Biorefineries pp 339-372 | Cite as

Products Components: Alcohols

  • Henning Kuhz
  • Anja Kuenz
  • Ulf PrüßeEmail author
  • Thomas Willke
  • Klaus-Dieter Vorlop
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 166)


Alcohols (CnHn+2OH) are classified into primary, secondary, and tertiary alcohols, which can be branched or unbranched. They can also feature more than one OH-group (two OH-groups = diol; three OH-groups = triol). Presently, except for ethanol and sugar alcohols, they are mainly produced from fossil-based resources, such as petroleum, gas, and coal. Methanol and ethanol have the highest annual production volume accounting for 53 and 91 million tons/year, respectively. Most alcohols are used as fuels (e.g., ethanol), solvents (e.g., butanol), and chemical intermediates.

This chapter gives an overview of recent research on the production of short-chain unbranched alcohols (C1–C5), focusing in particular on propanediols (1,2- and 1,3-propanediol), butanols, and butanediols (1,4- and 2,3-butanediol). It also provides a short summary on biobased higher alcohols (>C5) including branched alcohols.


Biobased alcohol Butanediol Butanol Ethanol Higher alcohols Methanol Propanediol Propanol 


  1. 1.
    Anomymous (2017) Accessed 01 Feb 2017
  2. 2.
    Ott J, Gronemann V, Pontzen F, Fiedler E, Grossmann G, Kersebohm DB, Weiss G, Witte C (2012) Methanol. Ullmann’s Encyclopedia of Industrial Chemistry. doi: 10.1002/14356007.a16_465.pub3
  3. 3.
  4. 4.
    Bertau M, Offermanns H, Plass L, Schmidt F, Wernicke H-J (2014) Methanol: the basic chemical and energy feedstock of the future. Asinger’s Vision Today. Springer-Verlag, Berlin. doi: 10.1007/978-3-642-39709-7 CrossRefGoogle Scholar
  5. 5.
    IRENA (2013) Production of bio-ethylene. Technology Brief 113. Accessed 18 Mar 2015
  6. 6.
    Straathof AJJ (2014) Transformation of biomass into commodity chemicals using enzymes or cells. Chem Rev 114(3):1871–1908. doi: 10.1021/cr400309c CrossRefPubMedGoogle Scholar
  7. 7.
    Ge X, Yang L, Sheets JP, Yu Z, Li Y (2014) Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol Adv 32(8):1460–1475. doi: 10.1016/j.biotechadv.2014.09.004 CrossRefPubMedGoogle Scholar
  8. 8.
    Hwang IY, Lee SH, Choi YS, Park SJ, Na JG, Chang IS, Kim C, Kim HC, Kim YH, Lee JW, Lee EY (2014) Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. J Microbiol Biotechnol 24(12):1597–1605. doi: 10.4014/jmb.1407.07070 CrossRefPubMedGoogle Scholar
  9. 9.
    Duan C, Luo M, Xing X (2011) High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour Technol 102(15):7349–7353. doi: 10.1016/j.biortech.2011.04.096 CrossRefPubMedGoogle Scholar
  10. 10.
    Chandran K (2012) Methods and systems for biologically producing methanol. WO 2012/078845 A1Google Scholar
  11. 11.
    Blake WJ, Swartz JR (2014) Cell-free system for converting methane into fuel, pyruvate or isobutanol. WO 2014/100722 A1Google Scholar
  12. 12.
    Revilla I, González-SanJosé ML (1998) Methanol release during fermentation of red grapes treated with pectolytic enzymes. Food Chem 63(3):307–312. doi: 10.1016/S0308-8146(98)00049-1 CrossRefGoogle Scholar
  13. 13.
    Bengelsdorf FR, Straub M, Dürre P (2013) Bacterial synthesis gas (syngas) fermentation. Environ Technol 34(13–14):1639–1651. doi: 10.1080/09593330.2013.827747 CrossRefPubMedGoogle Scholar
  14. 14.
    Kiriukhin M, Tyurin M, Gak E (2014) UVC-mutagenesis in acetogens: resistance to methanol, ethanol, acetone, or n-butanol in recombinants with tailored genomes as the step in engineering of commercial biocatalysts for continuous CO2/H2 blend fermentations. World J Microbiol Biotechnol 30(5):1559–1574. doi: 10.1007/s11274-013-1579-7 CrossRefPubMedGoogle Scholar
  15. 15.
    Tyurin M, Kiriukhin M (2013) Selective methanol or formate production during continuous CO2 fermentation by the acetogen biocatalysts engineered via integration of synthetic pathways using Tn7-tool. World J Microbiol Biotechnol 29(9):1611–1623. doi: 10.1007/s11274-013-1324-2 CrossRefPubMedGoogle Scholar
  16. 16.
    Rosillo-Calle F, Walter A (2006) Global market for bioethanol: historical trends and future prospects. Energy Sustain Dev 10(1):20–32. doi: 10.1016/s0973-0826(08)60504-9 CrossRefGoogle Scholar
  17. 17.
    Kosaric N, Duvnjak Z, Farkas A, Sahm H, Bringer-Meyer S, Goebel O, Mayer D (2011) Ethanol. Ullmann’s Encyclopedia of Industrial Chemistry. doi: 10.1002/14356007.a09_587.pub2
  18. 18.
    Mussatto SI, Dragone G, Guimaraes PM, Silva JP, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28(6):817–830. doi: 10.1016/j.biotechadv.2010.07.001 CrossRefPubMedGoogle Scholar
  19. 19.
    Demirbaş A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sources 27(4):327–337. doi: 10.1080/00908310390266643 CrossRefGoogle Scholar
  20. 20.
    Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol 101(13):4980–4991. doi: 10.1016/j.biortech.2010.02.009 CrossRefPubMedGoogle Scholar
  21. 21.
    Viikari L, Vehmaanpera J, Koivula A (2012) Lignocellulosic ethanol: from science to industry. Biomass Bioenergy 46:13–24. doi: 10.1016/j.biombioe.2012.05.008 CrossRefGoogle Scholar
  22. 22.
    Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63(5):495–509. doi: 10.1007/s00253-003-1450-0 CrossRefPubMedGoogle Scholar
  23. 23.
    Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63(3):258–266CrossRefPubMedGoogle Scholar
  24. 24.
    Li K, Liu S, Liu X (2014) An overview of algae bioethanol production. Int J Energy Res 38(8):965–977. doi: 10.1002/er.3164 CrossRefGoogle Scholar
  25. 25.
    LanzaTech (2015) LanzaTech excecutive summary. Accessed 01 Feb 2017
  26. 26.
    Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev 41:550–567. doi: 10.1016/j.rser.2014.08.032 CrossRefGoogle Scholar
  27. 27.
    Posada JA, Patel AD, Roes A, Blok K, Faaij AP, Patel MK (2013) Potential of bioethanol as a chemical building block for biorefineries: preliminary sustainability assessment of 12 bioethanol-based products. Bioresour Technol 135:490–499. doi: 10.1016/j.biortech.2012.09.058 CrossRefPubMedGoogle Scholar
  28. 28.
    Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539. doi: 10.1039/b922014c CrossRefGoogle Scholar
  29. 29.
    Gallo JMR, Bueno JMC, Schuchardt U (2014) Catalytic transformations of ethanol for biorefineries. J Braz Chem Soc. doi: 10.5935/0103-5053.20140272 CrossRefGoogle Scholar
  30. 30.
    Brelsford R (2014) Rising demand, low-cost feed spur ethylene capacity growth. Oil Gas J Online. Accessed 7 July 2014
  31. 31.
    Zimmermann H (2013) Propene. Ullmann’s Encyclopedia of Industrial Chemistry. doi: 10.1002/14356007.a22_211.pub3
  32. 32.
    TMR (2014) Isobutene market – global industry analysis, size, share, growth, trends and forecast, 2013–2019. Accessed 18 May 2015
  33. 33.
    Sampat BG (2010) Butadiene: a techno-commercial profile. Chem Weekly 24:203–207. Google Scholar
  34. 34.
    Bender M (2013) Global aromatics supply – today and tomorrow. Paper presented at the Dgmk Conference: new technologies and alternative feedstocks in petrochemistry and refining, Dresden, October 9–11, 2013Google Scholar
  35. 35.
    TMR (2013) Acetaldehyde market – global industry analysis, size, share, growth, trends and forecast, 2012–2018. Accessed 18 May 2015
  36. 36.
    Aster N (2014) Acetone: 2014 world market outlook and forecast up to 2018. The Market Publishers. Accessed 18 May 2015
  37. 37.
    Wee YJ, Kim JN, Ryu HW (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44(2):163–172Google Scholar
  38. 38.
    Kalamaras CM, Efstathiou AM (2013) Hydrogen production technologies: current state and future developments. Conference Papers in Energy, vol. 2013. Article ID 690627. doi: 10.1155/2013/690627 CrossRefGoogle Scholar
  39. 39.
    Sun J, Wang Y (2014) Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal 4(4):1078–1090. doi: 10.1021/cs4011343 CrossRefGoogle Scholar
  40. 40.
    Weusthuis RA, Aarts JMMJG, Sanders JPM (2011) From biofuel to bioproduct: is bioethanol a suitable fermentation feedstock for synthesis of bulk chemicals? Biofuels Bioprod Biorefin 5(5):486–494. doi: 10.1002/bbb.307 CrossRefGoogle Scholar
  41. 41.
    Angelici C, Weckhuysen BM, Bruijnincx PC (2013) Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. ChemSusChem 6(9):1595–1614. doi: 10.1002/cssc.201300214 CrossRefPubMedGoogle Scholar
  42. 42.
    Fan D, Dai D-J, Wu H-S (2012) Ethylene formation by catalytic dehydration of ethanol with industrial considerations. Materials 6(1):101–115. doi: 10.3390/ma6010101 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhang M, Yu Y (2013) Dehydration of ethanol to ethylene. Ind Eng Chem Res 52(28):9505–9514. doi: 10.1021/ie401157c CrossRefGoogle Scholar
  44. 44.
    Morschbacker A (2009) Bio-ethanol based ethylene. Polym Rev 49(2):79–84. doi: 10.1080/15583720902834791 CrossRefGoogle Scholar
  45. 45.
    Iwamoto M (2011) One step formation of propene from ethene or ethanol through metathesis on nickel ion-loaded silica. Molecules 16(9):7844–7863. doi: 10.3390/molecules16097844 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Iwamoto M (2015) Selective catalytic conversion of bio-ethanol to propene: a review of catalysts and reaction pathways. Catal Today 242:243–248. doi: 10.1016/j.cattod.2014.06.031 CrossRefGoogle Scholar
  47. 47.
    Hayashi F, Tanaka M, Lin D, Iwamoto M (2014) Surface structure of yttrium-modified ceria catalysts and reaction pathways from ethanol to propene. J Catal 316:112–120. doi: 10.1016/j.jcat.2014.04.017 CrossRefGoogle Scholar
  48. 48.
    Hayashi F, Iwamoto M (2013) Yttrium-modified ceria as a highly durable catalyst for the selective conversion of ethanol to propene and ethene. ACS Catal 3(1):14–17. doi: 10.1021/cs3006956 CrossRefGoogle Scholar
  49. 49.
    Mizuno S, Kurosawa M, Tanaka M, Iwamoto M (2012) One-path and selective conversion of ethanol to propene on scandium-modified indium oxide catalysts. Chem Lett 41(9):892–894. doi: 10.1246/cl.2012.892 CrossRefGoogle Scholar
  50. 50.
    Liu C, Sun J, Smith C, Wang Y (2013) A study of ZnxZryOz mixed oxides for direct conversion of ethanol to isobutene. Appl Catal A Gen 467:91–97. doi: 10.1016/j.apcata.2013.07.011 CrossRefGoogle Scholar
  51. 51.
    Sun J, Zhu K, Gao F, Wang C, Liu J, Peden CH, Wang Y (2011) Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites. J Am Chem Soc 133(29):11096–11099. doi: 10.1021/ja204235v CrossRefPubMedGoogle Scholar
  52. 52.
    Egloff G, Hulla G (1945) Conversion of oxygen derivatives of hydrocarbons into butadiene. Chem Rev 36(1):63–141. doi: 10.1021/cr60113a002 CrossRefGoogle Scholar
  53. 53.
    Grub J, Löser E (2011) Butadiene. Ullmann’s Encyclopedia of Industrial Chemistry. doi: 10.1002/14356007.a04_431.pub2
  54. 54.
    Eckert M, Fleischmann G, Jira R, Bolt HM, Golka K (2006) Acetaldehyde. Ullmann’s Encyclopedia of Industrial Chemistry. doi: 10.1002/14356007.a01_031.pub2
  55. 55.
    Takei T, Iguchi N, Haruta M (2011) Synthesis of acetoaldehyde, acetic acid, and others by the dehydrogenation and oxidation of ethanol. Catal Surv Jpn 15(2):80–88. doi: 10.1007/s10563-011-9112-1 CrossRefGoogle Scholar
  56. 56.
    Bussi J, Parodi S, Irigaray B, Kieffer R (1998) Catalytic transformation of ethanol into acetone using copper–pyrochlore catalysts. Appl Catal A Gen 172(1):117–129. doi: 10.1016/s0926-860x(98)00106-9 CrossRefGoogle Scholar
  57. 57.
    Ashley M (2014) Development of ethyl acetate process technology – a compandium of papers edited by Mike Ashley. Davy Process TechnologyGoogle Scholar
  58. 58.
    Colley SW, Fawcett CR, Rathmell C, Tuck M, Marshall W (2004) Process for the preparation of ethyl acetate. US 6809217 B1Google Scholar
  59. 59.
    Riittonen T, Toukoniitty E, Madnani DK, Leino A-R, Kordas K, Szabo M, Sapi A, Arve K, Wärnå J, Mikkola J-P (2012) One-pot liquid-phase catalytic conversion of ethanol to 1-butanol over aluminium oxide—the effect of the active metal on the selectivity. Catalysts 2(4):68–84. doi: 10.3390/catal2010068 CrossRefGoogle Scholar
  60. 60.
    Vaidya PD, Rodrigues AE (2006) Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chem Eng J 117(1):39–49. doi: 10.1016/j.cej.2005.12.008 CrossRefGoogle Scholar
  61. 61.
    Liu HW, Ramos KRM, Valdehuesa KNG, Nisola GM, Lee WK, Chung WJ (2013) Biosynthesis of ethylene glycol in Escherichia coli. Appl Microbiol Biotechnol 97(8):3409–3417. doi: 10.1007/s00253-012-4618-7 CrossRefPubMedGoogle Scholar
  62. 62.
    Anonymous (2013) Global plantbottle use continues to grow. European Bioplastics Bulletin, vol 3. European BioplasticsGoogle Scholar
  63. 63.
    Carus M, Baltus W, Carrez D, Kaeb H, Ravenstijn J, Zepnik S (2013) Bio-based polymers in the world. Nova-Institut GmbH, HürthGoogle Scholar
  64. 64.
    Guzman Dd (2013) Toyota Tsusho’s bio-PET in bottled water. Green Chem Blog 2015Google Scholar
  65. 65.
    Papa AJ (2011) Propanols. Ullmann’s Encyclopedia of Industrial Chemistry. doi: 10.1002/14356007.a22_173.pub2
  66. 66.
    Ammar EM, Wang Z, Yang ST (2013) Metabolic engineering of Propionibacterium freudenreichii for n-propanol production. Appl Microbiol Biotechnol 97(10):4677–4690. doi: 10.1007/s00253-013-4861-6 CrossRefPubMedGoogle Scholar
  67. 67.
    Choi YJ, Lee J, Jang YS, Lee SY (2014) Metabolic engineering of microorganisms for the production of higher alcohols. MBio 5(5):e01524–e01514. doi: 10.1128/mBio.01524-14 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Matsuda F, Furusawa C, Kondo T, Ishii J, Shimizu H, Kondo A (2011) Engineering strategy of yeast metabolism for higher alcohol production. Microb Cell Factories 10:70. doi: 10.1186/1475-2859-10-70 CrossRefGoogle Scholar
  69. 69.
    Jang YS, Kim B, Shin JH, Choi YJ, Choi S, Song CW, Lee J, Park HG, Lee SY (2012) Bio-based production of C2-C6 platform chemicals. Biotechnol Bioeng 109(10):2437–2459. doi: 10.1002/bit.24599 CrossRefPubMedGoogle Scholar
  70. 70.
    Inokuma K, Liao JC, Okamoto M, Hanai T (2010) Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. J Biosci Bioeng 110(6):696–701. doi: 10.1016/j.jbiosc.2010.07.010 CrossRefPubMedGoogle Scholar
  71. 71.
    Martin A, Armbruster U, Gandarias I, Arias PL (2013) Glycerol hydrogenolysis into propanediols using in situ generated hydrogen – a critical review. Eur J Lipid Sci Technol 115(1):9–27. doi: 10.1002/ejlt.201200207 CrossRefGoogle Scholar
  72. 72.
    Feng J, Xu B (2014) Reaction mechanisms for the heterogeneous hydrogenolysis of biomass-derived glycerol to propanediols. Prog React Kinet Mech 39(1):1–15. doi: 10.3184/97809059274714x13874723178485 CrossRefGoogle Scholar
  73. 73.
    REN21 (2014) Renewables 2014 Global Status Report Paris.
  74. 74.
    Werpy T, Petersen G (2004) Top value added chemicals from biomass: volume I – results of screening for potential candidates from sugars and synthesis gas. Accessed 23 Mar 2016
  75. 75.
    Nakagawa Y, Tamura M, Tomishige K (2014) Catalytic materials for the hydrogenolysis of glycerol to 1,3-propanediol. J Mater Chem A 2(19):6688. doi: 10.1039/c3ta15384c CrossRefGoogle Scholar
  76. 76.
    Nakagawa Y, Tomishige K (2011) Heterogeneous catalysis of the glycerol hydrogenolysis. Catal Sci Technol 1(2):179. doi: 10.1039/c0cy00054j CrossRefGoogle Scholar
  77. 77.
    Levdikova T (2014) Global PG production to go beyond 2.56 Mln Tonnes in 2017, According to in-demand report by merchant research & consulting. The Market Publisher Accessed 18 May 2015
  78. 78.
    Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem 10(1):13. doi: 10.1039/b710561d CrossRefGoogle Scholar
  79. 79.
    Sullivan CJ (2000) Propanediols. Ullmann’s encyclopedia of Industrial Chemistry. doi: 10.1002/14356007.a22_163
  80. 80.
    Lee CS, Aroua MK, Daud WMAW, Cognet P, Pérès-Lucchese Y, Fabre PL, Reynes O, Latapie L (2015) A review: conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renew Sust Energ Rev 42:963–972. doi: 10.1016/j.rser.2014.10.033 CrossRefGoogle Scholar
  81. 81.
    Zheng Y, Chen X, Shen Y (2008) Commodity chemicals derived from glycerol, an important biorefinery feedstock. Chem Rev 108(12):5253–5277. doi: 10.1021/cr068216s CrossRefPubMedGoogle Scholar
  82. 82.
    Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem 51(11):2564–2601. doi: 10.1002/anie.201105125 CrossRefGoogle Scholar
  83. 83.
    Zhou CH, Beltramini JN, Fan YX, Lu GQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37(3):527–549. doi: 10.1039/b707343g CrossRefPubMedGoogle Scholar
  84. 84.
    Arundhathi R, Mizugaki T, Mitsudome T, Jitsukawa K, Kaneda K (2013) Highly selective hydrogenolysis of glycerol to 1,3-propanediol over a boehmite-supported platinum/tungsten catalyst. ChemSusChem 6(8):1345–1347. doi: 10.1002/cssc.201300196 CrossRefPubMedGoogle Scholar
  85. 85.
    Chaminand J, La D, Gallezot P, Marion P, Pinel C, Cc R (2004) Glycerol hydrogenolysis on heterogeneous catalysts. Green Chem 6(8):359. doi: 10.1039/b407378a CrossRefGoogle Scholar
  86. 86.
    Pagliaro M, Rossi M (2010) The future of glycerol, vol 2. RSC Green Chemistry Series Royal Society of ChemistryGoogle Scholar
  87. 87.
    Saxena RK, Anand P, Saran S, Isar J, Agarwal L (2010) Microbial production and applications of 1,2-propanediol. Indian J Microbiol 50(1):2–11. doi: 10.1007/s12088-010-0017-x CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Sánchez-Riera F, Cameron DC, Cooney CL (1987) Influence of environmental factors in the production of R(−)-1,2-propanediol by Clostridium thermosaccharolyticum. Biotechnol Lett 9(7):449–454. doi: 10.1007/BF01027450 CrossRefGoogle Scholar
  89. 89.
    Cameron DC, Cooney CL (1986) A novel fermentation: the production of R(−)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum. Nat Biotechnol 4(7):651–654CrossRefGoogle Scholar
  90. 90.
    Voelker F, Dumon-Seignovert L, Soucaille P (2015) Mutant YQHD enzyme for the production of a biochemical by fermentation. US 8969053 B2Google Scholar
  91. 91.
    Freund A (1881) Über die Bildung und Darstellung von Trimethylenalkohol aus Glycerin. Ber Deut Chem Ges Berlin 10:636–641Google Scholar
  92. 92.
    Yang G, Tian J, Li J (2007) Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 73(5):1017–1024. doi: 10.1007/s00253-006-0563-7 CrossRefPubMedGoogle Scholar
  93. 93.
    Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzym Microb Technol 20(2):82–86. doi: 10.1016/S0141-0229(96)00087-7 CrossRefGoogle Scholar
  94. 94.
    Homann T, Tag C, Biebl H, Deckwer W-D, Schink B (1990) Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol 33(2). doi: 10.1007/bf00176511
  95. 95.
    Barbirato F, Himmi EH, Conte T, Bories A (1998) 1,3-Propanediol production by fermentation: an interesting way to valorize glycerin from the ester and ethanol industries. Ind Crop Prod 7(2–3):281–289. doi: 10.1016/s0926-6690(97)00059-9 CrossRefGoogle Scholar
  96. 96.
    Biebl H, Marten S, Hippe H, Deckwer W-D (1992) Glycerol conversion to 1,3-propanediol by newly isolated Clostridia. Appl Microbiol Biotechnol 36(5). doi: 10.1007/bf00183234
  97. 97.
    Luthi-Peng Q, Dileme FB, Puhan Z (2002) Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl Microbiol Biotechnol 59(2–3):289–296. doi: 10.1007/s00253-002-1002-z CrossRefPubMedGoogle Scholar
  98. 98.
    Saxena RC, Adhikari DK, Goyal HB (2009) Biomass-based energy fuel through biochemical routes: a review. Renew Sust Energ Rev 13(1):167–178. doi: 10.1016/j.rser.2007.07.011 CrossRefGoogle Scholar
  99. 99.
    Willke T, Vorlop K (2008) Biotransformation of glycerol into 1,3-propanediol. Eur J Lipid Sci Technol 110(9):831–840. doi: 10.1002/ejlt.200800057 CrossRefGoogle Scholar
  100. 100.
    Wilkens E, Ringel AK, Hortig D, Willke T, Vorlop KD (2012) High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol 93(3):1057–1063. doi: 10.1007/s00253-011-3595-6 CrossRefPubMedGoogle Scholar
  101. 101.
    EC (2000) Directive 2000/54/ec of the European parliament and of the council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at workGoogle Scholar
  102. 102.
    Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14(5):454–459CrossRefPubMedGoogle Scholar
  103. 103.
    DuPont (2015) Product site: Zemea® USP-FCC 1,3-propanediol is a natural solvent and humectant that provides formulators an alternative to petroleum-based glycols and glycerin for their food and flavor products. Accesed 24 Apr 2015
  104. 104.
    Rose DA (2015) DuPont Tate & Lyle Bio Products Announces Winners of Zemea® Innovation Awards PRWebGoogle Scholar
  105. 105.
    Chen Z, Geng F, Zeng AP (2015) Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose. Biotechnol J 10(2):284–289. doi: 10.1002/biot.201400235 CrossRefPubMedGoogle Scholar
  106. 106.
    Xu J, Saunders CW, Green PR, Velasquez JE, Guffey TB (2013) Microorganisms and methods for producing acrylate and other products from homoserine. WO 2013/052727 A3Google Scholar
  107. 107.
    Boisart C (2013) Method for the preparation of 1,3-propanediol. EP 2540834 A1Google Scholar
  108. 108.
    Soucaille P, Boisart C (2014) Method for the preparation of 1,3-propanediol from sucrose. US 8900838 B2Google Scholar
  109. 109.
    Liu HJ, Zhang DJ, Xu YH, Mu Y, Sun YQ, Xiu ZL (2007) Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale. Biotechnol Lett 29(8):1281–1285. doi: 10.1007/s10529-007-9398-2 CrossRefPubMedGoogle Scholar
  110. 110.
    Jun SA, Moon C, Kang CH, Kong SW, Sang BI, Um Y (2010) Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Appl Biochem Biotechnol 161(1–8):491–501. doi: 10.1007/s12010-009-8839-x CrossRefPubMedGoogle Scholar
  111. 111.
    Otte B, Grunwaldt E, Mahmoud O, Jennewein S (2009) Genome shuffling in Clostridium diolis DSM 15410 for improved 1,3-propanediol production. Appl Environ Microbiol 75(24):7610–7616. doi: 10.1128/AEM.01774-09 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Hirschmann S, Baganz K, Koschik I, Vorlop KD (2005) Development of an integrated bioconversion process for the production of 1,3-propanediol from raw glycerol waters. Landbauforsch Volkenrode 55:261–267Google Scholar
  113. 113.
    Bock R (2004) Biokonversion von Glycerin zu 1,3-Propandiol mit freien und immobilisierten Mikroorganismen. Dissertation, TU BraunschweigGoogle Scholar
  114. 114.
    Tang XM, Tan YS, Zhu H, Zhao K, Shen W (2009) Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol 75(6):1628–1634CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Jolly J, Hitzmann B, Ramalingam S, Ramachandran KB (2014) Biosynthesis of 1,3-propanediol from glycerol with Lactobacillus reuteri: effect of operating variables. J Biosci Bioeng 118(2):188–194. doi: 10.1016/j.jbiosc.2014.01.003 CrossRefPubMedGoogle Scholar
  116. 116.
    Hahn H-D, Dämbkes G, Rupprich N, Bahl H, Frey GD (2013) Butanols. Ullmann’s Encyclopedia of Industrial Chemistry. doi: 10.1002/14356007.a04_463.pub3
  117. 117.
    Informa Economics (2013) Bio-butanol: the game changer. Accessed 01 Feb 2017
  118. 118.
    Spivey JJ (1997) Catalysis, The Royal Society of Chemistry, vol 13. doi: 10.1039/9781847553256 Google Scholar
  119. 119.
    Kozlowski JT, Davis RJ (2013) Heterogeneous catalysts for the Guerbet coupling of alcohols. ACS Catal 3(7):1588–1600. doi: 10.1021/cs400292f CrossRefGoogle Scholar
  120. 120.
    O'Lenick AJ (2001) Guerbet chemistry. J Surfactant Deterg 4(3):311–315. doi: 10.1007/s11743-001-0185-1 CrossRefGoogle Scholar
  121. 121.
    Kozlowski JT, Davis RJ (2013) Sodium modification of zirconia catalysts for ethanol coupling to 1-butanol. J Energy Chem 22(1):58–64. doi: 10.1016/s2095-4956(13)60007-8 CrossRefGoogle Scholar
  122. 122.
    Veibel S, Nielsen JI (1967) On the mechanism of the Guerbet reaction. Tetrahedron 23(4):1723–1733. doi: 10.1016/s0040-4020(01)82571-0 CrossRefGoogle Scholar
  123. 123.
    Ndou A (2003) Dimerisation of ethanol to butanol over solid-base catalysts. Appl Catal A Gen 251(2):337–345. doi: 10.1016/s0926-860x(03)00363-6 CrossRefGoogle Scholar
  124. 124.
    Scalbert J, Thibault-Starzyk F, Jacquot R, Morvan D, Meunier F (2014) Ethanol condensation to butanol at high temperatures over a basic heterogeneous catalyst: how relevant is acetaldehyde self-aldolization? J Catal 311:28–32. doi: 10.1016/j.jcat.2013.11.004 CrossRefGoogle Scholar
  125. 125.
    Koda K, Matsu-ura T, Obora Y, Ishii Y (2009) Guerbet reaction of ethanol to n-butanol catalyzed by iridium complexes. Chem Lett 38(8):838–839. doi: 10.1246/cl.2009.838 CrossRefGoogle Scholar
  126. 126.
    Marcu I-C, Tanchoux N, Fajula F, Tichit D (2012) Catalytic conversion of ethanol into butanol over M–Mg–Al mixed oxide catalysts (M=Pd, Ag, Mn, Fe, Cu, Sm, Yb) obtained from LDH precursors. Catal Lett 143(1):23–30. doi: 10.1007/s10562-012-0935-9 CrossRefGoogle Scholar
  127. 127.
    Marcu I-C, Tichit D, Fajula F, Tanchoux N (2009) Catalytic valorization of bioethanol over Cu-Mg-Al mixed oxide catalysts. Catal Today 147(3–4):231–238. doi: 10.1016/j.cattod.2009.04.004 CrossRefGoogle Scholar
  128. 128.
    Arjona AR, Yague JLS, Canos AC, Domine ME (2014) Catalyst for obtaining higher alcohols. WO 2014001595 A1Google Scholar
  129. 129.
    Tsuchida T, Kubo J, Yoshioka T, Sakuma S, Takeguchi T, Ueda W (2008) Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst. J Catal 259(2):183–189. doi: 10.1016/j.jcat.2008.08.005 CrossRefGoogle Scholar
  130. 130.
    Ogo S, Onda A, Iwasa Y, Hara K, Fukuoka A, Yanagisawa K (2012) 1-Butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios. J Catal 296:24–30. doi: 10.1016/j.jcat.2012.08.019 CrossRefGoogle Scholar
  131. 131.
    Zhang C (2014) Catalyst and processes for producing butanol. US 2014/0179958 A1Google Scholar
  132. 132.
    Riittonen T, Eränen K, Mäki-Arvela P, Shchukarev A, Rautio A-R, Kordas K, Kumar N, Salmi T, Mikkola J-P (2015) Continuous liquid-phase valorization of bio-ethanol towards bio-butanol over metal modified alumina. Renew Energy 74:369–378. doi: 10.1016/j.renene.2014.08.052 CrossRefGoogle Scholar
  133. 133.
    Ghaziaskar HS, Xu C (2013) One-step continuous process for the production of 1-butanol and 1-hexanol by catalytic conversion of bio-ethanol at its sub−/supercritical state. RSC Adv 3(13):4271. doi: 10.1039/c3ra00134b CrossRefGoogle Scholar
  134. 134.
    Dowson GR, Haddow MF, Lee J, Wingad RL, Wass DF (2013) Catalytic conversion of ethanol into an advanced biofuel: unprecedented selectivity for n-butanol. Angew Chem 52(34):9005–9008. doi: 10.1002/anie.201303723 CrossRefGoogle Scholar
  135. 135.
    Jang YS, Malaviya A, Cho C, Lee J, Lee SY (2012) Butanol production from renewable biomass by Clostridia. Bioresour Technol 123:653–663. doi: 10.1016/j.biortech.2012.07.104 CrossRefPubMedGoogle Scholar
  136. 136.
    Garncarek Z, Kociolek-Balawejder E (2009) Biobutanol. Perspectives of the production development. Przem Chem 88(6):658–666Google Scholar
  137. 137.
    Li J, Baral N, Jha A (2014) Acetone–butanol–ethanol fermentation of corn stover by Clostridium species: present status and future perspectives. World J Microbiol Biotechnol 30(4):1145–1157. doi: 10.1007/s11274-013-1542-7 CrossRefPubMedGoogle Scholar
  138. 138.
    Jiang Y, Liu J, Jiang W, Yang Y, Yang S (2014) Current status and prospects of industrial bio-production of n-butanol in China. Biotechnol Adv. doi: 10.1016/j.biotechadv.2014.10.007 CrossRefPubMedGoogle Scholar
  139. 139.
    Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol 83(3):415–423. doi: 10.1007/s00253-009-2003-y CrossRefPubMedGoogle Scholar
  140. 140.
    Green EM (2011) Fermentative production of butanol – the industrial perspective. Curr Opin Biotechnol 22(3):337–343. doi: 10.1016/j.copbio.2011.02.004 CrossRefPubMedGoogle Scholar
  141. 141.
    CT (2015) Butanol’s high-value markets. Cobalt Technol. Accessed 15 Apr 2015
  142. 142.
    GB (2015) n-Butanol. Green Biol. Accessed 15 Apr 2015
  143. 143.
    Koepke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Durre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 107(29):13087–13092. doi: 10.1073/pnas.1004716107 CrossRefGoogle Scholar
  144. 144.
    Obenaus F, Droste W, Neumeister J (2011) Butenes. Ullmann’s Encyclopedia of Industrial Chemistry. doi: 10.1002/14356007.a04_483.pub2
  145. 145.
    Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10(6):305–311CrossRefPubMedGoogle Scholar
  146. 146.
    Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MMY, Arnold FH (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 13(3):345–352. doi: 10.1016/j.ymben.2011.02.004 CrossRefPubMedGoogle Scholar
  147. 147.
    Gak E, Tyurin M, Kiriukhin M (2014) Genome tailoring powered production of isobutanol in continuous CO2/H2 blend fermentation using engineered acetogen biocatalyst. J Ind Microbiol Biotechnol 41(5):763–781. doi: 10.1007/s10295-014-1416-5 CrossRefPubMedGoogle Scholar
  148. 148.
    Kolodziej R, Scheib J (2014) Bio-based isobutanol – a versatile, viable next generation biofuel. Digital RefiningGoogle Scholar
  149. 149.
    Buelter T, Meinhold P, Feldmann RMR, Hawkins AC, Urano J, Bastian S, Arnold F (2012) Engineered microorganisms capable of producing target compounds under anaerobic conditions. US 8097440 B1Google Scholar
  150. 150.
    Feldmann RMR, Gunawardena U, Urano J, Meinhold P, Aristidou A, Dundon CA, Smith C (2013) Yeast organism producing isobutanol at a high yield. US 8455239 B2Google Scholar
  151. 151.
    Bhalla R, Doig SD, Konde KS, Patil VSN, Patnaik R (2014) Process for maximizing biomass growth and butanol yield by feedback control. WO 2014151645 A1Google Scholar
  152. 152.
    Peterka A (2014) BP-DuPont venture eyes 2016 isobutanol production. Accessed 15 Apr 2015
  153. 153.
    Hoell D, Mensing T, Roggenbuck R, Sakuth M, Sperlich E, Urban T, Neier W, Strehlke G (2009) 2-Butanone. Ullmann’s Encyclopedia of Industrial Chemistry. doi: 10.1002/14356007.a04_475.pub2
  154. 154.
    Keen AR, Walker NJ, Peberdy MF (2009) The formation of 2-butanone and 2-butanol in cheddar cheese. J Dairy Res 41(02):249. doi: 10.1017/s002202990001966x CrossRefGoogle Scholar
  155. 155.
    Ghiaci P, Lameiras F, Norbeck J, Larsson C (2014) Production of 2-butanol through meso-2,3-butanediol consumption in lactic acid bacteria. FEMS Microbiol Lett 360(1):70–75. doi: 10.1111/1574-6968.12590 CrossRefPubMedGoogle Scholar
  156. 156.
    Generoso WC, Schadeweg V, Oreb M, Boles E (2014) Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr Opin Biotechnol 33C:1–7. doi: 10.1016/j.copbio.2014.09.004 CrossRefGoogle Scholar
  157. 157.
    Ji XJ, Huang H (2014) Bio-based butanediols production: the contributions of catalysis, metabolic engineering, and synthetic biology. In: Bisaria VS, Kondo A (eds) Bioprocessing of renewable resources to commodity bioproducts. Wiley, Hoboken, pp 261–288CrossRefGoogle Scholar
  158. 158.
    Zeng AP, Sabra W (2011) Microbial production of diols as platform chemicals: recent progresses. Curr Opin Biotechnol 22(6):749–757. doi: 10.1016/j.copbio.2011.05.005 CrossRefPubMedGoogle Scholar
  159. 159.
    Gräfje H, Körnig W, Weitz H-M, Reiß W, Steffan G, Diehl H, Bosche H, Schneider K, Kieczka H (2000) Butanediols, butenediol, and butynediol. Ullmann’s Encyclopedia of Industrial Chemistry doi:10.1002/14356007.a04_455Google Scholar
  160. 160.
    Bartowsky EJ, Henschke PA (2004) The ‘buttery’ attribute of wine – diacetyl – desirability, spoilage and beyond. Int J Food Microbiol 96(3):235–252. doi: 10.1016/j.ijfoodmicro.2004.05.013 CrossRefPubMedGoogle Scholar
  161. 161.
    Petrini P, Ponti SD, Fare S, Tanzi MC (1999) Polyurethane-maleamides for cardiovascular applications: synthesis and properties. J Mater Sci Mater Med 10(12):711–714. doi: 10.1023/A:1008970904334 CrossRefPubMedGoogle Scholar
  162. 162.
    Celinska E, Grajek W (2009) Biotechnological production of 2,3-butanediol – current state and prospects. Biotechnol Adv 27(6):715–725. doi: 10.1016/j.biotechadv.2009.05.002 CrossRefPubMedGoogle Scholar
  163. 163.
    Harden A, Walpole GS (1906) Chemical action of Bacillus lactis aerogenes (Escherich) on glucose and mannitol: production of 2, 3-butyleneglycol and acetylmethylcarbinol. Proc Royal Soc B Bio 77(519):399–405. doi: 10.1098/rspb.1906.0028 CrossRefGoogle Scholar
  164. 164.
    Fulmer EI, Christensen LM, Kendali AR (1933) Production of 2,3-butylene glycol by fermentation. Ind Eng Chem 25(7):798–800. doi: 10.1021/ie50283a019 CrossRefGoogle Scholar
  165. 165.
    Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29(3):351–364. doi: 10.1016/j.biotechadv.2011.01.007 CrossRefPubMedGoogle Scholar
  166. 166.
    Behr A, Dittmeyer R, Keim W, Kreysa G, Oberholz AE (2005) Aliphatische Zwischenprodukte. Winnacker – Küchler: Chemische Technik, Prozesse und Produkte: Organische Zwischenverbindungen, Polymere. Wiley-VCHGoogle Scholar
  167. 167.
    Myszkowski J, Zielinski AZ (1965) Synthèse de la butylène-chlorhydrine et sa conversion en méthyléthylcétone, oxyde de butylène et butylène-glycol. Chimie et industrie 93(3)Google Scholar
  168. 168.
    Weissermel K, Arpe H-J (1998) Spezielle Herstellungsverfahren für Olefine. Wiley-VCH, Weinheim, pp 70–99Google Scholar
  169. 169.
    Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, Li S (2010) Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 85(6):1751–1758. doi: 10.1007/s00253-009-2222-2 CrossRefPubMedGoogle Scholar
  170. 170.
    Qi G, Kang Y, Li L, Xiao A, Zhang S, Wen Z, Xu D, Chen S (2014) Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnol Biofuels 7(1):16. doi: 10.1186/1754-6834-7-16 CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Wang Q, Chen T, Zhao X, Chamu J (2012) Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production. Biotechnol Bioeng 109(7):1610–1621. doi: 10.1002/bit.24427 CrossRefPubMedGoogle Scholar
  172. 172.
    Guo X, Cao C, Wang Y, Li C, Wu M, Chen Y, Zhang C, Pei H, Xiao D (2014) Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2,3-butanediol production in Klebsiella pneumoniae strain. Biotechnol Biofuels 7(1):44. doi: 10.1186/1754-6834-7-44 CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Kim SJ, Seo SO, Park YC, Jin YS, Seo JH (2014) Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. J Biotechnol 192(Pt B):376–382. doi: 10.1016/j.jbiotec.2013.12.017 CrossRefPubMedGoogle Scholar
  174. 174.
    Nan H, Seo SO, Oh EJ, Seo JH, Cate JH, Jin YS (2014) 2,3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 98(12):5757–5764. doi: 10.1007/s00253-014-5683-x CrossRefPubMedGoogle Scholar
  175. 175.
    Xu Y, Chu H, Gao C, Tao F, Zhou Z, Li K, Li L, Ma C, Xu P (2014) Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab Eng 23:22–33. doi: 10.1016/j.ymben.2014.02.004 CrossRefPubMedGoogle Scholar
  176. 176.
    Ma C, Wang A, Qin J, Li L, Ai X, Jiang T, Tang H, Xu P (2009) Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol 82(1):49–57. doi: 10.1007/s00253-008-1732-7 CrossRefPubMedGoogle Scholar
  177. 177.
    Petrov K, Petrova P (2010) Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations. Appl Microbiol Biotechnol 87(3):943–949. doi: 10.1007/s00253-010-2545-z CrossRefPubMedGoogle Scholar
  178. 178.
    Zhang L, Sun J, Hao Y, Zhu J, Chu J, Wei D, Shen Y (2010) Microbial production of 2,3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H30. J Ind Microbiol Biotechnol 37(8):857–862. doi: 10.1007/s10295-010-0733-6 CrossRefPubMedGoogle Scholar
  179. 179.
    Hässler T, Schieder D, Pfaller R, Faulstich M, Sieber V (2012) Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresour Technol 124:237–244. doi: 10.1016/j.biortech.2012.08.047 CrossRefPubMedGoogle Scholar
  180. 180.
    Jurchescu IM, Hamann J, Zhou X, Ortmann T, Kuenz A, Prusse U, Lang S (2013) Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Appl Microbiol Biotechnol 97(15):6715–6723. doi: 10.1007/s00253-013-4981-z CrossRefPubMedGoogle Scholar
  181. 181.
    Li L, Zhang L, Li K, Wang Y, Gao C, Han B, Ma C, Xu P (2013) A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical. Biotechnol Biofuels 6(1):123. doi: 10.1186/1754-6834-6-123 CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Yang T, Rao Z, Zhang X, Lin Q, Xia H, Xu Z, Yang S (2011) Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens. J Basic Microbiol 51(6):650–658. doi: 10.1002/jobm.201100033 CrossRefPubMedGoogle Scholar
  183. 183.
    Rojas Martinez AM, Segarra Manzano S, Montesinos Paes A, Tortajada Serra M, Ramon Vidal D, Santos Mazorra VE, Ladero Gallan M, Garcia-Ochoa Soria F, Ripoll Morales V (2014) Method for producing 2,3-butanediol using improved strains of Raoultella planticola. WO 2014013330 A2Google Scholar
  184. 184.
    Tsvetanova F, Petrova P, Petrov K (2014) 2,3-butanediol production from starch by engineered Klebsiella pneumoniae G31-A. Appl Microbiol Biotechnol 98(6):2441–2451. doi: 10.1007/s00253-013-5418-4 CrossRefPubMedGoogle Scholar
  185. 185.
    Jiang L-Q, Fang Z, Zhao Z-l, He F, Li H-b (2015) 2,3-Butanediol and acetoin production from enzymatic hydrolysate of ionic liquid-pretreated cellulose by Paenibacillus polymyxa. BioResources 10(1). doi: 10.15376/biores.10.1.1318-1329
  186. 186.
    Koepke M, Gerth ML, Maddock DJ, Mueller AP, Liew F, Simpson SD, Patrick WM (2014) Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl Environ Microbiol 80(11):3394–3403. doi: 10.1128/AEM.00301-14 CrossRefGoogle Scholar
  187. 187.
    Koepke M, Mihalcea C, Liew F, Tizard JH, Ali MS, Conolly JJ, Al-Sinawi B, Simpson SD (2011) 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77(15):5467–5475. doi: 10.1128/AEM.00355-11 CrossRefGoogle Scholar
  188. 188.
    Koepke M, Havill A (2014) LanzaTech’s route to bio-butadiene. Catal Rev 27(6).
  189. 189.
    Ge L, Wu X, Chen J, Wu J (2011) A new method for industrial production of 2,3-butanediol. J Biomater Nanobiotechnol 02(03):335–336. doi: 10.4236/jbnb.2011.23041 CrossRefGoogle Scholar
  190. 190.
    Sampat BG (2011) 1,4-Butanediol: a techno-commercial profile. Chemical Weekly, pp 205–211Google Scholar
  191. 191.
    Tan JPM, Jahim J, Wu TY, Harun S, Kim BH, Mohammad AW (2014) Insight into biomass as a renewable carbon source for the production of succinic acid and the factors affecting the metabolic flux toward higher succinate yield. Ind Eng Chem Res 53(42):16123–16134. doi: 10.1021/ie502178j CrossRefGoogle Scholar
  192. 192.
    Delhomme C, Weuster-Botz D, Kuehn FE (2009) Succinic acid from renewable resources as a C4 building-block chemical – a review of the catalytic possibilities in aqueous media. Green Chem 11(1):13–26. doi: 10.1039/b810684c CrossRefGoogle Scholar
  193. 193.
    Plot P (2012) BioAmber produces biobased 1,4-butanediol from biosuccinic acidGoogle Scholar
  194. 194.
    Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 31(5):647–654. doi: 10.1002/ceat.200800063 CrossRefGoogle Scholar
  195. 195.
    Rao VNM (1988) Process for preparing butyrolactones and butanediols. US 4782167 AGoogle Scholar
  196. 196.
    Bhattacharyya A, Manila MD (2006) Catalysts for maleic acid hydrogenation to 1,4-butanediol. US 20060004212 A1Google Scholar
  197. 197.
    Burk MJ (2010) Sustainable production of industrial chemicals from sugars. Int Sugar J 112(1333):30–35Google Scholar
  198. 198.
    Burk MJ, Van Dien SJ, Burgard AP, Niu W (2015) Composition and methods for the biosynthesis of 1,4-butanediol and its precursors. US 8969054 B2Google Scholar
  199. 199.
    Genomatica (2015) Commercial-scale production, customer validation, licenses. Accessed 14 Apr 2015
  200. 200.
    Dittmeyer R, Keim W, Kreysa G, Oberholz A (2005) Chemische Technik – Prozesse und Produkte, vol 5. Wiley-VCH, Weinheim, pp 55–68Google Scholar
  201. 201.
    Forestière A, Olivier-Bourbigou H, Saussine L (2009) Oligomerization of monoolefins by homogeneous catalysts. Oil Gas Sci Technol Revue de l'IFP 64(6):649–667. doi: 10.2516/ogst/2009027 CrossRefGoogle Scholar
  202. 202.
    Olson ES, Sharma RK, Aulich TR (2004) Higher-alcohols biorefinery. Appl Biochem Biotechnol 113–116:913–932. doi: 10.1007/978-1-59259-837-3_74 CrossRefPubMedGoogle Scholar
  203. 203.
    Lamsen EN, Atsumi S (2012) Recent progress in synthetic biology for microbial production of C3-C10 alcohols. Front Microbiol 3:196. doi: 10.3389/fmicb.2012.00196 CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Moon HJ, Jeya M, Kim IW, Lee JK (2010) Biotechnological production of erythritol and its applications. Appl Microbiol Biotechnol 86(4):1017–1025. doi: 10.1007/s00253-010-2496-4 CrossRefPubMedGoogle Scholar
  205. 205.
    Zhang J, Li J-b WS-B, Liu Y (2013) Advances in the catalytic production and utilization of sorbitol. Ind Eng Chem Res 52(34):11799–11815. doi: 10.1021/ie4011854 CrossRefGoogle Scholar
  206. 206.
    Ghosh S, Sudha ML (2012) A review on polyols: new frontiers for health-based bakery products. Int J Food Sci Nutr 63(3):372–379. doi: 10.3109/09637486.2011.627846 CrossRefPubMedGoogle Scholar
  207. 207.
    TMR (2013) Global sorbitol market – isosorbide, propylene glycol, glycerol & other downstream opportunities, applications (toothpaste, vitamin C, sweetener etc.), size, share, growth, trends and forecast 2012–2018. vol 2015. Accessed 18 May 2015
  208. 208.
    Buyer R (2014) Xylitol – a global market overview. Accessed 18 Mar 2015
  209. 209.
    Bhatt SM, Mohan A, Srivastava SK (2013) Challenges in enzymatic route of mannitol production. ISRN Biotechnol 2013:1–13. doi: 10.5402/2013/914187 CrossRefGoogle Scholar
  210. 210.
    Silveira MM, Jonas R (2002) The biotechnological production of sorbitol. Appl Microbiol Biotechnol 59(4–5):400–408. doi: 10.1007/s00253-002-1046-0 CrossRefPubMedGoogle Scholar
  211. 211.
    Bruggeman JP, Bettinger CJ, Langer R (2010) Biodegradable xylitol-based elastomers: in vivo behavior and biocompatibility. J Biomed Mater Res Part A 95A(1):92–104. doi: 10.1002/jbm.a.32733 CrossRefGoogle Scholar
  212. 212.
    Granstroem TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74(2):273–276. doi: 10.1007/s00253-006-0760-4 CrossRefGoogle Scholar
  213. 213.
    Prakasham RS, Rao RS, Hobbs PJ (2009) Current trends in biotechnological production of xylitol and future prospects. Curr Trends Biotechnol Pharm 3(1):8–36Google Scholar
  214. 214.
    Chen X, Jiang Z-H, Chen S, Qin W (2010) Microbial and bioconversion production of D-xylitol and its detection and application. Int J Biol Sci 6(7):834–844CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Chen Y (2011) Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review. J Ind Microbiol Biotechnol 38(5):581–597. doi: 10.1007/s10295-010-0894-3 CrossRefPubMedGoogle Scholar
  216. 216.
    Granstroem TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol. Appl Microbiol Biotechnol 74(2):277–281. doi: 10.1007/s00253-006-0761-3 CrossRefGoogle Scholar
  217. 217.
    Rafiqul ISM, Sakinah AMM (2013) Processes for the production of xylitol – a review. Food Rev Int 29(2):127–156. doi: 10.1080/87559129.2012.714434 CrossRefGoogle Scholar
  218. 218.
    Grembecka M (2015) Sugar alcohols – their role in the modern world of sweeteners: a review. Eur Food Res Technol. doi: 10.1007/s00217-015-2437-7 CrossRefGoogle Scholar
  219. 219.
    Thomas S, Head WA, Cameron CA (2007) A process for producing erythritol. WO 2007005299 A1Google Scholar
  220. 220.
    Edlauer R, Trimmel S (2012) Process for producing erythritol using moniliella tomentosa strains in the presence of neutral inorganic nitrates, such as potassium nitrate, ammonium nitrate or sodium nitrate, as nitrogen source. US 8187847 B2Google Scholar
  221. 221.
    Besson M, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114(3):1827–1870. doi: 10.1021/cr4002269 CrossRefPubMedGoogle Scholar
  222. 222.
    Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502. doi: 10.1021/cr050989d CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Henning Kuhz
    • 1
  • Anja Kuenz
    • 1
  • Ulf Prüße
    • 1
    Email author
  • Thomas Willke
    • 1
  • Klaus-Dieter Vorlop
    • 1
  1. 1.Thünen-Institute of Agricultural TechnologyBraunschweigGermany

Personalised recommendations