Advertisement

Biorefineries pp 281-299 | Cite as

Anaerobic Digestion

  • Jan Liebetrau
  • Heike Sträuber
  • Jörg Kretzschmar
  • Velina Denysenko
  • Michael Nelles
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 166)

Abstract

The term anaerobic digestion usually refers to the microbial conversion of organic material to biogas, which mainly consists of methane and carbon dioxide. The technical application of the naturally-occurring process is used to provide a renewable energy carrier and – as the substrate is often waste material – to reduce the organic matter content of the substrate prior to disposal.

Applications can be found in sewage sludge treatment, the treatment of industrial and municipal solid wastes and wastewaters (including landfill gas utilization), and the conversion of agricultural residues and energy crops.

For biorefinery concepts, the anaerobic digestion (AD) process is, on the one hand, an option to treat organic residues from other production processes. Concomitant effects are the reduction of organic carbon within the treated substance, the conversion of nitrogen and sulfur components, and the production of an energy-rich gas – the biogas. On the other hand, the multistep conversion of complex organic material offers the possibility of interrupting the conversion chain and locking out intermediates for utilization as basic material within the chemical industry.

Keywords

Anaerobic digestion Biogas Biomass Biomethanation Renewable energy 

References

  1. 1.
  2. 2.
    Scheftelowitz M et al (2015) Stromerzeugung aus Biomasse Zwischenbericht Mai 2015 DBFZ, download: www.dbfz.de 10.8.2015
  3. 3.
  4. 4.
    Nyns E-J, Nikolausz M, Liebetrau J (2014) Biogas in Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Online ISBN: 9783527306732 doi:10.1002/14356007.a16_453.pub2Google Scholar
  5. 5.
    Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2:541–551. doi: 10.1038/nrmicro925 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Miron J, Ben-Ghedalia D, Morrison M (2001) Invited review: adhesion mechanisms of rumen cellulolytic bacteria. J Dairy Sci 84:1294–1309. doi: 10.3168/jds.S0022-0302(01)70159-2 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mata-Alvarez J, Macé S, Llabrés P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74:3–16. doi: 10.1016/S0960-8524(00)00023-7 CrossRefGoogle Scholar
  8. 8.
    Spirito CM, Richter H, Rabaey K, et al. (2014) Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr Opin Biotechnol 27:115–122. doi: 10.1016/j.copbio.2014.01.003 CrossRefPubMedGoogle Scholar
  9. 9.
    Thauer R, Jungermann K, Decker K (1977) Energy-conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180PubMedPubMedCentralGoogle Scholar
  10. 10.
    Wellinger A, Murphy J, Baxter D (eds) (2013) The biogas handbook: science, production and application. Woodhead Publishing. ISBN: 9780857094988Google Scholar
  11. 11.
    FNR (2013) Leitfaden biogas, 6th edn. Gülzow, FNRGoogle Scholar
  12. 12.
    Luo G, Johansson S, Boe K, et al. (2012) Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor. Biotechnol Bioeng 109:1088–1094. doi: 10.1002/bit.24360 CrossRefPubMedGoogle Scholar
  13. 13.
    Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958. doi: 10.1021/es803531g CrossRefPubMedGoogle Scholar
  14. 14.
    Burkhardt M, Busch G (2013) Methanation of hydrogen and carbon dioxide. Appl Energy 111:74–79. doi: 10.1016/j.apenergy.2013.04.080 CrossRefGoogle Scholar
  15. 15.
    Luo G, Angelidaki I (2013) Co-digestion of manure and whey for in situ biogas upgrading by the addition of H-2: process performance and microbial insights. Appl Microbiol Biotechnol 97:1373–1381. doi: 10.1007/s00253-012-4547-5 CrossRefPubMedGoogle Scholar
  16. 16.
    Youngsukkasem S, Chandolias K, Taherzadeh MJ (2015) Rapid bio-methanation of syngas in a reverse membrane bioreactor: membrane encased microorganisms. Bioresour Technol 178:334–340. doi: 10.1016/j.biortech.2014.07.071 CrossRefPubMedGoogle Scholar
  17. 17.
    Wandrey C, Aivasidis A (1983) Zur Reaktionstechnik der anaeroben Fermentation. Chem Ing Tech 55:516–524. doi: 10.1002/cite.330550705 CrossRefGoogle Scholar
  18. 18.
    Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci 8:513–519. doi: 10.1039/C4EE03359K CrossRefGoogle Scholar
  19. 19.
    Xu H, Wang K, Holmes DE (2014) Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading. Bioresour Technol 173:392–398. doi: 10.1016/j.biortech.2014.09.127 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jan Liebetrau
    • 1
  • Heike Sträuber
    • 2
  • Jörg Kretzschmar
    • 1
  • Velina Denysenko
    • 1
  • Michael Nelles
    • 1
    • 3
  1. 1.Deutsches Biomasseforschungszentrum DBFZLeipzigGermany
  2. 2.Helmholtz-Zentrum für Umweltforschung – UFZLeipzigGermany
  3. 3.Universität RostockRostockGermany

Personalised recommendations