Advertisement

Engineering of Microbial Electrodes

  • Sven KerzenmacherEmail author
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 167)

Abstract

This chapter provides an overview of the current state-of-the-art in the engineering of microbial electrodes for application in microbial electrosynthesis. First, important functional aspects and requirements of basic materials for microbial electrodes are introduced, including the meaningful benchmarking of electrode performance, a comparison of electrode materials, and methods to improve microbe–electrode interaction. Suitable current collectors and composite materials that combine different functionalities are also discussed. Subsequently, the chapter focuses on the design of macroscopic electrode structures. Aspects such as mass transfer and electrode topology are touched upon, and a comparison of the performance of microbial electrodes relevant for practical application is provided. The chapter closes with an overall conclusion and outlook, highlighting the future prospects and challenges for the engineering of microbial electrodes toward practical application in the field of microbial electrosynthesis.

Graphical Abstract

Keywords

Anode Bioelectrochemical systems Cathode Materials Microbial electrosynthesis Microbial fuel cell 

Abbreviations

Ag/AgCl

The silver/silver chloride reference electrode, approx. + 199 mV vs SHE

AQDS

Anthraquinone-2,6-disulfonic disodium salt, a redox mediator

CB

Carbon black

CNTs

Carbon nanotubes

CP

Carbon paper

DET

Direct electron transfer

ECSA

Electrochemical accessible surface area

GNR

Graphene nanoribbons

ITO

Indium tin oxide, a transparent electronically conductive material

MEC

Microbial electrolysis cell

MET

Mediated electron transfer

MFC

Microbial fuel cell

PANI

Polyaniline

PPy

Polypyrrole

PTFE

Polytetrafluoroethylene

Ra

Roughness average, arithmetic average of the absolute values of height deviations from the mean line

RΩ

Ohmic resistance, for example, of an electrode material

SCE

The saturated calomel reference electrode, approx. + 244 mV vs SHE

SHE

The standard hydrogen reference electrode

References

  1. 1.
    Guo W et al. (2017) Synergizing 13C metabolic flux analysis and metabolic engineering for biochemical production. Adv Biochem Eng Biotechnol.  https://doi.org/10.1007/10_2017_2 Google Scholar
  2. 2.
    Kim BH, Ikeda T, Park HS, Kim HJ, Hyun MS, Kano K, Takagi K, Tatsumi H (1999) Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol Tech 13(7):475–478Google Scholar
  3. 3.
    Kim BH, Kim HJ, Hyun MS, Park DH (1999) Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9(2):127–131Google Scholar
  4. 4.
    Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1548–1555PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295(5554):483–485PubMedGoogle Scholar
  6. 6.
    Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38(21):5809–5814PubMedGoogle Scholar
  7. 7.
    Borole AP, Reguera G, Ringeisen B, Wang Z, Feng Y, Kim BH (2011) Electroactive biofilms: current status and future research needs. Energ Environ Sci 4(12):4813Google Scholar
  8. 8.
    Sydow A, Krieg T, Mayer F, Schrader J, Holtmann D (2014) Electroactive bacteria-molecular mechanisms and genetic tools. Appl Microbiol Biotechnol 98:8481–8495PubMedGoogle Scholar
  9. 9.
    Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond B 84(571):260–276Google Scholar
  10. 10.
    Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol 30(2):145–152Google Scholar
  11. 11.
    Logan BE (2008) Microbial fuel cells. Wiley, Hoboken, NJGoogle Scholar
  12. 12.
    Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105(10):3968–3973PubMedPubMedCentralGoogle Scholar
  13. 13.
    Chang IS, Moon HS, Bretschger O, Jang JK, Park HI, Nealson KH, Kim BH (2006) Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J Microbiol Biotechnol 16(2):163–177Google Scholar
  14. 14.
    Liu Y, Kim H, Franklin RR, Bond DR (2011) Linking spectral and electrochemical analysis to monitor c-type cytochrome redox status in living Geobacter sulfurreducens biofilms. ChemPhysChem 12(12):2235–2241PubMedGoogle Scholar
  15. 15.
    Millo D, Harnisch F, Patil SA, Ly HK, Schröder U, Hildebrandt P (2011) In situ spectroelectrochemical investigation of electrocatalytic microbial biofilms by surface-enhanced resonance raman spectroscopy. Angew Chem Int Ed 50(11):2625–2627Google Scholar
  16. 16.
    Babauta JT, Beasley CA, Beyenal H (2014) Investigation of electron transfer by geobacter sulfurreducens biofilms by using an electrochemical quartz crystal microbalance. ChemElectroChem 1(11):2007–2016PubMedPubMedCentralGoogle Scholar
  17. 17.
    Guo K, Prévoteau A, Patil SA, Rabaey K (2015) Engineering electrodes for microbial electrocatalysis. Curr Opin Biotechnol 33:149–156PubMedGoogle Scholar
  18. 18.
    Rouleau S et al. (2017) RNA G-Quadruplexes as key motifs of the transcriptome. Adv Biochem Eng Biotechnol.  https://doi.org/10.1007/10_2017_8 Google Scholar
  19. 19.
    Pocaznoi D, Calmet A, Etcheverry L, Erable B, Bergel A (2012) Stainless steel is a promising electrode material for anodes of microbial fuel cells. Energy Environ Sci 5(11):9645–9652Google Scholar
  20. 20.
    Ketep SF, Bergel A, Calmet A, Erable B (2014) Stainless steel foam increases the current produced by microbial bioanodes in bioelectrochemical systems. Energy Environ Sci 7(5):1633–1637Google Scholar
  21. 21.
    Zheng S, Yang F, Chen S, Liu L, Xiong Q, Yu T, Zhao F, Schröder U, Hou H (2015) Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. J Power Sources 284:252–257Google Scholar
  22. 22.
    Baudler A, Schmidt I, Langner M, Greiner A, Schroder U (2015) Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ Sci 8:2048–2055Google Scholar
  23. 23.
    Baudler A, Langner M, Rohr C, Greiner A, Schroder U (2017) Metal-polymer hybrid architectures as novel anode platform for microbial electrochemical technologies. ChemSusChem 10(1):253–257PubMedGoogle Scholar
  24. 24.
    Chen SL, Hou HQ, Harnisch F, Patil SA, Carmona-Martinez AA, Agarwal S, Zhang YY, Sinha-Ray S, Yarin AL, Greiner A, Schröder U (2011) Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells. Energy Environ Sci 4(4):1417–1421Google Scholar
  25. 25.
    Chen S, He G, Liu Q, Harnisch F, Zhou Y, Chen Y, Hanif M, Wang S, Peng X, Hou H, Schröder U (2012) Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis. Energy Environ Sci 5(12):9769Google Scholar
  26. 26.
    Kipf E, Zengerle R, Gescher J, Kerzenmacher S (2014) How does the choice of anode material influence electrical performance? A comparison of two microbial fuel cell model organisms. ChemElectroChem 1(11):1849–1853Google Scholar
  27. 27.
    Lanas V, Logan BE (2013) Evaluation of multi-brush anode systems in microbial fuel cells. Bioresour Technol 148:379–385PubMedGoogle Scholar
  28. 28.
    Massazza D, Parra R, Busalmen JP, Romeo HE (2015) New ceramic electrodes allow reaching the target current density in bioelectrochemical systems. Energy Environ Sci 8(9):2707–2712Google Scholar
  29. 29.
    Guo K, Donose BC, Soeriyadi AH, Prévoteau A, Patil SA, Freguia S, Gooding JJ, Rabaey K (2014) Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems. Environ Sci Technol 48(12):7151–7156PubMedGoogle Scholar
  30. 30.
    Deeke A, Sleutels THJA, Donkers TFW, Hamelers HVM, Buisman CJN, ter Heijne A (2015) Fluidized capacitive bioanode as a novel reactor concept for the microbial fuel cell. Environ Sci Technol 49(3):1929–1935PubMedGoogle Scholar
  31. 31.
    Borsje C, Liu D, Sleutels TH, Buisman CJ, ter Heijne A (2016) Performance of single carbon granules as perspective for larger scale capacitive bioanodes. J Power Sources 325:690–696Google Scholar
  32. 32.
    Danzer J, Kerzenmacher S (2014) Brennstoffzelle zur Filtration von Flüssigkeiten sowie Verwendung (German Patent DE 10 2013 012 663 B3)Google Scholar
  33. 33.
    Danzer J, Kerzenmacher S (2014) Filtration-active fuel cell (US Patent Application 2016/0190627 A1)Google Scholar
  34. 34.
    Kipf E, Koch J, Geiger B, Erben J, Richter K, Gescher J, Zengerle R, Kerzenmacher S (2013) Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Bioresour Technol 146(0):386–392PubMedGoogle Scholar
  35. 35.
    Sanchez D, Jacobs D, Gregory K, Huang J, Hu Y, Vidic R, Yun M (2015) Changes in carbon electrode morphology affect microbial fuel cell performance with Shewanella oneidensis MR-1. Energies 8(3):1817–1829Google Scholar
  36. 36.
    Zhao Y, Nakanishi S, Watanabe K, Hashimoto K (2011) Hydroxylated and aminated polyaniline nanowire networks for improving anode performance in microbial fuel cells. J Biosci Bioeng 112(1):63–66PubMedGoogle Scholar
  37. 37.
    Feng C, Le M, Li F, Mai H, Lang X, Fan S (2010) A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosens Bioelectron 25(6):1516–1520PubMedGoogle Scholar
  38. 38.
    Mehdinia A, Ziaei E, Jabbari A (2014) Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim Acta 130(1):512–518Google Scholar
  39. 39.
    Wang Y, Li B, Zeng L, Cui D, Xiang X, Li W (2013) Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells. Biosens Bioelectron 41(0):582–588PubMedGoogle Scholar
  40. 40.
    Brown RK, Harnisch F, Wirth S, Wahlandt H, Dockhorn T, Dichtl N, Schröder U (2014) Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell. Bioresour Technol 163:206–213PubMedGoogle Scholar
  41. 41.
    Shimoyama T, Komukai S, Yamazawa A, Ueno Y, Logan BE, Watanabe K (2008) Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell. Appl Microbiol Biotechnol 80(2):325–330PubMedGoogle Scholar
  42. 42.
    Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Liu G, Logan BE (2011) Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89(6):2053–2063PubMedGoogle Scholar
  43. 43.
    Blanchet E, Desmond E, Erable B, Bridier A, Bouchez T, Bergel A (2015) Comparison of synthetic medium and wastewater used as dilution medium to design scalable microbial anodes: application to food waste treatment. Bioresour Technol 185:106–115PubMedGoogle Scholar
  44. 44.
    Zhang BG, Zhao HZ, Zhou SG, Shi CH, Wang C, Ni JR (2009) A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. Bioresour Technol 100(23):5687–5693PubMedGoogle Scholar
  45. 45.
    Ryu JH, Lee HL, Lee YP, Kim TS, Kim MK, Anh D, Tran HT, Ahn DH (2013) Simultaneous carbon and nitrogen removal from piggery wastewater using loop configuration microbial fuel cell. Process Biochem 48(7):1080–1085Google Scholar
  46. 46.
    Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li D (2013) Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. Int J Hydrogen Energy 38(8):3497–3502Google Scholar
  47. 47.
    Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82(5):829–836PubMedGoogle Scholar
  48. 48.
    Chen L, Tremblay P, Mohanty S, Xu K, Zhang T (2016) Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine. J Mater Chem A 4(21):8395–8401Google Scholar
  49. 49.
    Jourdin L, Freguia S, Donose BC, Chen J, Wallace GG, Keller J, Flexer V (2014) A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J Mater Chem A 2(32):13093Google Scholar
  50. 50.
    Jourdin L, Freguia S, Flexer V, Keller J (2016) Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions. Environ Sci Technol 50(4):1982–1989PubMedGoogle Scholar
  51. 51.
    Pons L, Délia ML, Bergel A (2011) Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes. Bioresour Technol 102(3):2678–2683PubMedGoogle Scholar
  52. 52.
    Madjarov J, Popat SC, Erben J, Götze A, Zengerle R, Kerzenmacher S (2017) Revisiting methods to characterize bioelectrochemical systems: the influence of uncompensated resistance (iR u-drop), double layer capacitance, and junction potential. J Power Sources 356:408–418Google Scholar
  53. 53.
    Zhao F, Slade RCT, Varcoe JR (2009) Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chem Soc Rev 38:1926–1939PubMedGoogle Scholar
  54. 54.
    Ghasemi M, Daud WRW, Hassan SH, Oh S, Ismail M, Rahimnejad M, Jahim JM (2013) Nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review. J Alloys Compd 580:245–255Google Scholar
  55. 55.
    Kumar GG, Sarathi VGS, Nahm KS (2013) Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens Bioelectron 43:461–475PubMedGoogle Scholar
  56. 56.
    Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102(20):9335–9344PubMedGoogle Scholar
  57. 57.
    Cercado-Quezada B, Delia M, Bergel A (2011) Electrochemical micro-structuring of graphite felt electrodes for accelerated formation of electroactive biofilms on microbial anodes. Electrochem Commun 13(5):440–443Google Scholar
  58. 58.
    Ringeisen BR, Ray R, Little B (2007) A miniature microbial fuel cell operating with an aerobic anode chamber. J Power Sources 165:591–597Google Scholar
  59. 59.
    Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41(9):3341–3346PubMedGoogle Scholar
  60. 60.
    Srikanth S, Marsili E, Flickinger MC, Bond DR (2008) Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes. Biotechnol Bioeng 99(5):1065–1073PubMedGoogle Scholar
  61. 61.
    Liu Y, Harnisch F, Fricke K, Schröder U, Climent V, Feliu JM (2010) The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Biosens Bioelectron 25(9):2167–2171PubMedGoogle Scholar
  62. 62.
    Auer E, Freund A, Pietsch J, Tacke T (1998) Carbons as supports for industrial precious metal catalysts. Appl Catal 173(2):259–271Google Scholar
  63. 63.
    Manickam SS, Karra U, Huang L, Bui N, Li B, McCutcheon JR (2013) Activated carbon nanofiber anodes for microbial fuel cells. Carbon 53:19–28Google Scholar
  64. 64.
    Jiang D, Li B (2009) Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): a design suitable for large-scale wastewater treatment processes. Biochem Eng J 47(1–3):31–37Google Scholar
  65. 65.
    ElMekawy A, Hegab HM, Losic D, Saint CP, Pant D (2017) Applications of graphene in microbial fuel cells: the gap between promise and reality. Renew Sustain Energy Rev 72:1389–1403Google Scholar
  66. 66.
    Xiao L, Damien J, Luo J, Jang HD, Huang J, He Z (2012) Crumpled graphene particles for microbial fuel cell electrodes. J Power Sources 208(0):187–192Google Scholar
  67. 67.
    Xie X, Yu G, Liu N, Bao Z, Criddle CS, Cui Y (2012) Graphene–sponges as high-performance low-cost anodes for microbial fuel cells. Energ Environ Sci 5(5):6862Google Scholar
  68. 68.
    Xie X, Hu L, Pasta M, Wells GF, Kong D, Criddle CS, Cui Y (2011) Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett 11(1):291–296PubMedGoogle Scholar
  69. 69.
    Xie X, Ye M, Hu L, Liu N, McDonough JR, Chen W, Alshareef HN, Criddle CS, Cui Y (2012) Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Energy Environ Sci 5:5265–5270Google Scholar
  70. 70.
    Shen Y, Zhou Y, Chen S, Yang F, Zheng S, Hou H (2014) Carbon nanofibers modified graphite felt for high performance anode in high substrate concentration microbial fuel cells. Sci World J 2014:130185Google Scholar
  71. 71.
    Wang J, Li M, Liu F, Chen S (2016) Stainless steel mesh supported carbon nanofibers for electrode in bioelectrochemical system. J Nanomater 2016:1–5Google Scholar
  72. 72.
    Huggins T, Wang H, Kearns J, Jenkins P, Ren ZJ (2014) Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour Technol 157:114–119PubMedGoogle Scholar
  73. 73.
    Yuan Y, Zhou S, Liu Y, Tang J (2013) Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells. Environ Sci Technol 47(24):14525–14532PubMedGoogle Scholar
  74. 74.
    Chen S, Liu Q, He G, Zhou Y, Hanif M, Peng X, Wang S, Hou H (2012) Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells. J Mater Chem 22(35):18609Google Scholar
  75. 75.
    Dumas C, Basseguy R, Bergel A (2008) Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes. Electrochim Acta 53(16):5235–5241Google Scholar
  76. 76.
    Dumas C, Mollica A, Féron D, Basseguy R, Etcheverry L, Bergel A (2008) Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell. Bioresour Technol 99(18):8887–8894PubMedGoogle Scholar
  77. 77.
    Zhu X, Logan BE (2014) Copper anode corrosion affects power generation in microbial fuel cells. J Chem Technol Biotechnol 89(3):471–474Google Scholar
  78. 78.
    Dutta K, Kundu PP (2014) A review on aromatic conducting polymers-based catalyst supporting matrices for application in microbial fuel cells. Polym Rev 54(3):401–435Google Scholar
  79. 79.
    Lai B, Tang X, Li H, Du Z, Liu X, Zhang Q (2011) Power production enhancement with a polyaniline modified anode in microbial fuel cells. Biosens Bioelectron 28(1):373–377PubMedGoogle Scholar
  80. 80.
    Zhao C, Wu J, Kjelleberg S, Loo JSC, Zhang Q (2015) Employing a flexible and low-cost polypyrrole nanotube membrane as an anode to enhance current generation in microbial fuel cells. Small 11(28):3440–3443PubMedGoogle Scholar
  81. 81.
    Niessen J, Schroder U, Rosenbaum M, Scholz F (2004) Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem Commun 6(6):571–575Google Scholar
  82. 82.
    Bowen CR, Thomas T (2015) Macro-porous Ti2AlC MAX-phase ceramics by the foam replication method. Ceram Int 41(9):12178–12185Google Scholar
  83. 83.
    Jain A, Gazzola G, Panzera A, Zanoni M, Marsili E (2011) Visible spectroelectrochemical characterization of Geobacter sulfurreducens biofilms on optically transparent indium tin oxide electrode. Electrochim Acta 56(28):10776–10785Google Scholar
  84. 84.
    Jain A, Connolly JO, Woolley R, Krishnamurthy S, Marsili E (2013) Extracellular electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at indium tin oxide and graphite electrodes. Int J Electrochem Sci 8(2):1778–1793Google Scholar
  85. 85.
    Lu M, Qian Y, Huang L, Xie X, Huang W (2015) Improving the performance of microbial fuel cells through anode manipulation. ChemPlusChem 80(8):1216–1225Google Scholar
  86. 86.
    Cheng S, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9(3):492–496Google Scholar
  87. 87.
    Feng Y, Yang Q, Wang X, Logan BE (2010) Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells. J Power Sources 195(7):1841–1844Google Scholar
  88. 88.
    Guo K, Freguia S, Dennis PG, Chen X, Donose BC, Keller J, Gooding JJ, Rabaey K (2013) Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ Sci Technol 47(13):7563–7570PubMedGoogle Scholar
  89. 89.
    Santoro C, Guilizzoni M, Correa Baena JP, Pasaogullari U, Casalegno A, Li B, Babanova S, Artyushkova K, Atanassov P (2014) The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. Carbon 67:128–139Google Scholar
  90. 90.
    Chang S, Liou J, Liu J, Chiu Y, Xu C, Chen B, Chen J (2016) Feasibility study of surface-modified carbon cloth electrodes using atmospheric pressure plasma jets for microbial fuel cells. J Power Sources 336:99–106Google Scholar
  91. 91.
    Li B, Zhou J, Zhou X, Wang X, Li B, Santoro C, Grattieri M, Babanova S, Artyushkova K, Atanassov P, Schuler AJ (2014) Surface modification of microbial fuel cells anodes: approaches to practical design. Electrochim Acta 134:116–126Google Scholar
  92. 92.
    Lamp JL, Guest JS, Naha S, Radavich KA, Love NG, Ellis MW, Puri IK (2011) Flame synthesis of carbon nanostructures on stainless steel anodes for use in microbial fuel cells. J Power Sources 196(14):5829–5834Google Scholar
  93. 93.
    Tang X, Li H, Du Z, Ng HY (2014) Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells. Bioresour Technol 164:184–188PubMedGoogle Scholar
  94. 94.
    Kaneko M, Ishikawa M, Song J, Kato S, Hashimoto K, Nakanishi S (2017) Cathodic supply of electrons to living microbial cells via cytocompatible redox-active polymers. Electrochem Commun 75:17–20Google Scholar
  95. 95.
    Escapa A, San-Martin MI, Mateos R, Moran A (2015) Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: bottlenecks and limitations. Bioresour Technol 180:72–78PubMedGoogle Scholar
  96. 96.
    Zhang F, Cheng S, Pant D, van Bogaert G, Logan BE (2009) Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem Commun 11(11):2177–2179Google Scholar
  97. 97.
    Gajda I, Greenman J, Melhuish C, Ieropoulos IA (2016) Electricity and disinfectant production from wastewater: microbial fuel cell as a self-powered electrolyser. Sci Rep 6:25571PubMedPubMedCentralGoogle Scholar
  98. 98.
    Chen S, He G, Carmona-Martinez AA, Agarwal S, Greiner A, Hou H, Schröder U (2011) Electrospun carbon fiber mat with layered architecture for anode in microbial fuel cells. Electrochem Commun 13(10):1026–1029Google Scholar
  99. 99.
    Clauwaert P, Mulenga S, Aelterman P, Verstraete W (2009) Litre-scale microbial fuel cells operated in a complete loop. Appl Microbiol Biotechnol 83(2):241–247PubMedGoogle Scholar
  100. 100.
    Cheng S, Ye Y, Ding W, Pan B (2014) Enhancing power generation of scale-up microbial fuel cells by optimizing the leading-out terminal of anode. J Power Sources 248:931–938Google Scholar
  101. 101.
    Antolini E (2015) Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens Bioelectron 69:54–70PubMedGoogle Scholar
  102. 102.
    Ci S, Wen Z, Chen J, He Z (2012) Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells. Electrochem Commun 14(1):71–74Google Scholar
  103. 103.
    Yu Y, Guo CX, Yong Y, Li CM, Song H (2015) Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode. Chemosphere 140:26–33PubMedGoogle Scholar
  104. 104.
    Qiao Y, Wu X, Ma C, He H, Li CM (2014) A hierarchical porous graphene/nickel anode that simultaneously boosts the bio- and electro-catalysis for high-performance microbial fuel cells. RSC Adv 4(42):21788Google Scholar
  105. 105.
    Tang J, Chen S, Yuan Y, Cai X, Zhou S (2015) In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells. Biosens Bioelectron 71:387–395PubMedGoogle Scholar
  106. 106.
    Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR (2006) Harvesting energy from the marine sediment-water interface II. Kinetic activity of anode materials. Biosens Bioelectron 21(11):2058–2063PubMedGoogle Scholar
  107. 107.
    Peng X, Yu H, Wang X, Gao N, Geng L, Ai L (2013) Enhanced anode performance of microbial fuel cells by adding nanosemiconductor goethite. J Power Sources 223(0):94–99Google Scholar
  108. 108.
    Peng X, Yu H, Wang X, Zhou Q, Zhang S, Geng L, Sun J, Cai Z (2012) Enhanced performance and capacitance behavior of anode by rolling Fe3O4 into activated carbon in microbial fuel cells. Bioresour Technol 121:450–453PubMedGoogle Scholar
  109. 109.
    Jadhav DA, Ghadge AN, Ghangrekar MM (2015) Enhancing the power generation in microbial fuel cells with effective utilization of goethite recovered from mining mud as anodic catalyst. Bioresour Technol 191:110–116PubMedGoogle Scholar
  110. 110.
    Kato S, Hashimoto K, Watanabe K (2013) Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp. Microb Environ 28(1):141–148Google Scholar
  111. 111.
    Xu S, Liu H, Fan Y, Schaller R, Jiao J, Chaplen F (2012) Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes. Appl Microbiol Biotechnol 93(2):871–880PubMedGoogle Scholar
  112. 112.
    Zhao C, Wang W, Sun D, Wang X, Zhang J, Zhu J (2014) Nanostructured graphene/TiO2 hybrids as high-performance anodes for microbial fuel cells. Chemistry 20(23):7091–7097PubMedGoogle Scholar
  113. 113.
    Tang J, Yuan Y, Liu T, Zhou S (2015) High-capacity carbon-coated titanium dioxide core–shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells. J Power Sources 274:170–176Google Scholar
  114. 114.
    Wen Z, Ci S, Mao S, Cui S, Lu G, Yu K, Luo S, He Z, Chen J (2013) TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells. J Power Sources 234:100–106Google Scholar
  115. 115.
    Liao Z, Sun J, Sun D, Si R, Yong Y (2015) Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells. Bioresour Technol 192:831–834PubMedGoogle Scholar
  116. 116.
    Cui H, Du L, Guo P, Zhu B, Luong JHT (2015) Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J Power Sources 283:46–53Google Scholar
  117. 117.
    Hou J, Liu Z, Zhang P (2013) A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. J Power Sources 224:139–144Google Scholar
  118. 118.
    Zhao C, Gai P, Liu C, Wang X, Xu H, Zhang J, Zhu J (2013) Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells. J Mater Chem A 1(40):12587Google Scholar
  119. 119.
    Yuan Y, Kim S (2008) Improved performance of a microbial fuel cell with polypyrrole/carbon black composite coated carbon paper anodes. Bull Kor Chem Soc 29(7):1344–1348Google Scholar
  120. 120.
    Karthikeyan R, Krishnaraj N, Selvam A, Wong JW, Lee PKH, Leung MKH, Berchmans S (2016) Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts. Bioresour Technol 217:113–120PubMedGoogle Scholar
  121. 121.
    Yuan Y, Shin H, Kang C, Kim S (2016) Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells. Bioelectrochemistry 108:8–12PubMedGoogle Scholar
  122. 122.
    Zou Y, Xiang C, Yang L, Sun L, Xu F, Cao Z (2008) A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. Int J Hydrogen Energy 33(18):4856–4862Google Scholar
  123. 123.
    Popat SC, Torres CI (2016) Critical transport rates that limit the performance of microbial electrochemistry technologies. Bioresour Technol 215:265–273PubMedGoogle Scholar
  124. 124.
    Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192PubMedGoogle Scholar
  125. 125.
    Marcus AK, Torres CI, Rittmann BE (2010) Evaluating the impacts of migration in the biofilm anode using the model PCBIOFILM. Electrochim Acta 55(23):6964–6972Google Scholar
  126. 126.
    Bidault F, Brett D, Middleton PH, Brandon NP (2009) Review of gas diffusion cathodes for alkaline fuel cells. J Power Sources 187(1):39–48Google Scholar
  127. 127.
    Bajracharya S, Vanbroekhoven K, Buisman CJN, Pant D, Strik DPBTB (2016) Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide. Environ Sci Pollut Res Int 23(22):22292–22308PubMedGoogle Scholar
  128. 128.
    Chen S, He G, Carmona-Martinez AA, Agarwal S, Greiner A, Hou H, Schröder U (2011) Electrospun carbon fiber mat with layered architecture for anode in microbial fuel cells. Electrochem Commun 13(10):1026–1029Google Scholar
  129. 129.
    Hou J, Liu Z, Yang S, Zhou Y (2014) Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells. J Power Sources 258:204–209Google Scholar
  130. 130.
    Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39(20):8077–8082PubMedGoogle Scholar
  131. 131.
    Sun Y, Wei J, Liang P, Huang X (2011) Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials. Bioresour Technol 102(23):10886–10891PubMedGoogle Scholar
  132. 132.
    Sleutels THJA, Lodder R, Hamelers HVM, Buisman CJN (2009) Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport. Int J Hydrogen Energy 34(24):9655–9661Google Scholar
  133. 133.
    Karthikeyan R, Wang B, Xuan J, Wong JWC, Lee PKH, Leung MKH (2015) Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell. Electrochim Acta 157(0):314–323Google Scholar
  134. 134.
    Danzer J, Götze A, Abdu S, Kerzenmacher S (2016) A new concept for the integration of microbial fuel cells into membrane bioreactors. In: Proceedings of the 13th IWA leading edge conference on water and wastewater technologies, Jerez de la FronteraGoogle Scholar
  135. 135.
    Sleutels THJA, Hamelers HVM, Buisman CJN (2011) Effect of mass and charge transport speed and direction in porous anodes on microbial electrolysis cell performance. Bioresour Technol 102(1):399–403PubMedGoogle Scholar
  136. 136.
    Hatzell KB, Boota M, Gogotsi Y (2015) Materials for suspension (semi-solid) electrodes for energy and water technologies. Chem Soc Rev 44(23):8664–8687PubMedGoogle Scholar
  137. 137.
    Liu J, Zhang F, He W, Zhang X, Feng Y, Logan BE (2014) Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells. J Power Sources 261(0):278–284Google Scholar
  138. 138.
    Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA (2010) Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. MBio 1(5):e00190-10PubMedPubMedCentralGoogle Scholar
  139. 139.
    Geppert F, Liu D, van Eerten-Jansen M, Weidner E, Buisman C, ter Heijne A (2016) Bioelectrochemical power-to-gas: state of the art and future perspectives. Trends Biotechnol 34(11):879–894PubMedGoogle Scholar
  140. 140.
    Martin ME, Richter H, Saha S, Angenent LT (2016) Traits of selected Clostridium strains for syngas fermentation to ethanol. Biotechnol Bioeng 113(3):531–539PubMedGoogle Scholar
  141. 141.
    Shen Y, Brown R, Wen Z (2014) Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: evaluating the mass transfer coefficient and ethanol production performance. Biochem Eng J 85:21–29Google Scholar
  142. 142.
    Wang S, Huang H, Kahnt J, Mueller AP, Kopke M, Thauer RK (2013) NADP-specific electron-bifurcating FeFe-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J Bacteriol 195(19):4373–4386PubMedPubMedCentralGoogle Scholar
  143. 143.
    Gaddy JL, Arora DK, Ko C, Phillips JR, Basu R, Wikstrom CV, Clausen EC (2007) Methods for increasing the production of ethanol from microbial fermentation (US Patent US7285402)Google Scholar
  144. 144.
    Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Kopke M (2016) Gas fermentation-a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front Microbiol 7:694PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.IMTEK - Department of Microsystems EngineeringUniversity of FreiburgFreiburg im BreisgauGermany

Personalised recommendations