Advertisement

Biorefineries pp 411-425 | Cite as

Microbial Hydrocarbon Formation from Biomass

  • Adrie J. J. Straathof
  • Maria C. Cuellar
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 166)

Abstract

Fossil carbon sources mainly contain hydrocarbons, and these are used on a huge scale as fuel and chemicals. Producing hydrocarbons from biomass instead is receiving increased attention. Achievable yields are modest because oxygen atoms need to be removed from biomass, keeping only the lighter carbon and hydrogen atoms. Microorganisms can perform the required conversions, potentially with high selectivity, using metabolic pathways that often end with decarboxylation. Metabolic and protein engineering are used successfully to achieve hydrocarbon production levels that are relevant in a biorefinery context. This has led to pilot or demo processes for hydrocarbons such as isobutene, isoprene, and farnesene. In addition, some non-hydrocarbon fermentation products are being further converted into hydrocarbons using a final chemical step, for example, ethanol into ethene. The main advantage of direct microbial production of hydrocarbons, however, is their potentially easy recovery because they do not dissolve in fermentation broth.

Keywords

Yields Product recovery Gaseous products Isoprenoids 

References

  1. 1.
    Straathof AJJ (2014) Transformation of biomass into commodity chemicals using enzymes or cells. Chem Rev 114:1871–1908CrossRefPubMedGoogle Scholar
  2. 2.
    McKenna R, Nielsen DR (2011) Styrene biosynthesis from glucose by engineered E. coli. Metab Eng 13:544–554CrossRefPubMedGoogle Scholar
  3. 3.
    Schirmer A, Rude MA, Li XZ, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562CrossRefPubMedGoogle Scholar
  4. 4.
    Menon N, Pasztor A, Menon BRK, Kallio P, Fisher K, Akhtar MK, Leys D, Jones PR, Scrutton NS (2015) A microbial platform for renewable propane synthesis based on a fermentative butanol pathway. Biotechnol Biofuels 8:61CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rude MA, Baron TS, Brubaker S, Alibhai M, Del Cardayre SB, Schirmer A (2011) Terminal olefin (1-alkene) biosynthesis by a novel P450 fatty acid decarboxylase from jeotgalicoccus species. Appl Environ Microbiol 77:1718–1727CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rui Z, Li X, Zhu XJ, Liu J, Domigan B, Barr I, Cate JHD, Zhang WJ (2014) Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase. Proc Natl Acad Sci U S A 111:18237–18242CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wajnberg E, Fricaux T, Taquet N, Blomquist GJ, Feyereisen R (2012) An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci U S A 109:14858–14863CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Whited GM, Feher FJ, Benko DA, Cervin MA, Chotani GK, McAuliffe JC, LaDuca RJ, Ben-Shoshan EA, Sanford KJ (2011) Development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering. Ind Biotechnol 6:152–163CrossRefGoogle Scholar
  9. 9.
    George KW, Alonso-Gutierrez J, Keasling JD, Lee TS (2015) Isoprenoid drugs, biofuels, and chemicals-artemisinin, farnesene, and beyond. Adv Biochem Eng Biotechnol 148:355–389PubMedGoogle Scholar
  10. 10.
    Gogerty DS, Bobik TA (2010) Isobutene formation from 3-hydroxy-3-methylbutyrate by diphosphomevalonate decarboxylase. Appl Environ Microbiol 76:8004–8010CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rossoni L, Hall SJ, Eastham G, Licence P, Stephens G (2015) The putative mevalonate diphosphate decarboxylase from picrophilus torridus is in reality a mevalonate-3-kinase with high potential for bioproduction of isobutene. Appl Environ Microbiol 81:2625–2634CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cuellar MC, Straathof AJJ (2015) Biochemical conversion: biofuels by industrial fermentation. In: de Jong W, van Ommen JR (eds) Biomass as a sustainable energy source for the future. Wiley, Hoboken, pp. 403–440Google Scholar
  13. 13.
    Clever HL, Young CL (1987) IUPAC-NIST solubility database. Methane, vol 27/28. Pergamon Press, OxfordGoogle Scholar
  14. 14.
    Hayduk W (1994) IUPAC-NIST solubility database. Ethene, vol 57. Oxford University Press, OxfordGoogle Scholar
  15. 15.
    Shaw DG (1989) IUPAC-NIST solubility database. Hydrocarbons in water and seawater, Part I, vol 37. Pergamon Press, OxfordGoogle Scholar
  16. 16.
    Shaw DG (1989) IUPAC-NIST solubility database. Hydrocarbons with water and seawater, Part II, vol 38. Pergamon Press, OxfordGoogle Scholar
  17. 17.
    Shaw DG, Maczynski A, Goral M, Wisniewska-Goclowska B, Skrzecz A, Owczarek I, Blazej K, Haulait-Pirson M-C, Hefter GT, Kapuku F, Maczynska Z, Szafranski A (2006) IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater—revised and updated. Part 10. C11 and C12 hydrocarbons with water. J Phys Chem Ref Data 35:153–203CrossRefGoogle Scholar
  18. 18.
    Kleerebezem R (2014) Biochemical conversion. In: Biomass as a sustainable energy source for the future. Wiley, Hoboken, pp 441–468Google Scholar
  19. 19.
    Cuellar MC, van der Wielen LAM (2015) Recent advances in the microbial production and recovery of apolar molecules. Curr Opin Biotechnol 33:39–45CrossRefPubMedGoogle Scholar
  20. 20.
    Heeres AS, Picone CSF, van der Wielen LAM, Cunha RL, Cuellar MC (2014) Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation. Trends Biotechnol 32:221–229CrossRefPubMedGoogle Scholar
  21. 21.
    Tabur P, Dorin G 2012 Method for purifying bio-organic compounds from fermentation broth containing surfactants by temperature-induced phase inversionGoogle Scholar
  22. 22.
    Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014CrossRefGoogle Scholar
  23. 23.
    Morschbacker A (2009) Bio-ethanol based ethylene. Polym Rev 49:79–84CrossRefGoogle Scholar
  24. 24.
    Althoff J, Biesheuvel K, De Kok A, Pelt H, Ruitenbeek M, Spork G, Tange J, Wevers R (2013) Economic feasibility of the sugar beet-to-ethylene value chain. ChemSusChem 6:1625–1630CrossRefPubMedGoogle Scholar
  25. 25.
    Marlière P (2011) Method for producing an alkene comprising step of converting an alcohol by an enzymatic dehydration step. WO 2011076691Google Scholar
  26. 26.
    Marlière P (2011) Method for producing an alkene comprising the step of converting an alcohol by an enzymatic dehydration step. Eur Pat Appl 2336340Google Scholar
  27. 27.
    Shimokawa K, Kasai Z (1970) Ethylene formation from acrylic acid by a banana pulp extract. Agric Biol Chem 34:1646–1651CrossRefGoogle Scholar
  28. 28.
    Abeles FB (1972) Biosynthesis and mechanism of action of ethylene. Annu Rev Plant Physiol 23:259–292CrossRefGoogle Scholar
  29. 29.
    Fukuda H, Ogawa T, Tanase S (1993) Ethylene production by microorganisms. Adv Microb Physiol 35:275–306CrossRefPubMedGoogle Scholar
  30. 30.
    Larsson C, Snoep JL, Norbeck J, Albers E (2011) Flux balance analysis for ethylene formation in genetically engineered Saccharomyces cerevisiae. IET Syst Biol 5:245–251CrossRefPubMedGoogle Scholar
  31. 31.
    Lieberman M (1979) Biosynthesis and action of ethylene. Annu Rev Plant Physiol Plant Mol Biol 30:533–591CrossRefGoogle Scholar
  32. 32.
    Ogawa T, Takahashi M, Fujii T, Tazaki M, Fukuda H (1990) The role of NADH-Fe(III)EDTA oxidoreductase in ethylene formation from 2-keto-4-methylthiobutyrate. J Ferment Bioeng 69:287–291CrossRefGoogle Scholar
  33. 33.
    Fukuda H, Ogawa T, Tazaki M, Nagahama K, Fujii T, Tanase S, Morino Y (1992) 2 Reactions are simultaneously catalyzed by a single enzyme - the arginine-dependent simultaneous formation of 2 products, ethylene and succinate, from 2-oxoglutarate by an enzyme from Pseudomonas syringae. Biochem Biophys Res Commun 188:483–489CrossRefPubMedGoogle Scholar
  34. 34.
    Eckert C, Xu W, Xiong W, Lynch S, Ungerer J, Tao L, Gill R, Maness P-C, Yu J (2014) Ethylene-forming enzyme and bioethylene production. Biotechnol Biofuels 7:1–11CrossRefGoogle Scholar
  35. 35.
    Davis JB, Squires RM (1954) Detection of microbially produced gaseous hydrocarbons other than methane. Science 119:381–382CrossRefPubMedGoogle Scholar
  36. 36.
    Pavlova ON, Bukin SV, Lomakina AV, Kalmychkov GV, Ivanov VG, Morozov IV, Pogodaeva TV, Pimenov NV, Zemskaya TI (2014) Production of gaseous hydrocarbons by microbial communities of Lake Baikal bottom sediments. Microbiology 83:798–804CrossRefGoogle Scholar
  37. 37.
    Kallio P, Pasztor A, Thiel K, Akhtar MK, Jones PR (2014) An engineered pathway for the biosynthesis of renewable propane. Nat Commun 5Google Scholar
  38. 38.
    Fukuda H, Fujii T, Ogawa T (1984) Microbial production of C3- and C4-hydrocarbons under aerobic conditions. Agric Biol Chem 48:1679–1682Google Scholar
  39. 39.
    Fukuda H, Kawaoka Y, Fujii T, Ogawa T (1987) Production of a gaseous saturated hydrocarbon mixture by Rhizopus japonicus under aerobic conditions. Agric Biol Chem 51:1529–1534Google Scholar
  40. 40.
    Roberts ES, Vaz AD, Coon MJ (1991) Catalysis by cytochrome P-450 of an oxidative reaction in xenobiotic aldehyde metabolism: deformylation with olefin formation. Proc Natl Acad Sci 88:8963–8966CrossRefPubMedGoogle Scholar
  41. 41.
    Nishida Y, Itoh H, Yamazaki A (1994) On the chemical mechanism of aldehyde metabolism by cytochrome P-450. Polyhedron 13:2473–2476CrossRefGoogle Scholar
  42. 42.
    Fujii T, Ogawa T, Fukuda H (1987) Isobutene production by Rhodotorula minuta. Appl Microbiol Biotechnol 25:430–433CrossRefGoogle Scholar
  43. 43.
    Fujii T, Ogawa T, Fukuda H (1985) Production of isobutene by Rhodotorula yeasts. Agric Biol Chem 49:1541–1543Google Scholar
  44. 44.
    Fukuda H, Fujii T, Sukita E, Tazaki M, Nagahama S, Ogawa T (1994) Reconstitution of the isobutene-forming reaction catalyzed by cytochrome P450 and P450 reductase from Rhodotorula minuta: decarboxylation with the formation of isobutene. Biochem Biophys Res Commun 201:516–522CrossRefPubMedGoogle Scholar
  45. 45.
    Shimaya C, Fujii T (2000) Cytochrome P450rm of Rhodotorula functions in the β-ketoadipate pathway for dissimilation of L-phenylalanine. J Biosci Bioeng 90:465–467CrossRefPubMedGoogle Scholar
  46. 46.
    van Leeuwen BNM, van der Wulp AM, Duijnstee I, van Maris AJA, Straathof AJJ (2012) Fermentative production of isobutene. Appl Microbiol Biotechnol 93:1377–1387CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Marlière P (2010) Production of alkenes by enzymatic decarboxylation of 3-hydroxyalkanoic acids. WO 2010001078Google Scholar
  48. 48.
    Mazaleyrat S, Delcourt M, Anissimova M, Marliere P (2015) Mevalonate diphosphate decarboxylase variants. WO2015004211 (A3)Google Scholar
  49. 49.
    Burk MJ, Burgard AP, Osterhout RE, Sun J, Pharkya P (2012) Microorganisms for producing butadiene and methods related thereto. WO2012177710Google Scholar
  50. 50.
    Pearlman PS, Chen C, Botes AL (2012) Methods of producing four carbon molecules. Pat Appl WO2012174439Google Scholar
  51. 51.
    Araujo AS, Souza MJB, Fernandes VJ, Diniz JC (1999) Kinetic study of isopropanol dehydration over silicoaluminophosphate catalyst. React Kinet Catal Lett 66:141–146CrossRefGoogle Scholar
  52. 52.
    McCoy M (2010) Braskem plans green propylene. Chem Eng News 88:11–11Google Scholar
  53. 53.
    Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chem Phys 6:3181–3210CrossRefGoogle Scholar
  54. 54.
    Singh R (2010) Facts, growth, and opportunities in industrial biotechnology. Org Process Res Dev 15:175–179CrossRefGoogle Scholar
  55. 55.
    Feher FJ, Kan JK, MacAuliffe JC, McCall TF, Rodewald S, Sabo TA, Wong TH, Ploetz CD, Pickert LJ (2011) Purification of isoprene from renewable resources. US20110178261 (A1)Google Scholar
  56. 56.
    Morais ARC, Dworakowska S, Reis A, Gouveia L, Matos CT, Bogdal D, Bogel-Lukasik R (2015) Chemical and biological-based isoprene production: green metrics. Catal Today 239:38–43CrossRefGoogle Scholar
  57. 57.
    Rabinovitch-Deere CA, Oliver JW, Rodriguez GM, Atsumi S (2013) Synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev 113:4611–4632CrossRefPubMedGoogle Scholar
  58. 58.
    Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532CrossRefPubMedGoogle Scholar
  59. 59.
    Schrader J, Bohlmann J (2015) Biotechnology of isoprenoids. Advances in biochemical engineering/biotechnology, vol 148. Springer International PublishingGoogle Scholar
  60. 60.
    Brennan TCR, Turner CD, Krömer JO, Nielsen LK (2012) Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng 109:2513–2522CrossRefPubMedGoogle Scholar
  61. 61.
    Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41CrossRefPubMedGoogle Scholar
  62. 62.
    Frohwitter J, Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF (2014) Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum. J Biotechnol 191:205–213CrossRefPubMedGoogle Scholar
  63. 63.
    Wriessnegger T, Augustin P, Engleder M, Leitner E, Muller M, Kaluzna I, Schurmann M, Mink D, Zellnig G, Schwab H, Pichler H (2014) Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metab Eng 24:18–29CrossRefPubMedGoogle Scholar
  64. 64.
    Li N, Chang WC, Warui DM, Booker SJ, Krebs C, Bollinger JM (2012) Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases. Biochemistry 51:7908–7916CrossRefPubMedGoogle Scholar
  65. 65.
    Warui DM, Li N, Norgaard H, Krebs C, Bollinger JM, Booker SJ (2011) Detection of formate, rather than carbon monoxide, as the stoichiometric coproduct in conversion of fatty aldehydes to alkanes by a cyanobacterial aldehyde decarbonylase. J Am Chem Soc 133:3316–3319CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Domínguez de María P (2011) Recent developments in the biotechnological production of hydrocarbons: paving the way for bio-based platform chemicals. ChemSusChem 4:327–329CrossRefPubMedGoogle Scholar
  67. 67.
    Harger M, Zheng L, Moon A, Ager C, An JH, Choe C, Lai Y-L, Mo B, Zong D, Smith MD, Egbert RG, Mills JH, Baker D, Pultz IS, Siegel JB (2013) Expanding the product profile of a microbial alkane biosynthetic pathway. ACS Synth Biol 2:59–62CrossRefPubMedGoogle Scholar
  68. 68.
    Howard TP, Middelhaufe S, Moore K, Edner C, Kolak DM, Taylor GN, Parker DA, Lee R, Smirnoff N, Aves SJ, Love J (2013) Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc Natl Acad Sci 110:7636–7641CrossRefPubMedGoogle Scholar
  69. 69.
    Schneider-Belhaddad F, Kolattukudy P (2000) Solubilization, partial purification, and characterization of a fatty aldehyde decarbonylase from a higher plant, Pisum sativum. Arch Biochem Biophys 377:341–349CrossRefPubMedGoogle Scholar
  70. 70.
    Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502:571–574CrossRefPubMedGoogle Scholar
  71. 71.
    Zachos I, Gassmeyer SK, Bauer D, Sieber V, Hollmann F, Kourist R (2015) Photobiocatalytic decarboxylation for olefin synthesis. Chem Commun (Cambridge, England) 51:1918–1921CrossRefGoogle Scholar
  72. 72.
    Beller HR, Goh EB, Keasling JD (2010) Genes involved in long-chain alkene biosynthesis in micrococcus luteus. Appl Environ Microbiol 76:1212–1223CrossRefPubMedGoogle Scholar
  73. 73.
    Frias JA, Richman JE, Erickson JS, Wackett LP (2011) Purification and characterization of OleA from Xanthomonas campestris and demonstration of a non-decarboxylative Claisen condensation reaction. J Biol Chem 286:10930–10938CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    McKenna R, Moya L, McDaniel M, Nielsen DR (2015) Comparing in situ removal strategies for improving styrene bioproduction. Bioprocess Biosyst Eng 38:165–174CrossRefPubMedGoogle Scholar
  75. 75.
    McKenna R, Thompson B, Pugh S, Nielsen DR (2014) Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae. Microb Cell Factories 13Google Scholar
  76. 76.
    Claypool JT, Raman DR, Jarboe LR, Nielsen DR (2014) Technoeconomic evaluation of bio-based styrene production by engineered Escherichia coli. J Ind Microbiol Biotechnol 41:1211–1216CrossRefPubMedGoogle Scholar
  77. 77.
    Azeem M, Borg-Karlson AK, Rajarao GK (2013) Sustainable bio-production of styrene from forest waste. Bioresour Technol 144:684–688CrossRefPubMedGoogle Scholar
  78. 78.
    Fischer-Romero C, Tindall BJ, Jüttner F (1996) Tolumonas auensis gen. nov., sp. nov., a toluene-producing bacterium from anoxic sediments of a freshwater lake. Int J Syst Bacteriol 46:183–188CrossRefPubMedGoogle Scholar
  79. 79.
    Heider J, Spormann AM, Beller HR, Widdel F (1998) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473CrossRefGoogle Scholar
  80. 80.
    Chen J, Henderson G, Grimm CC, Lloyd SW, Laine RA (1998) Termites fumigate their nests with naphthalene. Nature 392:558–559CrossRefGoogle Scholar
  81. 81.
    Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK, Runyon JB (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737–3741CrossRefPubMedGoogle Scholar
  82. 82.
    Ahamed A, Ahring BK (2011) Production of hydrocarbon compounds by endophytic fungi Gliocladium species grown on cellulose. Bioresour Technol 102:9718–9722CrossRefPubMedGoogle Scholar
  83. 83.
    Bäck J, Aaltonen H, Hellen H, Kajos MK, Patokoski J, Taipale R, Pumpanen J, Heinonsalo J (2010) Variable emissions of microbial volatile organic compounds (MVOCs) from root-associated fungi isolated from Scots pine. Atmos Environ 44:3651–3659CrossRefGoogle Scholar
  84. 84.
    Heiden AC, Kobel K, Komenda M, Koppmann R, Shao M, Wildt J (1999) Toluene emissions from plants. Geophys Res Lett 26:1283–1286CrossRefGoogle Scholar
  85. 85.
    Strobel GA (2015) Bioprospecting-fuels from fungi. Biotechnol Lett 37:973–982CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations