wever H, Puig S, Andersen SJ, Rabaey K, Pant D (2016) Electro-fermentation–merging electrochemistry with fermentation in industrial applications. Trends Biotechnol 34(11):866–878PubMedGoogle Scholar
  64. 64.
    Goers L, Freemont P, Polizzi KM (2014) Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface 11(96):20140065PubMedPubMedCentralGoogle Scholar
  65. 65.
    Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239PubMedPubMedCentralGoogle Scholar
  66. 66.
    Kracke F, Krömer JO (2014) Identifying target processes for microbial electrosynthesis by elementary mode analysis. BMC Bioinf 15:410Google Scholar
  67. 67.
    Choi O, Kim T, Woo HM, Um Y (2014) Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum. Sci Rep 4:6961PubMedPubMedCentralGoogle Scholar
  68. 68.
    Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Kopke M (2016) Gas fermentation-a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front Microbiol 7:694PubMedPubMedCentralGoogle Scholar
  69. 69.
    Zengler K, Palsson BO (2012) A road map for the development of community systems (CoSy) biology. Nat Rev Microbiol 10(5):366–372PubMedGoogle Scholar
  70. 70.
    Johns NI, Blazejewski T, Gomes AL, Wang HH (2016) Principles for designing synthetic microbial communities. Curr Opin Microbiol 31:146–153PubMedPubMedCentralGoogle Scholar
  71. 71.
    Klitgord N, Segre D (2010) Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 6(11):e1001002PubMedPubMedCentralGoogle Scholar
  72. 72.
    Zampieri M, Sauer U (2016) Model-based media selection to minimize the cost of metabolic cooperation in microbial ecosystems. Bioinformatics 32(11):1733–1739PubMedGoogle Scholar
  73. 73.
    Pandit AV, Mahadevan R (2011) In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals. Microb Cell Factories 10(1):1Google Scholar
  74. 74.
    Kouzuma A, Kato S, Watanabe K (2015) Microbial interspecies interactions: recent findings in syntrophic consortia. Front Microbiol 6:477PubMedPubMedCentralGoogle Scholar
  75. 75.
    Shrestha PM, Rotaru AE (2014) Plugging in or going wireless: strategies for interspecies electron transfer. Front Microbiol 5:237PubMedPubMedCentralGoogle Scholar
  76. 76.
    Kobayashi H, Saito N, Fu Q, Kawaguchi H, Vilcaez J, Wakayama T, Maeda H, Sato K (2013) Bio-electrochemical property and phylogenetic diversity of microbial communities associated with bioelectrodes of an electromethanogenic reactor. J Biosci Bioeng 116(1):114–117PubMedGoogle Scholar
  77. 77.
    Rotaru A-E, Shrestha PM, Liu F, Ueki T, Nevin K, Summers ZM, Lovley DR (2012) Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens. Appl Environ Microbiol 78(21):7645–7651PubMedPubMedCentralGoogle Scholar
  78. 78.
    Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330(6009):1413–1415PubMedGoogle Scholar
  79. 79.
    Chuang JS, Rivoire O, Leibler S (2010) Cooperation and Hamilton's rule in a simple synthetic microbial system. Mol Syst Biol 6(1):398PubMedPubMedCentralGoogle Scholar
  80. 80.
    Wintermute EH, Silver PA (2010) Emergent cooperation in microbial metabolism. Mol Syst Biol 6(1):407PubMedPubMedCentralGoogle Scholar
  81. 81.
    Clinton A, Rumbaugh KP (2015) Interspecies and interkingdom signaling via Quorum signals. Isr J Chem 56(5):265–272Google Scholar
  82. 82.
    Rabaey K, Rozendal RA (2010) Microbial electrosynthesis — revisiting the electrical route for microbial production. Nat Rev Microbiol 8(10):706–716PubMedGoogle Scholar
  83. 83.
    Diender M, Stams AJ, Sousa DZ (2016) Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas. Biotechnol Biofuels 9(1):1Google Scholar
  84. 84.
    Xiao Z, Awata T, Zhang D, Katayama A (2016) Denitrification by Pseudomonas stutzeri coupled with CO2 reduction by Sporomusa ovata with hydrogen as an electron donor assisted by solid-phase humin. J Biosci Bioeng 122(3):307–313PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Miriam A. Rosenbaum
    • 1
    Email author
  • Carola Berger
    • 1
  • Simone Schmitz
    • 1
  • Ronny Uhlig
    • 1
  1. 1.Institute of Applied Microbiology – iAMB, Aachen Biology and Biotechnology – ABBt, RWTH Aachen UniversityAachenGermany

Personalised recommendations