Biorefineries pp 177-215 | Cite as

Lignocellulose-Biorefinery: Ethanol-Focused

  • A. DuweEmail author
  • N. Tippkötter
  • R. Ulber
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 166)


The development prospects of the world markets for petroleum and other liquid fuels are diverse and partly contradictory. However, comprehensive changes for the energy supply of the future are essential. Notwithstanding the fact that there are still very large deposits of energy resources from a geological point of view, the finite nature of conventional oil reserves is indisputable. To reduce our dependence on oil, the EU, the USA, and other major economic zones rely on energy diversification. For this purpose, alternative materials and technologies are being sought, and is most obvious in the transport sector. The objective is to progressively replace fossil fuels with renewable and more sustainable fuels. In this respect, biofuels have a pre-eminent position in terms of their capability of blending with fossil fuels and being usable in existing cars without substantial modification. Ethanol can be considered as the primary renewable liquid fuel. In this chapter enzymes, micro-organisms, and processes for ethanol production based on renewable resources are described.


Bioethanol Biorefinery Lignocellulose feedstook 



We thank the Carl-Zeiss-Stiftung for funding the Centre for Resource Efficient Chemistry and Raw Material Change (RCR) as well as the German Federal Ministry of Food, Agriculture and Consumer Protection (BMEL), represented by the Fachagentur Nachwachsende Rohstoffe e.V. (FNR) for funding the research – junior group BioSats.


  1. 1.
    U.S. Energy Information Administration (2014) International energy outlook 2014: world petroleum and other liquid fuels. Accessed 27 Apr 2015
  2. 2.
    Bundesanstalt für Geowissenschaften und Rohstoffe (2014) Energiestudie 2014: Reserven, Ressourcen und Verfügbarkeit von Energierohstoffen. Accessed 22 Apr 2015
  3. 3.
    European Commission (2015) Newsletter March 2015. Accessed 22 Apr 2015
  4. 4.
    EU-U.S. Energy Council (2009) Establishment and objectives of the EU-US Energy Council. Accessed 22 Apr 2015
  5. 5.
    Clark JH, Luque R, Matharu AS (2012) Green chemistry, biofuels, and biorefinery. Annu Rev Chem Biomol Eng 3(1):183–207. doi: 10.1146/annurev-chembioeng-062011-081014 CrossRefPubMedGoogle Scholar
  6. 6.
    Datta R, Maher MA, Jones C, et al. (2011) Ethanol-the primary renewable liquid fuel. J Chem Technol Biotechnol 86(4):473–480. doi: 10.1002/jctb.2580 CrossRefGoogle Scholar
  7. 7.
    Ford predicts fuel from vegetation (1925) The New York Times, Boston (AP), p 24Google Scholar
  8. 8.
    Sivakumar G, Vail DR, Xu J, et al. (2010) Bioethanol and biodiesel: alternative liquid fuels for future generations. Eng Life Sci 10(1):8–18. doi: 10.1002/elsc.200900061 CrossRefGoogle Scholar
  9. 9.
    Gnansounou E (2010) Production and use of lignocellulosic bioethanol in Europe: current situation and perspectives. Bioresour Technol 101(13):4842–4850. doi: 10.1016/j.biortech.2010.02.002 CrossRefPubMedGoogle Scholar
  10. 10.
    Sticklen MB, Alameldin HF, Oraby HF (2014) Towards cellulosic biofuels evolution: using the petro-industry model. Adv Crop Sci Technol 2(3). doi: 10.4172/2329-8863.1000131
  11. 11.
    Baeyens J, Kang Q, Appels L, et al. (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energy Combust Sci 47:60–88. doi: 10.1016/j.pecs.2014.10.003 CrossRefGoogle Scholar
  12. 12.
    National Renewable Energy Laboratory (2009.) What is a biorefinery? Accessed 27 Apr 2015
  13. 13.
    Fachagentur Nachwachsende Rohstoffe e. V. (2012) Roadmap Bioraffinerien. Accessed 23 Apr 2015
  14. 14.
    Grimm V, Eickenbusch H (2012) Rohstoffquelle Biomasse – Stand und Perspektiven. Accessed 27 Apr 2015
  15. 15.
    The White House Washington (2012) National Bioeconomy Blueprint. Accessed 23 Apr 2015
  16. 16.
    Renewable Fuels Association (2015) Biorefinery locations. Accessed 23 Apr 2015
  17. 17.
    U.S. Department of Energy (2014) Integrated biorefineries. Accessed 23 Apr 2015
  18. 18.
    United States Department of Agriculture (2014) Biorefining national plan: 5-year action plan 2014-2019. Accessed 23 Apr 2015
  19. 19.
    Menetrez MY (2014) Meeting the U.S. renewable fuel standard: a comparison of biofuel pathways. Biofuel Res J 1(4):110–122CrossRefGoogle Scholar
  20. 20.
    Soccol CR, Faraco V, Karp S, et al. (2011) Lignocellulosic bioethanol: current status and future perspectives. In: Biofuels: alternative feedstocks and conversion processes, 1st edn. Academic Press, Amsterdam, Boston, pp. 101–122Google Scholar
  21. 21.
    Viikari L, Vehmaanperä J, Koivula A (2012) Lignocellulosic ethanol: from science to industry. Biomass Bioenergy 46:13–24CrossRefGoogle Scholar
  22. 22.
    Larsen J, Haven MØ, Thirup L (2012) Inbicon makes lignocellulosic ethanol a commercial reality. Biomass Bioenergy 46:36–45. doi: 10.1016/j.biombioe.2012.03.033 CrossRefGoogle Scholar
  23. 23.
    Ho DP, Ngo HH, Guo W (2014) A mini review on renewable sources for biofuel. Bioresour Technol 169:742–749. doi: 10.1016/j.biortech.2014.07.022 CrossRefPubMedGoogle Scholar
  24. 24.
    Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467. doi: 10.1016/j.pecs.2012.03.002 CrossRefGoogle Scholar
  25. 25.
    Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energ Conver Manage 51(7):1412–1421. doi: 10.1016/j.enconman.2010.01.015 CrossRefGoogle Scholar
  26. 26.
    Muffler K, Ulber R (2008) Use of renewable raw materials in the chemical industry – beyond sugar and starch. Chem Eng Technol 31(5):638–646. doi: 10.1002/ceat.200800066 CrossRefGoogle Scholar
  27. 27.
    U.S. Department of Energy (2004) Biomass feedstock composition and property database. Accessed 27 Apr 2015
  28. 28.
    Speight JG (1999) The chemistry and technology of petroleum, 3rd ed., rev. and expanded. Chemical industries, vol 76. Marcel Dekker, New YorkGoogle Scholar
  29. 29.
    Cherubini F, Strømman AH (2011) Principles of biorefining. In: Biofuels: alternative feedstocks and conversion processes, 1st edn. Academic Press, Amsterdam, Boston, pp. 3–24CrossRefGoogle Scholar
  30. 30.
    Advanced ethanol council cellulosic biofuels: industry progress report 2012-2013. Accessed 16 Apr 2015
  31. 31.
  32. 32.
    Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38(4):522–550. doi: 10.1016/j.pecs.2012.02.002 CrossRefGoogle Scholar
  33. 33.
    Alpena Biorefinery (2010) Green Power+ Technology. Accessed 28 Apr 2015
  34. 34.
    Avapco (2011) AVAP Technology. Accessed 28 Apr 2015
  35. 35.
    Beta Renewables (2013) Proesa/biorefinery. Accessed 28 Apr 2015
  36. 36.
    Beta Renewables (2013) The Green Revolultion: PROESA. Accessed 28 Apr 2015
  37. 37.
    Beta Renewables (2014) BIOCHEMTEX and BETA RENEWABLES signed a contract with ENERGOCHEMICA SE for the construction of a 2nd Generation Ethanol plant in the Slovak Republic. Accessed 28 Apr 2015
  38. 38.
    Rødsrud G, Lersch M, Sjöde A (2012) History and future of world’s most advanced biorefinery in operation. Biomass Bioenergy 46:46–59. doi: 10.1016/j.biombioe.2012.03.028 CrossRefGoogle Scholar
  39. 39.
    IEA Bioenergy Task 39 (2013) Status of advanced biofuels demonstration facilities in 2012. Accessed 28 Apr 2015
  40. 40.
    Clariant (2014) Sunliquid® – an efficient production process for cellulosic ethanol. Accessed 28 Apr 2015
  41. 41.
    Lignocellulose Bioraffinerie Phase II Schlüsselkomponenten für biobasierte Produkte. Accessed 29 Apr 2015
  42. 42.
    Laure S, Leschinsky M, Fröhling M, et al. (2014) Assesment of an organosolv lignocellulose biorefinery concept based on a material flow analysis of a pilot plant. Cellul Chem Technol 48(9–10):739–798Google Scholar
  43. 43.
    DuPont (2013) DuPont cellulosic ethanol: commercializing advanced renewable fuel in Iowa. Accessed 28 Apr 2015
  44. 44.
    National Renewable Energy Laboratory (2015) NREL science crucial to success of new biofuels plants. Accessed 28 Apr 2015
  45. 45.
    Inbicon Danish projects. Accessed 28 Apr 2015
  46. 46.
    Inbicon Biomass refinery. Accessed 28 Apr 2015
  47. 47.
    Inbicon Status for the Inbicon technology by end of 2014. Accessed 29 Apr 2015
  48. 48.
    Mascoma (2015) Consolidated Bioprocessing (CBP) for high efficiency fermentation. Accessed 29 Apr 2015
  49. 49.
    Sekab Grüne Chemie und grüne Bioraffinerie - Technologie. Accessed 29 Apr 2015
  50. 50.
    Procethol 2G Le Project Futurol. Accessed 29 Apr 2015
  51. 51.
    Procethol 2G (2011.) Project Futurol: Inauguration de l’usine pilote Accessed 29 Apr 2015
  52. 52.
    Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3(1):4. doi: 10.1186/1754-6834-3-4 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500. doi: 10.1021/cr900339w CrossRefPubMedGoogle Scholar
  54. 54.
    Li Q, Song J, Peng S, et al. (2014) Plant biotechnology for lignocellulosic biofuel production. Plant Biotechnol J 12(9):1174–1192. doi: 10.1111/pbi.12273 CrossRefPubMedGoogle Scholar
  55. 55.
    Payne CM, Knott BC, Mayes HB, et al. (2015) Fungal cellulases. Chem Rev 115(3):1308–1448. doi: 10.1021/cr500351c CrossRefPubMedGoogle Scholar
  56. 56.
    Wang J, Xi J, Wang Y (2015) Recent advances in the catalytic production of glucose from lignocellulosic biomass. Green Chem 17(2):737–751. doi: 10.1039/c4gc02034k CrossRefGoogle Scholar
  57. 57.
    Wang Y, Song H, Peng L, et al. (2014) Recent developments in the catalytic conversion of cellulose. Biotechnol Biotechnol Equip 28(6):981–988. doi: 10.1080/13102818.2014.980049 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. Comput Chem Eng 2(12):1096–1107. doi: 10.1002/cssc.200900188 CrossRefGoogle Scholar
  59. 59.
    Zhou C, Xia X, Lin C, et al. (2011) Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev 40(11):5588. doi: 10.1039/c1cs15124j CrossRefPubMedGoogle Scholar
  60. 60.
    Liu C, Wang F, Stiles AR, et al. (2012) Ionic liquids for biofuel production: opportunities and challenges. Appl Energy 92:406–414. doi: 10.1016/j.apenergy.2011.11.031 CrossRefGoogle Scholar
  61. 61.
    Wahlström RM, Suurnäkki A (2015) Enzymatic hydrolysis of lignocellulosic polysaccharides in the presence of ionic liquids. Green Chem 17(2):694–714. doi: 10.1039/c4gc01649a CrossRefGoogle Scholar
  62. 62.
    Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2(4):707–738Google Scholar
  63. 63.
    Binod P, Janu KU, Sindhu R, et al. (2011) Hydrolysis of lignocellulosic biomass for bioethanol production. In: Biofuels: alternative feedstocks and conversion processes, 1st edn. Academic Press, Amsterdam, Boston, pp. 229–250CrossRefGoogle Scholar
  64. 64.
    Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech. doi: 10.1007/s13205-015-0279-4 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    van der Pol EC, Bakker RR, Baets P, et al. (2014) By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio)chemicals and fuels. Appl Microbiol Biotechnol 98(23):9579–9593. doi: 10.1007/s00253-014-6158-9 CrossRefPubMedGoogle Scholar
  66. 66.
    Xu Z, Huang F (2014) Pretreatment methods for bioethanol production. Appl Biochem Biotechnol 174(1):43–62. doi: 10.1007/s12010-014-1015-y CrossRefPubMedGoogle Scholar
  67. 67.
    Modenbach AA, Nokes SE (2012) The use of high-solids loadings in biomass pretreatment – a review. Biotechnol Bioeng 109(6):1430–1442. doi: 10.1002/bit.24464 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Gullón P, Romaní A, Vila C, et al. (2012) Potential of hydrothermal treatments in lignocellulose biorefineries. Biofuels Bioprod Biorefin 6(2):219–232. doi: 10.1002/bbb.339 CrossRefGoogle Scholar
  69. 69.
    Agbor VB, Cicek N, Sparling R, et al. (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685. doi: 10.1016/j.biotechadv.2011.05.005 CrossRefPubMedGoogle Scholar
  70. 70.
    Bornscheuer U, Buchholz K, Seibel J (2014) Enzymatic degradation of (ligno)cellulose. Angew Chem Int Ed 53(41):10876–10893. doi: 10.1002/anie.201309953 CrossRefGoogle Scholar
  71. 71.
    Yoon LW, Ang TN, Ngoh GC, et al. (2014) Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass Bioenergy 67:319–338. doi: 10.1016/j.biombioe.2014.05.013 CrossRefGoogle Scholar
  72. 72.
    Bhattacharya AS, Bhattacharya A, Pletschke BI (2015) Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production. Biotechnol Lett. doi: 10.1007/s10529-015-1779-3 CrossRefPubMedGoogle Scholar
  73. 73.
    Scharf ME (2015) Termites as targets and models for biotechnology. Annu Rev Entomol 60(1):77–102. doi: 10.1146/annurev-ento-010814-020902 CrossRefPubMedGoogle Scholar
  74. 74.
    Xie S, Syrenne R, Sun S, et al. (2014) Exploration of Natural Biomass Utilization Systems (NBUS) for advanced biofuel – from systems biology to synthetic design. Curr Opin Biotechnol 27:195–203. doi: 10.1016/j.copbio.2014.02.007 CrossRefPubMedGoogle Scholar
  75. 75.
    Alfaro M, Oguiza JA, Ramírez L, et al. (2014) Comparative analysis of secretomes in basidiomycete fungi. J Proteomics 102:28–43. doi: 10.1016/j.jprot.2014.03.001 CrossRefPubMedGoogle Scholar
  76. 76.
    Resch MG, Donohoe BS, Baker JO, et al. (2013) Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energ Environ Sci 6(6):1858. doi: 10.1039/c3ee00019b CrossRefGoogle Scholar
  77. 77.
    Lynd LR, Weimer PJ, van Zyl WH, et al. (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577. doi: 10.1128/MMBR.66.3.506-577.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Sørensen A, Lübeck M, Lübeck P, et al. (2013) Fungal beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules 3(3):612–631. doi: 10.3390/biom3030612 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Singhania RR, Patel AK, Sukumaran RK, et al. (2013) Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol 127:500–507. doi: 10.1016/j.biortech.2012.09.012 CrossRefPubMedGoogle Scholar
  80. 80.
    Harris PV, Xu F, Kreel NE, et al. (2014) New enzyme insights drive advances in commercial ethanol production. Curr Opin Chem Biol 19:162–170. doi: 10.1016/j.cbpa.2014.02.015 CrossRefPubMedGoogle Scholar
  81. 81.
    Erdei B, Galbe M, Zacchi G (2013) Simultaneous saccharification and co-fermentation of whole wheat in integrated ethanol production. Biomass Bioenergy 56:506–514. doi: 10.1016/j.biombioe.2013.05.032 CrossRefGoogle Scholar
  82. 82.
    Karagöz P, Rocha IV, Özkan M, et al. (2012) Alkaline peroxide pretreatment of rapeseed straw for enhancing bioethanol production by Same Vessel Saccharification and Co-Fermentation. Bioresour Technol 104:349–357. doi: 10.1016/j.biortech.2011.10.075 CrossRefPubMedGoogle Scholar
  83. 83.
    Novozymes (2010) Cellulosic ethanol: Novozymes Cellic® CTec2 and HTec2 – enzymes for hydrolysis of lignocellulosic. Accessed 28 Apr 2015
  84. 84.
    Linke D, Matthes R, Nimtz M, et al. (2013) An esterase from the basidiomycete Pleurotus sapidus hydrolyzes feruloylated saccharides. Appl Microbiol Biotechnol 97(16):7241–7251. doi: 10.1007/s00253-012-4598-7 CrossRefPubMedGoogle Scholar
  85. 85.
    Bhattacharya A, Pletschke BI (2014) Magnetic cross-linked enzyme aggregates (CLEAs): a novel concept towards carrier free immobilization of lignocellulolytic enzymes. Enzyme Microbiol Technol 61–62:17–27. doi: 10.1016/j.enzmictec.2014.04.009 CrossRefGoogle Scholar
  86. 86.
    Vaaje-Kolstad G, Westereng B, Horn SJ, et al. (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330(6001):219–222. doi: 10.1126/science.1192231 CrossRefPubMedGoogle Scholar
  87. 87.
    Vermaas JV, Crowley MF, Beckham GT, et al. (2015) Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases. J Phys Chem B:150402092340004. doi: 10.1021/acs.jpcb.5b00778 CrossRefPubMedGoogle Scholar
  88. 88.
    Manavalan T, Manavalan A, Heese K (2015) Characterization of lignocellulolytic enzymes from white-rot fungi. Curr Microbiol 70(4):485–498. doi: 10.1007/s00284-014-0743-0 CrossRefPubMedGoogle Scholar
  89. 89.
    Alcalde M (2015) Engineering the ligninolytic enzyme consortium. Trends Biotechnol 33(3):155–162. doi: 10.1016/j.tibtech.2014.12.007 CrossRefPubMedGoogle Scholar
  90. 90.
    Zeng Y, Zhao S, Yang S, et al. (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:38–45. doi: 10.1016/j.copbio.2013.09.008 CrossRefPubMedGoogle Scholar
  91. 91.
    Pollegioni L, Tonin F, Rosini E (2015) Lignin-degrading enzymes. FEBS J 282(7):1190–1213. doi: 10.1111/febs.13224 CrossRefPubMedGoogle Scholar
  92. 92.
    Linger JG, Vardon DR, Guarnieri MT, et al. (2014) Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci U S A 111(33):12013–12018. doi: 10.1073/pnas.1410657111 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Sweeney MD, Xu F (2012) Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2(4):244–263. doi: 10.3390/catal2020244 CrossRefGoogle Scholar
  94. 94.
    Paliwal R, Rawat AP, Rawat M, et al. (2012) Bioligninolysis: recent updates for biotechnological solution. Appl Biochem Biotechnol 167(7):1865–1889. doi: 10.1007/s12010-012-9735-3 CrossRefPubMedGoogle Scholar
  95. 95.
    Bugg TDH, Ahmad M, Hardiman EM, et al. (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22(3):394–400. doi: 10.1016/j.copbio.2010.10.009 CrossRefPubMedGoogle Scholar
  96. 96.
    Brown ME, Chang MCY (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1–7. doi: 10.1016/j.cbpa.2013.11.015 CrossRefPubMedGoogle Scholar
  97. 97.
    Bugg TDH, Ahmad M, Hardiman EM, et al. (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28(12):1883. doi: 10.1039/c1np00042j CrossRefPubMedGoogle Scholar
  98. 98.
    Chokhawala HA, Roche CM, Kim T, et al. (2015) Mutagenesis of Trichoderma reesei endoglucanase I: impact of expression host on activity and stability at elevated temperatures. BMC Biotechnol 15(1):1083. doi: 10.1186/s12896-015-0118-z CrossRefGoogle Scholar
  99. 99.
    Nordwald EM, Brunecky R, Himmel ME, et al. (2014) Charge engineering of cellulases improves ionic liquid tolerance and reduces lignin inhibition. Biotechnol Bioeng 111(8):1541–1549. doi: 10.1002/bit.25216 CrossRefPubMedGoogle Scholar
  100. 100.
    Ahmad S, Ma H, Akhtar MW, et al. (2014) Directed evolution of Clostridium phytofermentans glycoside hydrolase family 9 endoglucanase for enhanced specific activity on solid cellulosic substrate. Bioenergy Res 7(1):381–388. doi: 10.1007/s12155-013-9382-8 CrossRefGoogle Scholar
  101. 101.
    Fernández-Fueyo E, Ruiz-Dueñas FJ, Martínez AT (2014) Engineering a fungal peroxidase that degrades lignin at very acidic pH. Biotechnol Biofuels 7(1):114. doi: 10.1186/1754-6834-7-114 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Bu L, Crowley MF, Himmel ME, et al. (2013) Computational investigation of the pH dependence of loop flexibility and catalytic function in glycoside hydrolases. J Biol Chem 288(17):12175–12186. doi: 10.1074/jbc.M113.462465 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Tishkov VI, Gusakov AV, Cherkashina AS, et al. (2013) Engineering the pH-optimum of activity of the GH12 family endoglucanase by site-directed mutagenesis. Biochimie 95(9):1704–1710. doi: 10.1016/j.biochi.2013.05.018 CrossRefPubMedGoogle Scholar
  104. 104.
    Lee H, Chang C, Jeng W, et al. (2012) Mutations in the substrate entrance region of beta-glucosidase from Trichoderma reesei improve enzyme activity and thermostability. Protein Eng Des Sel 25(11):733–740. doi: 10.1093/protein/gzs073 CrossRefPubMedGoogle Scholar
  105. 105.
    Voutilainen SP, Murray PG, Tuohy MG, et al. (2010) Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng Des Sel 23(2):69–79. doi: 10.1093/protein/gzp072 CrossRefPubMedGoogle Scholar
  106. 106.
    Pei X, Yi Z, Tang C, et al. (2011) Three amino acid changes contribute markedly to the thermostability of β-glucosidase BglC from Thermobifida fusca. Bioresour Technol 102(3):3337–3342. doi: 10.1016/j.biortech.2010.11.025 CrossRefPubMedGoogle Scholar
  107. 107.
    Nakatani Y, Yamada R, Ogino C, et al. (2013) Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose. Microb Cell Fact 12(1):66. doi: 10.1186/1475-2859-12-66 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Quintero JA, Rincón LE, Cardona CA (2011) Production of bioethanol from agroindustrial residues as feedstocks. In: Biofuels: alternative feedstocks and conversion processes, 1st edn. Academic Press, Amsterdam, Boston, pp. 251–285CrossRefGoogle Scholar
  109. 109.
    Rana V, Eckard AD, Teller P, et al. (2014) On-site enzymes produced from Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine. Bioresour Technol 154:282–289. doi: 10.1016/j.biortech.2013.12.059 CrossRefPubMedGoogle Scholar
  110. 110.
    Pereira BMP, Alvarez TM, da Silva Delabona P, et al. (2013) Cellulase on-site production from sugar cane bagasse using Penicillium echinulatum. Bioenergy Res 6(3):1052–1062. doi: 10.1007/s12155-013-9340-5 CrossRefGoogle Scholar
  111. 111.
    Sørensen A, Teller PJ, Lübeck PS, et al. (2011) Onsite enzyme production during bioethanol production from biomass: screening for suitable fungal strains. Appl Microbiol Biotechnol 164(7):1058–1070. doi: 10.1007/s12010-011-9194-2 CrossRefGoogle Scholar
  112. 112.
    Gyalai-Korpos M, Mangel R, Alvira P, et al. (2011) Cellulase production using different streams of wheat grain- and wheat straw-based ethanol processes. J Ind Microbiol Biotechnol 38(7):791–802. doi: 10.1007/s10295-010-0811-9 CrossRefPubMedGoogle Scholar
  113. 113.
    Paulová L, Patáková P, Branská B, et al. (2014) Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnol Adv. doi: 10.1016/j.biotechadv.2014.12.002 CrossRefPubMedGoogle Scholar
  114. 114.
    Scully S, Orlygsson J (2015) Recent advances in second generation ethanol production by Thermophilic bacteria. Energies 8(1):1–30. doi: 10.3390/en8010001 CrossRefGoogle Scholar
  115. 115.
    Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energ Conver Manage 52(2):858–875. doi: 10.1016/j.enconman.2010.08.013 CrossRefGoogle Scholar
  116. 116.
    Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26(1):89–105. doi: 10.1016/j.biotechadv.2007.09.002 CrossRefPubMedGoogle Scholar
  117. 117.
    van Maris AJA, Abbott DA, Bellissimi E, et al. (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. A Van Leeuw J Microb 90(4):391–418. doi: 10.1007/s10482-006-9085-7 CrossRefGoogle Scholar
  118. 118.
    Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69(6):627–642. doi: 10.1007/s00253-005-0229-x CrossRefPubMedGoogle Scholar
  119. 119.
    Kang Q, Appels L, Tan T, et al. (2014) Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J 2014(3):1–13. doi: 10.1155/2014/298153 CrossRefGoogle Scholar
  120. 120.
    Rogers PL, Jeon YJ, Lee KJ, et al. (2007) Zymomonas mobilis for fuel ethanol and higher value products. In: Olsson L, Ahring BK (eds) Biofuels, vol 108. Springer, Berlin, New York, pp. 263–288CrossRefGoogle Scholar
  121. 121.
    Flamholz A, Noor E, Bar-Even A, et al. (2013) Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc Natl Acad Sci U S A 110(24):10039–10044. doi: 10.1073/pnas.1215283110 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Kalnenieks U, Pentjuss A, Rutkis R, et al. (2014) Modeling of Zymomonas mobilis central metabolism for novel metabolic engineering strategies. Front Microbiol 5. doi: 10.3389/fmicb.2014.00042
  123. 123.
    Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26. doi: 10.1007/s00253-004-1642-2 CrossRefPubMedGoogle Scholar
  124. 124.
    Fu S, Hu J, Liu H (2014) Inhibitory effects of biomass degradation products on ethanol fermentation and a strategy to overcome them. BioResources 9(3):4323–4335CrossRefGoogle Scholar
  125. 125.
    Cray JA, Stevenson A, Ball P, et al. (2015) Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms. Curr Opin Biotechnol 33:228–259. doi: 10.1016/j.copbio.2015.02.010 CrossRefPubMedGoogle Scholar
  126. 126.
    Piotrowski JS, Zhang Y, Bates DM, et al. (2014) Death by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors. Front Microbiol 5. doi: 10.3389/fmicb.2014.00090
  127. 127.
    Lin F, Qiao B, Yuan Y (2009) Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Appl Environ Microbiol 75(11):3765–3776. doi: 10.1128/AEM.02594-08 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Miller EN, Jarboe LR, Turner PC, et al. (2009) Furfural inhibits growth by limiting sulfur assimilation in ethanologenic Escherichia coli strain LY180. Appl Environ Microbiol 75(19):6132–6141. doi: 10.1128/AEM.01187-09 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Modig T, Lidén G, Taherzadeh MJ (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363:769–776CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Banerjee N, Bhatnagar R, Viswanathan L (1981) Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Eur J Appl Microbiol Biotechnol 11(4):226–228. doi: 10.1007/BF00505872 CrossRefGoogle Scholar
  131. 131.
    Nelson DL, Cox MM, Lehninger AL (2001) Lehninger Biochemie, 3., vollst. überarb. und erw. Aufl. Springer, Berlin [u.a.]CrossRefGoogle Scholar
  132. 132.
    Allen SA, Clark W, McCaffery JM, et al. (2010) Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels 3(1):2. doi: 10.1186/1754-6834-3-2 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Ask M, Bettiga M, Mapelli V, et al. (2013) The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnol Biofuels 6(1):22. doi: 10.1186/1754-6834-6-22 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Taherzadeh MJ, Gustafsson L, Niklasson C, et al. (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53(6):701–708. doi: 10.1007/s002530000328 CrossRefPubMedGoogle Scholar
  135. 135.
    Taherzadeh MJ, Karimi K (2011) Fermentation inhibitors in ethanol processes and different strategies to reduce their effects. In: Biofuels: alternative feedstocks and conversion processes, 1st edn. Academic Press, Amsterdam, Boston, pp. 287–311CrossRefGoogle Scholar
  136. 136.
    Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33. doi: 10.1016/S0960-8524(99)00161-3 CrossRefGoogle Scholar
  137. 137.
    Ullah A, Orij R, Brul S, et al. (2012) Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae. Appl Environ Microbiol 78(23):8377–8387. doi: 10.1128/AEM.02126-12 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Gu H, Zhang J, Bao J (2014) Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues. Bioresour Technol 157:6–13. doi: 10.1016/j.biortech.2014.01.060 CrossRefPubMedGoogle Scholar
  139. 139.
    Heipieper HJ, de Bont JA (1994) Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl Environ Microbiol 60(12):4440–4444PubMedPubMedCentralGoogle Scholar
  140. 140.
    Clark TA, Mackie KL (1984) Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata. J Chem Technol Biotechnol 34(2):101–110. doi: 10.1002/jctb.280340206 CrossRefGoogle Scholar
  141. 141.
    Ando S, Arai I, Kiyoto K, et al. (1986) Identification of aromatic monomers in steam-exploded poplar and their influences on ethanol fermentation by Saccharomyces cerevisiae. J Ferment Technol 64(6):567–570. doi: 10.1016/0385-6380(86)90084-1 CrossRefGoogle Scholar
  142. 142.
    Zhang Q, Wu D, Lin Y, et al. (2015) Substrate and product inhibition on yeast performance in ethanol fermentation. Energy Fuel 150210061934004. doi: 10.1021/ef502349v CrossRefGoogle Scholar
  143. 143.
    Li H, Ma M, Luo S, et al. (2012) Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tandem mass spectrometry-based metabolomics approach. Int J Biochem Cell Biol 44(7):1087–1096. doi: 10.1016/j.biocel.2012.03.017 CrossRefPubMedGoogle Scholar
  144. 144.
    Lin Y, Zhang W, Li C, et al. (2012) Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy 47:395–401. doi: 10.1016/j.biombioe.2012.09.019 CrossRefGoogle Scholar
  145. 145.
    Field SJ, Ryden P, Wilson D et al (2015) Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates. Biotechnol Biofuels 8(1):Ch 13. doi: 10.1186/s13068-015-0217-z
  146. 146.
    Pereira FB, Romaní A, Ruiz HA, et al. (2014) Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. Bioresour Technol 161:192–199. doi: 10.1016/j.biortech.2014.03.043 CrossRefPubMedGoogle Scholar
  147. 147.
    Heer D, Sauer U (2008) Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. J Microbial Biotechnol 1(6):497–506. doi: 10.1111/j.1751-7915.2008.00050.x CrossRefGoogle Scholar
  148. 148.
    Wallace-Salinas V, Gorwa-Grauslund MF (2013) Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol Biofuels 6(1):151. doi: 10.1186/1754-6834-6-151 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Hawkins GM, Doran-Peterson J (2011) A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds. Biotechnol Biofuels 4(1):49. doi: 10.1186/1754-6834-4-49 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Almario MP, Reyes LH, Kao KC (2013) Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng 110(10):2616–2623. doi: 10.1002/bit.24938 CrossRefPubMedGoogle Scholar
  151. 151.
    Pereira FB, Guimarães P, Gomes DG, et al. (2011) Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations. Biotechnol Biofuels 4(1):57. doi: 10.1186/1754-6834-4-57 CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Hasunuma T, Sanda T, Yamada R, et al. (2011) Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact 10(1):2. doi: 10.1186/1475-2859-10-2 CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Lu Y, Cheng Y, He X, et al. (2012) Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors. J Ind Microbiol Biotechnol 39(1):73–80. doi: 10.1007/s10295-011-1001-0 CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Koopman F, Wierckx N, de Winde JH, et al. (2010) Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc Natl Acad Sci U S A 107(11):4919–4924. doi: 10.1073/pnas.0913039107 CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Feldman D, Kowbel DJ, Glass NL, et al. (2015) Detoxification of 5-hydroxymethylfurfural by the Pleurotus ostreatus lignolytic enzymes aryl alcohol oxidase and dehydrogenase. Biotechnol Biofuels 8(1):165. doi: 10.1186/s13068-015-0244-9 CrossRefGoogle Scholar
  156. 156.
    Lennartsson PR, Erlandsson P, Taherzadeh MJ (2014) Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour Technol 165:3–8. doi: 10.1016/j.biortech.2014.01.127 CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Vohra M, Manwar J, Manmode R, et al. (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 1:573–584. doi: 10.1016/j.jece.2013.10.013 CrossRefGoogle Scholar
  158. 158.
    Zhao L, Yu J, Zhang X, et al. (2010) The ethanol tolerance of Pachysolen tannophilus in fermentation on xylose. Appl Biochem Biotechnol 160(2):378–385. doi: 10.1007/s12010-008-8308-y CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Pessani NK, Atiyeh HK, Wilkins MR, et al. (2011) Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant Kluyveromyces marxianus IMB3: the effect of enzyme loading, temperature and higher solid loadings. Bioresour Technol 102(22):10618–10624. doi: 10.1016/j.biortech.2011.09.011 CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Cotta MA (2014) Ethanol production from lignocellulosic biomass by recombinant Escherichia coli strain FBR5. Bioengineered 3(4):197–202. doi: 10.4161/bioe.19874 CrossRefGoogle Scholar
  161. 161.
    Oreb M, Dietz H, Farwick A, et al. (2012) Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates. Bioengineered 3(6):347–351. doi: 10.4161/bioe.21444 CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Laluce C, Schenberg ACG, Gallardo JCM, et al. (2012) Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol – a review. Appl Biochem Biotechnol 166(8):1908–1926. doi: 10.1007/s12010-012-9619-6 CrossRefGoogle Scholar
  163. 163.
    Young E, Lee S, Alper H (2010) Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol Biofuels 3(1):24. doi: 10.1186/1754-6834-3-24 CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Smith J, van Rensburg E, Görgens JF (2014) Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnol 14(1):41. doi: 10.1186/1472-6750-14-41 CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    He M, Wu B, Qin H, et al. (2014) Zymomonas mobilis: a novel platform for future biorefineries. Biotechnol Biofuels 7(1):101. doi: 10.1186/1754-6834-7-101 CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Zhang X, Wang T, Zhou W, et al. (2013) Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses. Microb Cell Fact 12(1):41. doi: 10.1186/1475-2859-12-41 CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Linger JG, Adney WS, Darzins A (2010) Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis. Appl Environ Microbiol 76(19):6360–6369. doi: 10.1128/AEM.00230-10 CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Kojima M, Okamoto K, Yanase H (2013) Direct ethanol production from cellulosic materials by Zymobacter palmae carrying Cellulomonas endoglucanase and Ruminococcus β-glucosidase genes. Appl Microbiol Biotechnol 97(11):5137–5147. doi: 10.1007/s00253-013-4874-1 CrossRefPubMedGoogle Scholar
  169. 169.
    Hasunuma T, Kondo A (2012) Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem 47(9):1287–1294. doi: 10.1016/j.procbio.2012.05.004 CrossRefGoogle Scholar
  170. 170.
    Voronovsky AY, Rohulya OV, Abbas CA, et al. (2009) Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab Eng 11(4–5):234–242. doi: 10.1016/j.ymben.2009.04.001 CrossRefPubMedGoogle Scholar
  171. 171.
    Zerva A, Savvides AL, Katsifas EA, et al. (2014) Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing. Bioresour Technol 162:294–299. doi: 10.1016/j.biortech.2014.03.137 CrossRefPubMedGoogle Scholar
  172. 172.
    Podkaminer KK, Shao X, Hogsett DA, et al. (2011) Enzyme inactivation by ethanol and development of a kinetic model for thermophilic simultaneous saccharification and fermentation at 50°C with Thermoanaerobacterium saccharolyticum ALK2. Biotechnol Bioeng 108(6):1268–1278. doi: 10.1002/bit.23050 CrossRefPubMedGoogle Scholar
  173. 173.
    Ask M, Olofsson K, Di Felice T, et al. (2012) Challenges in enzymatic hydrolysis and fermentation of pretreated Arundo donax revealed by a comparison between SHF and SSF. Process Biochem 47(10):1452–1459. doi: 10.1016/j.procbio.2012.05.016 CrossRefGoogle Scholar
  174. 174.
    Haagensen F, Skiadas IV, Gavala HN, et al. (2009) Pre-treatment and ethanol fermentation potential of olive pulp at different dry matter concentrations. Biomass Bioenergy 33(11):1643–1651. doi: 10.1016/j.biombioe.2009.08.006 CrossRefGoogle Scholar
  175. 175.
    Paulová L, Patáková P, Rychtera M, et al. (2014) High solid fed-batch SSF with delayed inoculation for improved production of bioethanol from wheat straw. Fuel 122:294–300. doi: 10.1016/j.fuel.2014.01.020 CrossRefGoogle Scholar
  176. 176.
    López-Linares JC, Romero I, Cara C, et al. (2014) Bioethanol production from rapeseed straw at high solids loading with different process configurations. Fuel 122:112–118. doi: 10.1016/j.fuel.2014.01.024 CrossRefGoogle Scholar
  177. 177.
    Zhang L, You T, Zhang L, et al. (2014) Enhanced fermentability of poplar by combination of alkaline peroxide pretreatment and semi-simultaneous saccharification and fermentation. Bioresour Technol 164:292–298. doi: 10.1016/j.biortech.2014.04.075 CrossRefPubMedGoogle Scholar
  178. 178.
    Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295. doi: 10.1016/j.biortech.2007.11.013 CrossRefPubMedGoogle Scholar
  179. 179.
    Ragauskas AJ, Beckham GT, Biddy MJ, et al. (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185):1246843. doi: 10.1126/science.1246843 CrossRefPubMedGoogle Scholar
  180. 180.
    Vardon DR, Franden MA, Johnson CW, et al. (2015) Adipic acid production from lignin. Energ Environ Sci 8(2):617–628. doi: 10.1039/c4ee03230f CrossRefGoogle Scholar
  181. 181.
    Li H, Sivasankarapillai G, McDonald AG (2015) Lignin valorization by forming toughened thermally stimulated shape memory copolymeric elastomers: Evaluation of different fractionated industrial lignins. J Appl Polym Sci 132(5):n/a. doi: 10.1002/app.41389 Google Scholar
  182. 182.
    Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290. doi: 10.1016/j.progpolymsci.2013.11.004 CrossRefGoogle Scholar
  183. 183.
    Lange H, Decina S, Crestini C (2013) Oxidative upgrade of lignin – recent routes reviewed. Eur Polym J 49(6):1151–1173. doi: 10.1016/j.eurpolymj.2013.03.002 CrossRefGoogle Scholar
  184. 184.
    Janssen M, Tillman A, Cannella D, et al. (2014) Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw. Bioresour Technol 173:148–158. doi: 10.1016/j.biortech.2014.09.044 CrossRefPubMedGoogle Scholar
  185. 185.
    Tippkötter N, Duwe A, Wiesen S, et al. (2014) Enzymatic hydrolysis of beech wood lignocellulose at high solid contents and its utilization as substrate for the production of biobutanol and dicarboxylic acids. Bioresour Technol 167:447–455. doi: 10.1016/j.biortech.2014.06.052 CrossRefPubMedGoogle Scholar
  186. 186.
    Koppram R, Tomás-Pejó E, Xiros C, et al. (2014) Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol 32(1):46–53. doi: 10.1016/j.tibtech.2013.10.003 CrossRefPubMedGoogle Scholar
  187. 187.
    Koppram R, Olsson L (2014) Combined substrate, enzyme and yeast feed in simultaneous saccharification and fermentation allow bioethanol production from pretreated spruce biomass at high solids loadings. Biotechnol Biofuels 7(1):54. doi: 10.1186/1754-6834-7-54 CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Cui M, Zhang Y, Huang R, et al. (2014) Enhanced enzymatic hydrolysis of lignocellulose by integrated decrystallization and fed-batch operation. RSC Adv 4(84):44659–44665. doi: 10.1039/c4ra08891c CrossRefGoogle Scholar
  189. 189.
    Hoyer K, Galbe M, Zacchi G (2010) Effects of enzyme feeding strategy on ethanol yield in fed-batch simultaneous saccharification and fermentation of spruce at high dry matter. Biotechnol Biofuels 3(1):14. doi: 10.1186/1754-6834-3-14 CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Du J, Zhang F, Li Y, et al. (2014) Enzymatic liquefaction and saccharification of pretreated corn stover at high-solids concentrations in a horizontal rotating bioreactor. Bioprocess Biosyst Eng 37(2):173–181. doi: 10.1007/s00449-013-0983-6 CrossRefPubMedGoogle Scholar
  191. 191.
    Ghorbanian M, Russ DC, Berson RE (2014) Mixing analysis of PCS slurries in a horizontal scraped surface bioreactor. Bioprocess Biosyst Eng 37(10):2113–2119. doi: 10.1007/s00449-014-1189-2 CrossRefPubMedGoogle Scholar
  192. 192.
    Jørgensen H, Vibe-Pedersen J, Larsen J, et al. (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96(5):862–870. doi: 10.1002/bit.21115 CrossRefPubMedGoogle Scholar
  193. 193.
    Fuess LT, Garcia ML (2014) Implications of stillage land disposal: a critical review on the impacts of fertigation. J Environ Manage 145:210–229. doi: 10.1016/j.jenvman.2014.07.003 CrossRefPubMedGoogle Scholar
  194. 194.
    Takara D, Nitayavardhana S, Munasinghe P, et al. (2012) Sustainable bioenergy from biofuel-derived residues. Water Environ Res 84(10):1568–1585. doi: 10.2175/106143012X13407275695472 CrossRefGoogle Scholar
  195. 195.
    Bondesson P, Galbe M, Zacchi G (2013) Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid. Biotechnol Biofuels 6(1):11. doi: 10.1186/1754-6834-6-11 CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Barta Z, Reczey K, Zacchi G (2010) Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process. Biotechnol Biofuels 3(1):21. doi: 10.1186/1754-6834-3-21 CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Wang Z, Lv Z, Du J, et al. (2014) Combined process for ethanol fermentation at high-solids loading and biogas digestion from unwashed steam-exploded corn stover. Bioresour Technol 166:282–287. doi: 10.1016/j.biortech.2014.05.044 CrossRefPubMedGoogle Scholar
  198. 198.
    Huang H, Ramaswamy S, Tschirner UW, et al. (2008) A review of separation technologies in current and future biorefineries. Sep Purif Technol 62(1):1–21. doi: 10.1016/j.seppur.2007.12.011 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Bioprocess EngineeringUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations