Advertisement

pp 1-29 | Cite as

Transmission of Dysfunctional Mitochondrial DNA and Its Implications for Mammalian Reproduction

  • Kanokwan Srirattana
  • Justin C. St. JohnEmail author
Chapter
Part of the Advances in Anatomy, Embryology and Cell Biology book series

Abstract

Mitochondrial DNA (mtDNA) encodes proteins for the electron transport chain which produces the vast majority of cellular energy. MtDNA has its own replication and transcription machinery that relies on nuclear-encoded transcription and replication factors. MtDNA is inherited in a non-Mendelian fashion as maternal-only mtDNA is passed onto the next generation. Mutation to mtDNA can cause mitochondrial dysfunction, which affects energy production and tissue and organ function. In somatic cell nuclear transfer (SCNT), there is an issue with the mixing of two populations of mtDNA, namely from the donor cell and recipient oocyte. This review focuses on the transmission of mtDNA in SCNT embryos and offspring. The transmission of donor cell mtDNA can be prevented by depleting the donor cell of its mtDNA using mtDNA depletion agents prior to SCNT. As a result, SCNT embryos harbour oocyte-only mtDNA. Moreover, culturing SCNT embryos derived from mtDNA depleted cells in media supplemented with a nuclear reprograming agent can increase the levels of expression of genes related to embryo development when compared with non-depleted cell-derived embryos. Furthermore, we have reviewed how mitochondrial supplementation in oocytes can have beneficial effects for SCNT embryos by increasing mtDNA copy number and the levels of expression of genes involved in energy production and decreasing the levels of expression of genes involved in embryonic cell death. Notably, there are beneficial effects of mtDNA supplementation over the use of nuclear reprograming agents in terms of regulating gene expression in embryos. Taken together, manipulating mtDNA in donor cells and/or oocytes prior to SCNT could enhance embryo production efficiency.

Keywords

Embryo Mitochondrial DNA Mitochondrial supplementation Replication Somatic cell nuclear transfer Transmission 

Notes

Acknowledgements

K.S. was supported by a Monash Graduate Scholarship and a Monash International Postgraduate Research Scholarship.

References

  1. Acton BM, Lai I, Shang X, Jurisicova A, Casper RF (2007) Neutral mitochondrial heteroplasmy alters physiological function in mice. Biol Reprod 77(3):569–576.  https://doi.org/10.1095/biolreprod.107.060806CrossRefGoogle Scholar
  2. Alcoba DD, da Rosa Braga BL, Sandi-Monroy NL, Proença LA, Felix Lopes RF, de Oliveira ATD (2011) Selection of Rattus norvegicus oocytes for in vitro maturation by brilliant cresyl blue staining. Zygote 21(3):238–245.  https://doi.org/10.1017/S0967199411000463CrossRefGoogle Scholar
  3. Anderson S, Bankier A, Barrell B, de Bruijn M, Coulson A, Drouin J, Eperon I, Nierlich D, Roe B, Sanger F, Schreier P, Smith A, Staden R, Young I (1981) Sequence and organization of the human mitochondrial genome. Nature 290(5806):457–465.  https://doi.org/10.1038/290457a0CrossRefGoogle Scholar
  4. Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA conserved features of the mammalian mitochondrial genome. J Mol Biol 156(4):683–717.  https://doi.org/10.1016/0022-2836(82)90137-1CrossRefGoogle Scholar
  5. Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4:289–333Google Scholar
  6. Bhojwani S, Alm H, Torner H, Kanitz W, Poehland R (2007) Selection of developmentally competent oocytes through brilliant cresyl blue stain enhances blastocyst development rate after bovine nuclear transfer. Theriogenology 67(2):341–345.  https://doi.org/10.1016/j.theriogenology.2006.08.006CrossRefGoogle Scholar
  7. Bonawitz N, Clayton D, Shadel G (2006) Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol Cell 24(6):813–825.  https://doi.org/10.1016/j.molcel.2006.11.024CrossRefGoogle Scholar
  8. Bowles EJ, Lee JH, Alberio R, Lloyd REI, Stekel D, Campbell KHS, St. John JC (2007) Contrasting effects of in vitro fertilization and nuclear transfer on the expression of mtDNA replication factors. Genetics 176(3):1511–1526.  https://doi.org/10.1534/genetics.106.070177CrossRefGoogle Scholar
  9. Bowles EJ, Tecirlioglu RT, French AJ, Holland MK, St. John JC (2008) Mitochondrial DNA transmission and transcription after somatic cell fusion to one or more cytoplasts. Stem Cells 26(3):775–782.  https://doi.org/10.1634/stemcells.2007-0747CrossRefGoogle Scholar
  10. Brenner CA, Scott RT Jr, Cohen J (1997) Use of enucleate donor oocyte cytoplasm in recipient eggs. Lancet 350(9082):961–962.  https://doi.org/10.1016/S0140-6736(05)63306-5CrossRefGoogle Scholar
  11. Brenner CA, Barritt JA, Willadsen S, Cohen J (2000) Mitochondrial DNA heteroplasmy after human ooplasmic transplantation. Fertil Steril 74(3):573–578.  https://doi.org/10.1016/S0015-0282(00)00681-6CrossRefGoogle Scholar
  12. Brierley EJ, Johnson MA, Lightowlers RN, James OFW, Turnbull DM (1998) Role of mitochondrial DNA mutations in human aging: implications for the central nervous system and muscle. Ann Neurol 43(2):217–223.  https://doi.org/10.1002/ana.410430212CrossRefGoogle Scholar
  13. Brinkman K, Kakuda T (2000) Mitochondrial toxicity of nucleoside analogue reverse transcriptase inhibitors: a looming obstacle for long-term antiretroviral therapy? Curr Opin Infect Dis 13(1):5–11Google Scholar
  14. Brinkman K, ter Hofstede H, Burger D, Smeitink J, Koopmans P (1998) Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as common pathway. AIDS (London, England) 12(14):1735–1744Google Scholar
  15. Brinkman K, Smeitink J, Romijn J, Reiss P (1999) Mitochondrial toxicity induced by nucleoside-analogue reverse-transcriptase inhibitors is a key factor in the pathogenesis of antiretroviral-therapy-related lipodystrophy. Lancet 354(9184):1112–1115.  https://doi.org/10.1016/S0140-6736(99)06102-4CrossRefGoogle Scholar
  16. Brown TA, Clayton DA (2002) Release of replication termination controls mitochondrial DNA copy number after depletion with 2′,3′-dideoxycytidine. Nucleic Acids Res 30(9):2004–2010Google Scholar
  17. Burgstaller J, Schinogl P, Dinnyes A, Müller M, Steinborn R (2007) Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer. BMC Dev Biol 7:141.  https://doi.org/10.1186/1471-213X-7-141CrossRefGoogle Scholar
  18. Cagnone G, Tsai T-SS, Srirattana K, Rossello F, Powell DR, Rohrer G, Cree L, Trounce IA, St John JC (2016a) Segregation of naturally occurring mitochondrial DNA variants in a mini-pig model. Genetics 202(3):931–944.  https://doi.org/10.1534/genetics.115.181321CrossRefGoogle Scholar
  19. Cagnone GL, Tsai T-SS, Makanji Y, Matthews P, Gould J, Bonkowski MS, Elgass KD, Wong AS, Wu LE, McKenzie M, Sinclair DA, John JC (2016b) Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency. Sci Rep 6:23229.  https://doi.org/10.1038/srep23229CrossRefGoogle Scholar
  20. Cao L, Shitara H, Horii T, Nagao Y, Imai H, Abe K, Hara T, Hayashi J-I, Yonekawa H (2007) The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat Genet 39(3):386–390.  https://doi.org/10.1038/ng1970CrossRefGoogle Scholar
  21. Capaldi RA (1982) Arrangement of proteins in the mitochondrial inner membrane. Biochim Biophys Acta Rev Biomembr 694(3):291–306.  https://doi.org/10.1016/0304-4157(82)90009-0CrossRefGoogle Scholar
  22. Castaneda CA, Kaye P, Pantaleon M, Phillips N, Norman S, Fry R, D’Occhio MJ (2013) Lipid content, active mitochondria and brilliant cresyl blue staining in bovine oocytes. Theriogenology 79(3):417–422.  https://doi.org/10.1016/j.theriogenology.2012.10.006CrossRefGoogle Scholar
  23. Chang D, Clayton D (1985) Priming of human mitochondrial DNA replication occurs at the light-strand promoter. Proc Natl Acad Sci U S A 82(2):351–355.  https://doi.org/10.1073/pnas.82.2.351CrossRefGoogle Scholar
  24. Chen D-Y, Wen D-C, Zhang Y-P, Sun Q-Y, Han Z-M, Liu Z-H, Shi P, Li J-S, Xiangyu J-G, Lian L, Kou Z-H, Wu Y-Q, Chen Y-C, Wang P-Y, Zhang H-M (2002) Interspecies implantation and mitochondria fate of panda-rabbit cloned embryos. Biol Reprod 67(2):637–642.  https://doi.org/10.1095/biolreprod67.2.637CrossRefGoogle Scholar
  25. Cibelli JB, Campbell KH, Seidel GE, West MD, Lanza RP (2002) The health profile of cloned animals. Nat Biotechnol 20(1):13–14.  https://doi.org/10.1038/nbt0102-13CrossRefGoogle Scholar
  26. Clay Montier LL, Deng J, Bai Y (2009) Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomics 36(3):125–131.  https://doi.org/10.1016/S1673-8527(08)60099-5CrossRefGoogle Scholar
  27. Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28(4):693–705.  https://doi.org/10.1016/0092-8674(82)90049-6CrossRefGoogle Scholar
  28. Clayton DA (2000) Transcription and replication of mitochondrial DNA. Hum Reprod 15(Suppl 2):11–17Google Scholar
  29. Cohen J, Scott R, Schimmel T, Levron J, Willadsen S (1997) Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. Lancet 350(9072):186–187.  https://doi.org/10.1016/S0140-6736(05)62353-7CrossRefGoogle Scholar
  30. Cortopassi GA, Shibata D, Soong NW, Arnheim N (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci U S A 89(16):7370–7374Google Scholar
  31. Cree L, Samuels D, de Sousa LS, Rajasimha H, Wonnapinij P, Mann J, Dahl H-HM, Chinnery P (2008) A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat Genet 40(2):249–254.  https://doi.org/10.1038/ng.2007.63CrossRefGoogle Scholar
  32. Cree LM, Hammond ER, Shelling AN, Berg MC, Peek JC, Green MP (2015) Maternal age and ovarian stimulation independently affect oocyte mtDNA copy number and cumulus cell gene expression in bovine clones. Hum Reprod 30(6):1410–1420.  https://doi.org/10.1093/humrep/dev066CrossRefGoogle Scholar
  33. Danan C, Sternberg D, van Steirteghem A, Cazeneuve C, Duquesnoy P, Besmond C, Goossens M, Lissens W, Amselem S (1999) Evaluation of parental mitochondrial inheritance in neonates born after intracytoplasmic sperm injection. Am J Hum Genet 65(2):463–473Google Scholar
  34. de Souza-Pinto NC, Mason PA, Hashiguchi K, Weissman L, Tian J, Guay D, Lebel M, Stevnsner TV, Rasmussen LJ, Bohr VA (2009) Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair 8(6):704–719.  https://doi.org/10.1016/j.dnarep.2009.01.021CrossRefGoogle Scholar
  35. Desjardins P, Frost E, Morais R (1985) Ethidium bromide-induced loss of mitochondrial DNA from primary chicken embryo fibroblasts. Mol Cell Biol 5(5):1163–1169Google Scholar
  36. Dianov GL, Souza-Pinto N, Nyaga SG, Thybo T, Stevnsner T, Bohr VA (2001) Base excision repair in nuclear and mitochondrial DNA. Prog Nucleic Acid Res Mol Biol 68:285–297.  https://doi.org/10.1016/S0079-6603(01)68107-8CrossRefGoogle Scholar
  37. Do M, Jang W-G, Hwang J, Jang H, Kim E-J, Jeong E-J, Shim H, Hwang S, Oh K, Byun S, Kim J-H, Lee J (2012) Inheritance of mitochondrial DNA in serially recloned pigs by somatic cell nuclear transfer (SCNT). Biochem Biophys Res Commun 424(4):765–770.  https://doi.org/10.1016/j.bbrc.2012.07.031CrossRefGoogle Scholar
  38. Dokianakis E, Ladoukakis ED (2014) Different degree of paternal mtDNA leakage between male and female progeny in interspecific Drosophila crosses. Ecol Evol 4(13):2633–2641.  https://doi.org/10.1002/ece3.1069CrossRefGoogle Scholar
  39. Douglas GC, VandeVoort CA, Kumar P, Chang T-C, Golos TG (2009) Trophoblast stem cells: models for investigating trophectoderm differentiation and placental development. Endocr Rev 30(3):228–240.  https://doi.org/10.1210/er.2009-0001CrossRefGoogle Scholar
  40. Duarte Alcoba D, Gonsales Valério E, Conzatti M, Schneider J, Capp E, von Eye CH, Brum IS (2017) Selection of developmentally competent human oocytes aspirated during cesarean section. J Matern Fetal Neonatal Med:1–5.  https://doi.org/10.1080/14767058.2017.1297405Google Scholar
  41. El Shourbagy SH, Spikings EC, Freitas M, St. John JC (2006) Mitochondria directly influence fertilisation outcome in the pig. Reproduction 131(2):233–245.  https://doi.org/10.1530/rep.1.00551CrossRefGoogle Scholar
  42. Ericsson SA, Boice ML, Funahashi H, Day BN (1993) Assessment of porcine oocytes using brilliant cresyl blue. Theriogenology 39(1):214.  https://doi.org/10.1016/0093-691X(93)90069-HCrossRefGoogle Scholar
  43. Evans MJ, Gurer C, Loike JD, Wilmut I, Schnieke AE, Schon EA (1999) Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep. Nat Genet 23(1):90–93.  https://doi.org/10.1038/12696CrossRefGoogle Scholar
  44. Facucho-Oliveira JM, St. John JC (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev Rep 5(2):140–158.  https://doi.org/10.1007/s12015-009-9058-0CrossRefGoogle Scholar
  45. Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S, St. John JC (2007) Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci 120(22):4025–4034.  https://doi.org/10.1242/jcs.016972CrossRefGoogle Scholar
  46. Fakruzzaman M, Bang J-I, Lee K-L, Kim S-S, Ha AN, Ghanem N, Han C-H, Cho K-W, White KL, Kong I-K (2013) Mitochondrial content and gene expression profiles in oocyte-derived embryos of cattle selected on the basis of brilliant cresyl blue staining. Anim Reprod Sci 142(1):19–27.  https://doi.org/10.1016/j.anireprosci.2013.08.012CrossRefGoogle Scholar
  47. Fathi M, Ashry M, Salama A, Badr MR (2017) Developmental competence of Dromedary camel (Camelus dromedarius) oocytes selected using brilliant cresyl blue staining. Zygote 25:529–536.  https://doi.org/10.1017/S0967199417000387CrossRefGoogle Scholar
  48. Ferreira CR, Meirelles FV, Yamazaki W, Chiaratti MR, Méo SC, Perecin F, Smith LC, Garcia JM (2007) The kinetics of donor cell mtDNA in embryonic and somatic donor cell-derived bovine embryos. Cloning Stem Cells 9(4):618–629.  https://doi.org/10.1089/clo.2006.0082CrossRefGoogle Scholar
  49. Ferreira CR, Burgstaller JP, Perecin F, Garcia JM, Chiaratti MR, Méo SC, Müller M, Smith LC, Meirelles FV, Steinborn R (2010) Pronounced segregation of donor mitochondria introduced by bovine ooplasmic transfer to the female germ-line. Biol Reprod 82(3):563–571.  https://doi.org/10.1095/biolreprod.109.080564CrossRefGoogle Scholar
  50. Finsterer J (2008) Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol 39(4):223–235.  https://doi.org/10.1016/j.pediatrneurol.2008.07.013CrossRefGoogle Scholar
  51. Fish J, Raule N, Attardi G (2004) Discovery of a major D-loop replication origin reveals two modes of human mtDNA synthesis. Science 306(5704):2098Google Scholar
  52. Folch J, Cocero MJ, Chesné P, Alabart JL, Domínguez V, Cognié Y, Roche A, Fernández-Árias A, Martí JI, Sánchez P, Echegoyen E, Beckers JF, Bonastre AS, Vignon X (2009) First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning. Theriogenology 71(6):1026–1034.  https://doi.org/10.1016/j.theriogenology.2008.11.005CrossRefGoogle Scholar
  53. Fu B, Ren L, Liu D, Ma J-Z, An T-Z, Yang X-Q, Ma H, Zhang D-J, Guo Z-H, Guo Y-Y, Zhu M, Bai J (2015) Subcellular characterization of porcine oocytes with different glucose-6-phosphate dehydrogenase activities. Asian Australas J Anim Sci 28(12):1703–1712.  https://doi.org/10.5713/ajas.15.0051CrossRefGoogle Scholar
  54. Giles RE, Blanc H, Cann HM, Wallace DC (1980) Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A 77(11):6715–6719Google Scholar
  55. Gómez MC, Pope CE, Giraldo A, Lyons LA, Harris RF, King AL, Cole A, Godke RA, Dresser BL (2004) Birth of African Wildcat cloned kittens born from domestic cats. Cloning Stem Cells 6(3):247–258.  https://doi.org/10.1089/clo.2004.6.247CrossRefGoogle Scholar
  56. Gómez MC, Pope CE, Kutner RH, Ricks DM, Lyons LA, Ruhe M, Dumas C, Lyons J, López M, Dresser BL, Reiser J (2008) Nuclear transfer of sand cat cells into enucleated domestic cat oocytes is affected by cryopreservation of donor cells. Cloning Stem Cells 10(4):469–483.  https://doi.org/10.1089/clo.2008.0021CrossRefGoogle Scholar
  57. Goto Y-I, Nonaka I, Horai S (1990) A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348(6302):651–653Google Scholar
  58. Gray H, Wong TW (1992) Purification and identification of subunit structure of the human mitochondrial DNA polymerase. J Biol Chem 267(9):5835–5841Google Scholar
  59. Grégoire M, Morais R, Quilliam MA, Gravel D (1984) On auxotrophy for pyrimidines of respiration-deficient chick embryo cells. Eur J Biochem 142(1):49–55.  https://doi.org/10.1111/j.1432-1033.1984.tb08249.xCrossRefGoogle Scholar
  60. Gyllensten U, Wharton D, Josefsson A, Wilson AC (1991) Paternal inheritance of mitochondrial DNA in mice. Nature 352(6332):255–257Google Scholar
  61. Hayakawa T, Noda M, Yasuda K, Yorifuji H, Taniguchi S, Miwa I, Sakura H, Terauchi Y, Hayashi J, Sharp GW, Kanazawa Y, Akanuma Y, Yazaki Y, Kadowaki T (1998) Ethidium bromide-induced inhibition of mitochondrial gene transcription suppresses glucose-stimulated insulin release in the mouse pancreatic beta-cell line betaHC9. J Biol Chem 273(32):20300–20307Google Scholar
  62. Herrmann JM, Neupert W (2000) Protein transport into mitochondria. Curr Opin Microbiol 3(2):210–214.  https://doi.org/10.1016/S1369-5274(00)00077-1CrossRefGoogle Scholar
  63. Hiendleder S, Zakhartchenko V, Wenigerkind H, Reichenbach HD, Brüggerhoff K, Prelle K, Brem G, Stojkovic M, Wolf E (2003) Heteroplasmy in bovine fetuses produced by intra- and inter-subspecific somatic cell nuclear transfer: neutral segregation of nuclear donor mitochondrial DNA in various tissues and evidence for recipient cow mitochondria in fetal blood. Biol Reprod 68(1):159–166.  https://doi.org/10.1095/biolreprod.102.008201CrossRefGoogle Scholar
  64. Holt IJ, Harding AE, Morgan-Hughes JA (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331(6158):717–719Google Scholar
  65. Holt IJ, Lorimer HE, Jacobs HT (2000) Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 100(5):515–524.  https://doi.org/10.1016/S0092-8674(00)80688-1CrossRefGoogle Scholar
  66. Houshmand M, Holme E, Hanson C, Wennerholm U-B, Hamberger L (1997) Is paternal mitochondrial DNA transferred to the offspring following intracytoplasmic sperm injection? J Assist Reprod Genet 14(4):223–227.  https://doi.org/10.1007/BF02766114CrossRefGoogle Scholar
  67. Hua S, Zhang Y, Li XC, Ma LB, Cao JW, Dai JP, Li R (2007) Effects of granulosa cell mitochondria transfer on the early development of bovine embryos in vitro. Cloning Stem Cells 9(2):237–246.  https://doi.org/10.1089/clo.2006.0020CrossRefGoogle Scholar
  68. Hwang I, Jeong Y, Kim J, Lee H, Kang M, Park K, Park J, Kim Y, Kim W, Shin T, Hyun S, Jeung E-B, Hwang W (2013) Successful cloning of coyotes through interspecies somatic cell nuclear transfer using domestic dog oocytes. Reprod Fertil Dev 25(8):1142–1148.  https://doi.org/10.1071/RD12256CrossRefGoogle Scholar
  69. Imsoonthornruksa S, Srirattana K, Phewsoi W, Tunwattana W, Parnpai R, Ketudat-Cairns M (2012) Segregation of donor cell mitochondrial DNA in gaur-bovine interspecies somatic cell nuclear transfer embryos, fetuses and an offspring. Mitochondrion 12(5):506–513.  https://doi.org/10.1016/j.mito.2012.07.108CrossRefGoogle Scholar
  70. Ingman M, Kaessmann H, Paabo S, Gyllensten U (2000) Mitochondrial genome variation and the origin of modern humans. Nature 408(6813):708–713Google Scholar
  71. Inoue K, Ogonuki N, Yamamoto Y, Takano K, Miki H, Mochida K, Ogura A (2004) Tissue-specific distribution of donor mitochondrial DNA in cloned mice produced by somatic cell nuclear transfer. Genesis (New York: 2000) 39(2):79–83.  https://doi.org/10.1002/gene.20029Google Scholar
  72. Iwata H, Goto H, Tanaka H, Sakaguchi Y, Kimura K, Kuwayama T, Monji Y (2011) Effect of maternal age on mitochondrial DNA copy number, ATP content and IVF outcome of bovine oocytes. Reprod Fertil Dev 23(3):424–432.  https://doi.org/10.1071/RD10133CrossRefGoogle Scholar
  73. Jenuth JP, Peterson AC, Fu K, Shoubridge EA (1996) Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 14(2):146–151.  https://doi.org/10.1038/ng1096-146CrossRefGoogle Scholar
  74. Jeppesen TD, Schwartz M, Frederiksen AL, Wibrand F, Olsen DB, Vissing J (2006) Muscle phenotype and mutation load in 51 persons with the 3243A>G mitochondrial DNA mutation. Arch Neurol 63(12):1701–1706.  https://doi.org/10.1001/archneur.63.12.1701CrossRefGoogle Scholar
  75. Jiang Y, Kelly R, Peters A, Fulka H, Dickinson A, Mitchell DA, St. John JC (2011) Interspecies somatic cell nuclear transfer is dependent on compatible mitochondrial DNA and reprogramming factors. PLoS One 6(4):e14805.  https://doi.org/10.1371/journal.pone.0014805CrossRefGoogle Scholar
  76. Keilbaugh SA, Hobbs GA, Simpson MV (1993) Anti-human immunodeficiency virus type 1 therapy and peripheral neuropathy: prevention of 2′,3′-dideoxycytidine toxicity in PC12 cells, a neuronal model, by uridine and pyruvate. Mol Pharmacol 44(4):702Google Scholar
  77. Kelly RDW, St. John JC (2011) Role of mitochondrial DNA replication during differentiation of reprogrammed stem cells. Int J Dev Biol 54(11–12):1659–1670.  https://doi.org/10.1387/ijdb.103202rkCrossRefGoogle Scholar
  78. Kelly R, Mahmud A, McKenzie M, Trounce I, St John J (2012) Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A. Nucleic Acids Res 40(20):10124–10138.  https://doi.org/10.1093/nar/gks770CrossRefGoogle Scholar
  79. Kelly RDW, Sumer H, McKenzie M, Facucho-Oliveira J, Trounce IA, Verma PJ, St. John JC (2013) The effects of nuclear reprogramming on mitochondrial DNA replication. Stem Cell Rev Rep 9(1):1–15.  https://doi.org/10.1007/s12015-011-9318-7CrossRefGoogle Scholar
  80. Kim M, Jang G, Oh H, Yuda F, Kim H, Hwang W, Hossein M, Kim J, Shin N, Kang S, Lee B (2007) Endangered wolves cloned from adult somatic cells. Cloning Stem Cells 9(1):130–137.  https://doi.org/10.1089/clo.2006.0034CrossRefGoogle Scholar
  81. King M, Attardi G (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science (New York, NY) 246(4929):500–503.  https://doi.org/10.1126/science.2814477CrossRefGoogle Scholar
  82. Korhonen JA, Gaspari M, Falkenberg M (2003) TWINKLE Has 5′ → 3′ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem 278(49):48627–48632.  https://doi.org/10.1074/jbc.M306981200CrossRefGoogle Scholar
  83. Krishnan KJ, Greaves LC, Reeve AK, Turnbull D (2007) The ageing mitochondrial genome. Nucleic Acids Res 35(22):7399–7405.  https://doi.org/10.1093/nar/gkm635CrossRefGoogle Scholar
  84. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309(5733):481Google Scholar
  85. Lanza R, Cibelli J, Diaz F, Moraes C, Farin P, Farin C, Hammer C, West M, Damiani P (2000) Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning 2(2):79–90.  https://doi.org/10.1089/152045500436104CrossRefGoogle Scholar
  86. Larsson N-G (2010) Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem 79(1):683–706.  https://doi.org/10.1146/annurev-biochem-060408-093701CrossRefGoogle Scholar
  87. Larsson NG, Tulinius MH, Holme E, Oldfors A, Andersen O, Wahlström J, Aasly J (1992) Segregation and manifestations of the mtDNA tRNA(Lys) A-->G(8344) mutation of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet 51(6):1201–1212Google Scholar
  88. Lee WT, St John J (2015) The control of mitochondrial DNA replication during development and tumorigenesis. Ann N Y Acad Sci 1350:95–106.  https://doi.org/10.1111/nyas.12873CrossRefGoogle Scholar
  89. Lee J-H, Peters A, Fisher P, Bowles E, St John J, Campbell K (2010a) Generation of mtDNA homoplasmic cloned lambs. Cell Reprogram 12(3):347–355.  https://doi.org/10.1089/cell.2009.0096CrossRefGoogle Scholar
  90. Lee JH, Peters A, Fisher P, Bowles EJ, St. John JC, Campbell KHS (2010b) Generation of mtDNA homoplasmic cloned lambs. Cell Reprogram 12(3):347–355.  https://doi.org/10.1089/cell.2009.0096CrossRefGoogle Scholar
  91. Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ, Wang X, Williams RS (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101(4):389–399.  https://doi.org/10.1016/S0092-8674(00)80849-1CrossRefGoogle Scholar
  92. Liang C-G, Han Z, Cheng Y, Zhong Z, Latham KE (2009) Effects of ooplasm transfer on paternal genome function in mice. Hum Reprod 24(11):2718–2728.  https://doi.org/10.1093/humrep/dep286CrossRefGoogle Scholar
  93. Lloyd RE, Lee JH, Alberio R, Bowles EJ, Ramalho-Santos J, Campbell KHS, St. John JC (2006) Aberrant nucleo-cytoplasmic cross-talk results in donor cell mtDNA persistence in cloned embryos. Genetics 172(4):2515–2527.  https://doi.org/10.1534/genetics.105.055145CrossRefGoogle Scholar
  94. Loi P, Ptak G, Barboni B, Fulka J, Cappai P, Clinton M (2001) Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat Biotechnol 19(10):962–964.  https://doi.org/10.1038/nbt1001-962CrossRefGoogle Scholar
  95. Maceluch J, Niedziela M (2006) The clinical diagnosis and molecular genetics of Kearns-Sayre syndrome: a complex mitochondrial encephalomyopathy. Pediatr Endocrinol Rev 4(2):117–137Google Scholar
  96. Man PYW, Turnbull DM, Chinnery PF (2002) Leber hereditary optic neuropathy. J Med Genet 39(3):162Google Scholar
  97. Mangia F, Epstein CJ (1975) Biochemical studies of growing mouse oocytes: preparation of oocytes and analysis of glucose-6-phosphate dehydrogenase and lactate dehydrogenase activities. Dev Biol 45(2):211–220.  https://doi.org/10.1016/0012-1606(75)90061-5CrossRefGoogle Scholar
  98. Manjunatha BM, Gupta PSP, Devaraj M, Ravindra JP, Nandi S (2007) Selection of developmentally competent buffalo oocytes by brilliant cresyl blue staining before IVM. Theriogenology 68(9):1299–1304.  https://doi.org/10.1016/j.theriogenology.2007.08.031CrossRefGoogle Scholar
  99. Marchington DR, Scott Brown MSG, Lamb VK, van Golde RJT, Kremer JAM, Tuerlings JHAM, Mariman ECM, Balen AH, Poulton J (2002) No evidence for paternal mtDNA transmission to offspring or extra-embryonic tissues after ICSI. Mol Hum Reprod 8(11):1046–1049Google Scholar
  100. Mastromonaco GF, King WA (2007) Cloning in companion animal, non-domestic and endangered species: can the technology become a practical reality? Reprod Fertil Dev 19(6):748–761Google Scholar
  101. May-Panloup P, Chrétien MF, Jacques C, Vasseur C, Malthièry Y, Reynier P (2005a) Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum Reprod 20(3):593–597.  https://doi.org/10.1093/humrep/deh667CrossRefGoogle Scholar
  102. May-Panloup P, Vignon X, Chrétien M-FF, Heyman Y, Tamassia M, Malthièry Y, Reynier P (2005b) Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors. Reprod Biol Endocrinol 3:65.  https://doi.org/10.1186/1477-7827-3-65CrossRefGoogle Scholar
  103. McFarland R, Taylor RW, Turnbull DM (2007) Mitochondrial disease—its impact, etiology, and pathology. Curr Top Dev Biol 77:113–155.  https://doi.org/10.1016/S0070-2153(06)77005-3CrossRefGoogle Scholar
  104. McKenzie M, Trounce I (2000) Expression of Rattus norvegicus mtDNA in Mus musculus cells results in multiple respiratory chain defects. J Biol Chem 275(40):31514–31519.  https://doi.org/10.1074/jbc.M004070200CrossRefGoogle Scholar
  105. Meirelles FV, Bordignon V, Watanabe Y, Watanabe M, Dayan A, Lôbo RB, Garcia JM, Smith LC (2001) Complete replacement of the mitochondrial genotype in a Bos indicus calf reconstructed by nuclear transfer to a Bos taurus oocyte. Genetics 158(1):351Google Scholar
  106. Mohammadi-Sangcheshmeh A, Held E, Ghanem N, Rings F, Salilew-Wondim D, Tesfaye D, Sieme H, Schellander K, Hoelker M (2011) G6PDH-activity in equine oocytes correlates with morphology, expression of candidate genes for viability, and preimplantative in vitro development. Theriogenology 76(7):1215–1226.  https://doi.org/10.1016/j.theriogenology.2011.05.025CrossRefGoogle Scholar
  107. Mohammadi-Sangcheshmeh A, Soleimani M, Deldar H, Salehi M, Soudi S, Hashemi SM, Schellander K, Hoelker M (2012) Prediction of oocyte developmental competence in ovine using glucose-6-phosphate dehydrogenase (G6PDH) activity determined at retrieval time. J Assist Reprod Genet 29(2):153–158.  https://doi.org/10.1007/s10815-011-9625-6CrossRefGoogle Scholar
  108. Moraes CT, DiMauro S, Zeviani M, Lombes A, Shanske S, Miranda AF, Nakase H, Bonilla E, Werneck LC, Servidei S, Nonaka I, Koga Y, Spiro AJ, Brownell AKW, Schmidt B, Schotland DL, Zupanc M, DeVivo DC, Schon EA, Rowland LP (1989) Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N Engl J Med 320(20):1293–1299.  https://doi.org/10.1056/NEJM198905183202001CrossRefGoogle Scholar
  109. Moyes CD, Battersby BJ, Leary SC (1998) Regulation of muscle mitochondrial design. J Exp Biol 201(3):299Google Scholar
  110. Nakada K, Inoue K, Ono T, Isobe K, Ogura A, Goto YI, Nonaka I, Hayashi JI (2001) Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat Med 7(8):934–940.  https://doi.org/10.1038/90976CrossRefGoogle Scholar
  111. Nelson I, Hanna MG, Wood NW, Harding AE (1997) Depletion of mitochondrial DNA by ddC in untransformed human cell lines. Somat Cell Mol Genet 23(4):287–290.  https://doi.org/10.1007/BF02674419CrossRefGoogle Scholar
  112. Palermo G, Joris H, Devroey P, van Steirteghem AC (1992) Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340(8810):17–18.  https://doi.org/10.1016/0140-6736(92)92425-FCrossRefGoogle Scholar
  113. Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science (New York, NY) 292(5516):504–507.  https://doi.org/10.1126/science.1058079CrossRefGoogle Scholar
  114. Pinkert CA, Irwin MH, Johnson LW, Moffatt RJ (1997) Mitochondria transfer into mouse ova by microinjection. Transgenic Res 6(6):379–383Google Scholar
  115. Pujol M, López-Béjar M, Paramio MT (2004) Developmental competence of heifer oocytes selected using the brilliant cresyl blue (BCB) test. Theriogenology 61(4):735–744.  https://doi.org/10.1016/S0093-691X(03)00250-4CrossRefGoogle Scholar
  116. Rahman S, Poulton J (2008) Diagnosis of mitochondrial DNA depletion syndromes. Arch Dis Child 94(1):3Google Scholar
  117. Ramos A, Santos C, Mateiu L, Gonzalez MM, Alvarez L, Azevedo L, Amorim A, Aluja MP (2013) Frequency and pattern of heteroplasmy in the complete human mitochondrial genome. PLoS One 8(10):e74636.  https://doi.org/10.1371/journal.pone.0074636CrossRefGoogle Scholar
  118. Reynier P, May-Panloup P, Chrétien MF, Morgan CJ, Jean M, Savagner F, Barrière P, Malthièry Y (2001) Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod 7(5):425–429Google Scholar
  119. Rodrigues BA, Rodriguez P, Silva AEF, Cavalcante LF, Feltrin C, Rodrigues JL (2009) Preliminary study in immature canine oocytes stained with brilliant cresyl blue and obtained from bitches with low and high progesterone serum profiles. Reprod Domest Anim 44:255–258.  https://doi.org/10.1111/j.1439-0531.2009.01408.xCrossRefGoogle Scholar
  120. Rötig A, Cormier V, Blanche S, Bonnefont JP, Ledeist F, Romero N, Schmitz J, Rustin P, Fischer A, Saudubray JM (1990) Pearson’s marrow-pancreas syndrome. A multisystem mitochondrial disorder in infancy. J Clin Invest 86(5):1601–1608Google Scholar
  121. Salviano MB, Collares FJF, Becker BS, Rodrigues BA, Rodrigues JL (2015) Bovine non-competent oocytes (BCB–) negatively impact the capacity of competent (BCB+) oocytes to undergo in vitro maturation, fertilisation and embryonic development. Zygote 24(2):245–251.  https://doi.org/10.1017/S0967199415000118CrossRefGoogle Scholar
  122. Santos TA, El Shourbagy S, St. John JC (2006) Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil Steril 85(3):584–591.  https://doi.org/10.1016/j.fertnstert.2005.09.017CrossRefGoogle Scholar
  123. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308(5730):1909Google Scholar
  124. Sekirina GG, Bogoliubova NA, Antonova NV, Dyban AP (1997) The behaviour of mitochondria and cell integration during somatic hybridisation of sister blastomeres of the 2-cell mouse embryo. Zygote 5(2):97–103Google Scholar
  125. Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66(1):409–435.  https://doi.org/10.1146/annurev.biochem.66.1.409CrossRefGoogle Scholar
  126. Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, Waymire K, Lin CS, Masubuchi S, Friend N, Koike M, Chalkia D, MacGregor G, Sassone-Corsi P, Wallace DC (2012) Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell 151(2):333–343.  https://doi.org/10.1016/j.cell.2012.09.004CrossRefGoogle Scholar
  127. Shoffner JM, Wallace DC (1990) Oxidative phosphorylation diseases. Disorders of two genomes. Adv Hum Genet 19:267–332Google Scholar
  128. Shoffner JM, Lott MT, Lezza AMS, Seibel P, Ballinger SW, Wallace DC (1990) Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell 61(6):931–937.  https://doi.org/10.1016/0092-8674(90)90059-NCrossRefGoogle Scholar
  129. Shoubridge EA (2000) Mitochondrial DNA segregation in the developing embryo. Hum Reprod 15(Suppl 2):229–234Google Scholar
  130. Shoubridge E, Wai T (2007) Mitochondrial DNA and the mammalian oocyte. Curr Top Dev Biol 77:87–111.  https://doi.org/10.1016/S0070-2153(06)77004-1CrossRefGoogle Scholar
  131. Silva C, Sartorelli E, Castilho A, Satrapa R, Puelker R, Razza E, Ticianelli J, Eduardo H, Loureiro B, Barros C (2013) Effects of heat stress on development, quality and survival of Bos indicus and Bos taurus embryos produced in vitro. Theriogenology 79(2):351–357.  https://doi.org/10.1016/j.theriogenology.2012.10.003CrossRefGoogle Scholar
  132. Spikings E, Alderson J, St John J (2006) Transmission of mitochondrial DNA following assisted reproduction and nuclear transfer. Hum Reprod Update 12(4):401–415.  https://doi.org/10.1093/humupd/dml011CrossRefGoogle Scholar
  133. Spikings EC, Alderson J, St. John JC (2007) Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol Reprod 76(2):327–335.  https://doi.org/10.1095/biolreprod.106.054536CrossRefGoogle Scholar
  134. Srirattana K, St. John JC (2017) Manipulating the mitochondrial genome to enhance cattle embryo development. G3 7(7):2065Google Scholar
  135. Srirattana K, St. John JC (2018) Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer. Sci Rep 8(1):7246.  https://doi.org/10.1038/s41598-018-25516-3CrossRefGoogle Scholar
  136. Srirattana K, Matsukawa K, Akagi S, Tasai M, Tagami T, Nirasawa K, Nagai T, Kanai Y, Parnpai R, Takeda K (2011) Constant transmission of mitochondrial DNA in intergeneric cloned embryos reconstructed from swamp buffalo fibroblasts and bovine ooplasm. Anim Sci J 82(2):236–243.  https://doi.org/10.1111/j.1740-0929.2010.00827.xCrossRefGoogle Scholar
  137. Srirattana K, Imsoonthornruksa S, Laowtammathron C, Sangmalee A, Tunwattana W, Thongprapai T, Chaimongkol C, Ketudat-Cairns M, Parnpai R (2012) Full-term development of gaur-bovine interspecies somatic cell nuclear transfer embryos: effect of trichostatin A treatment. Cell Reprogram 14(3):248–257.  https://doi.org/10.1089/cell.2011.0099CrossRefGoogle Scholar
  138. St John J (2012) Transmission, inheritance and replication of mitochondrial DNA in mammals: implications for reproductive processes and infertility. Cell Tissue Res 349(3):795–808.  https://doi.org/10.1007/s00441-012-1444-2CrossRefGoogle Scholar
  139. St. John JC, Moffatt O, D'Souza N (2005) Aberrant heteroplasmic transmission of mtDNA in cloned pigs arising from double nuclear transfer. Mol Reprod Dev 72(4):450–460.  https://doi.org/10.1002/mrd.20370CrossRefGoogle Scholar
  140. St. John JC, Facucho-Oliveira J, Jiang Y, Kelly R, Salah R (2010) Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum Reprod Update 16(5):488–509.  https://doi.org/10.1093/humupd/dmq002CrossRefGoogle Scholar
  141. Steinborn R, Schinogl P, Zakhartchenko V, Achmann R, Schernthaner W, Stojkovic M, Wolf E, Müller M, Brem G (2000) Mitochondrial DNA heteroplasmy in cloned cattle produced by fetal and adult cell cloning. Nat Genet 25(3):255–257.  https://doi.org/10.1038/77000CrossRefGoogle Scholar
  142. Steinborn R, Schinogl P, Wells DN, Bergthaler A, Müller M, Brem G (2002) Coexistence of Bos taurus and B. indicus mitochondrial DNAs in nuclear transfer-derived somatic cattle clones. Genetics 162(2):823–829Google Scholar
  143. Su J, Wang Y, Li R, Peng H, Hua S, Li Q, Quan F, Guo Z, Zhang Y (2012) Oocytes selected using BCB staining enhance nuclear reprogramming and the in vivo development of SCNT embryos in cattle. PLoS One 7(4):e36181.  https://doi.org/10.1371/journal.pone.0036181CrossRefGoogle Scholar
  144. Sugulle AH, Dochi O, Koyama H (2008) Developmental competence of bovine oocytes selected by Brilliant Cresyl Blue Staining: effect of the presence of corpus luteum on embryo development. J Mamm Ova Res 25(1):50–55.  https://doi.org/10.1274/jmor.25.50CrossRefGoogle Scholar
  145. Sun X, St. John JC (2016) The role of the mtDNA set point in differentiation, development and tumorigenesis. Biochem J 473(19):2955Google Scholar
  146. Sutovsky P, Moreno R, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (1999) Ubiquitin tag for sperm mitochondria. Nature 402(6760):371–372.  https://doi.org/10.1038/46466CrossRefGoogle Scholar
  147. Tachibana M, Sparman M, Sritanaudomchai H, Ma H, Clepper L, Woodward J, Li Y, Ramsey C, Kolotushkina O, Mitalipov S (2009) Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461(7262):367–372.  https://doi.org/10.1038/nature08368CrossRefGoogle Scholar
  148. Tait SWG, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632Google Scholar
  149. Takeda K, Takahashi S, Onishi A, Goto Y, Miyazawa A, Imai H (1999) Dominant distribution of mitochondrial DNA from recipient oocytes in bovine embryos and offspring after nuclear transfer. J Reprod Fertil 116(2):253–259.  https://doi.org/10.1530/jrf.0.1160253CrossRefGoogle Scholar
  150. Takeda K, Akagi S, Kaneyama K, Kojima T, Takahashi S, Imai H, Yamanaka M, Onishi A, Hanada H (2003) Proliferation of donor mitochondrial DNA in nuclear transfer calves (Bos taurus) derived from cumulus cells. Mol Reprod Dev 64(4):429–437.  https://doi.org/10.1002/mrd.10279CrossRefGoogle Scholar
  151. Takeda K, Tasai M, Iwamoto M, Onishi A, Tagami T, Nirasawa K, Hanada H, Pinkert CA (2005) Microinjection of cytoplasm or mitochondria derived from somatic cells affects parthenogenetic development of murine oocytes. Biol Reprod 72(6):1397–1404.  https://doi.org/10.1095/biolreprod.104.036129CrossRefGoogle Scholar
  152. Takeda K, Tasai M, Iwamoto M, Akita T, Tagami T, Nirasawa K, Hanada H, Onishi A (2006) Transmission of mitochondrial DNA in pigs and progeny derived from nuclear transfer of Meishan pig fibroblast cells. Mol Reprod Dev 73(3):306–312.  https://doi.org/10.1002/mrd.20403CrossRefGoogle Scholar
  153. Takeda K, Tasai M, Akagi S, Matsukawa K, Takahashi S, Iwamoto M, Srirattana K, Onishi A, Tagami T, Nirasawa K, Hanada H, Pinkert CA (2010) Microinjection of serum-starved mitochondria derived from somatic cells affects parthenogenetic development of bovine and murine oocytes. Mitochondrion 10(2):137–142.  https://doi.org/10.1016/j.mito.2009.12.144CrossRefGoogle Scholar
  154. Takeo S, Goto H, Kuwayama T, Monji Y, Iwata H (2013) Effect of maternal age on the ratio of cleavage and mitochondrial DNA copy number in early developmental stage bovine embryos. J Reprod Dev 59(2):174–179.  https://doi.org/10.1262/jrd.2012-148CrossRefGoogle Scholar
  155. Thongphakdee A, Kobayashi S, Imai K, Inaba Y, Tasai M, Tagami T, Nirasawa K, Nagai T, Saito N, Techakumphu M, Takeda K (2008) Interspecies nuclear transfer embryos reconstructed from cat somatic cells and bovine ooplasm. J Reprod Dev 54(2):142–147.  https://doi.org/10.1262/jrd.19159CrossRefGoogle Scholar
  156. Thundathil J, Filion F, Smith LC (2005) Molecular control of mitochondrial function in preimplantation mouse embryos. Mol Reprod Dev 71(4):405–413.  https://doi.org/10.1002/mrd.20260CrossRefGoogle Scholar
  157. Torroni A, Lott MT, Cabell MF, Chen YS, Lavergne L, Wallace DC (1994) mtDNA and the origin of Caucasians: identification of ancient Caucasian-specific haplogroups, one of which is prone to a recurrent somatic duplication in the D-loop region. Am J Hum Genet 55(4):760–776Google Scholar
  158. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-Y M, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, Larsson N-G (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429(6990):417–423. http://www.nature.com/nature/journal/v429/n6990/suppinfo/nature02517_S1.htmlGoogle Scholar
  159. Tzeng CR, Hsieh RH, Au HK, Yen YH, Chang SJ, Cheng YF (2004) Mitochondria transfer (MIT) into oocyte from autologous cumulus granulosa cells (cGCs). Fertil Steril 82:S53.  https://doi.org/10.1016/j.fertnstert.2004.07.136CrossRefGoogle Scholar
  160. Upholt WB, Dawid IB (1977) Mapping of mitochondrial DNA of individual sheep and goats: rapid evolution in the D loop region. Cell 11(3):571–583.  https://doi.org/10.1016/0092-8674(77)90075-7CrossRefGoogle Scholar
  161. Ursing BM, Arnason U (1998) The complete mitochondrial DNA sequence of the pig (Sus scrofa). J Mol Evol 47(3):302–306.  https://doi.org/10.1007/PL00006388CrossRefGoogle Scholar
  162. Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E (2017) The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun 482(3):426–431.  https://doi.org/10.1016/j.bbrc.2016.11.088CrossRefGoogle Scholar
  163. van Blerkom J, Davis PW, Lee J (1995) Fertilization and early embryolgoy: ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum Reprod 10(2):415–424Google Scholar
  164. van Blerkom J, Sinclair J, Davis P (1998) Mitochondrial transfer between oocytes: potential applications of mitochondrial donation and the issue of heteroplasmy. Hum Reprod 13(10):2857–2868Google Scholar
  165. Wai T, Teoli D, Shoubridge E (2008) The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 40(12):1484–1488.  https://doi.org/10.1038/ng.258CrossRefGoogle Scholar
  166. Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA (2010) The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod 83(1):52–62.  https://doi.org/10.1095/biolreprod.109.080887CrossRefGoogle Scholar
  167. Wakefield SL, Lane M, Mitchell M (2011) Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse. Biol Reprod 84(3):572–580.  https://doi.org/10.1095/biolreprod.110.087262CrossRefGoogle Scholar
  168. Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ, Nikoskelainen EK (1988) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242(4884):1427Google Scholar
  169. Wang L, Lin J, Huang J, Wang J, Zhao Y, Chen T (2012) Selection of ovine oocytes by brilliant cresyl blue staining. J Biomed Biotechnol 2012:7.  https://doi.org/10.1155/2012/161372CrossRefGoogle Scholar
  170. Waring MJ (1965) Complex formation between ethidium bromide and nucleic acids. J Mol Biol 13(1):269–282.  https://doi.org/10.1016/S0022-2836(65)80096-1CrossRefGoogle Scholar
  171. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–813.  https://doi.org/10.1038/385810a0CrossRefGoogle Scholar
  172. Wong L-JC (2007) Diagnostic challenges of mitochondrial DNA disorders. Mitochondrion 7(1–2):45–52.  https://doi.org/10.1016/j.mito.2006.11.025CrossRefGoogle Scholar
  173. Wu Y-G, Liu Y, Zhou P, Lan G-C, Han D, Miao D-Q, Tan J-H (2007) Selection of oocytes for in vitro maturation by brilliant cresyl blue staining: a study using the mouse model. Cell Res 17(8):722–731Google Scholar
  174. Yi YC, Chen MJ, Ho JYP, Guu HF, Ho ESC (2007) Mitochondria transfer can enhance the murine embryo development. J Assist Reprod Genet 24(10):445–449.  https://doi.org/10.1007/s10815-007-9161-6CrossRefGoogle Scholar
  175. Yoneda M, Tanno Y, Horai S, Ozawa T, Miyatake T, Tsuji S (1990) A common mitochondrial DNA mutation in the t-RNA(Lys) of patients with myoclonus epilepsy associated with ragged-red fibers. Biochem Int 21(5):789–796Google Scholar
  176. Zhang J, Liu H, Luo S, Lu Z, Chávez-Badiola A, Liu Z, Yang M, Merhi Z, Silber SJ, Munné S, Konstandinidis M, Wells D, Tan JJ, Huang T (2017) Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed Online 34(4):361–368.  https://doi.org/10.1016/j.rbmo.2017.01.013CrossRefGoogle Scholar
  177. Zhao X, Li N, Guo W, Hu X, Liu Z, Gong G, Wang A, Feng J, Wu C (2004) Further evidence for paternal inheritance of mitochondrial DNA in the sheep (Ovis aries). Heredity 93(4):399–403Google Scholar
  178. Zhao N, Zhang Y, Liu Q, Xiang W (2015) Mfn2 affects embryo development via mitochondrial dysfunction and apoptosis. PLoS One 10(5):e0125680.  https://doi.org/10.1371/journal.pone.0125680CrossRefGoogle Scholar
  179. Zouros E, Freeman KR, Ball AO, Pogson GH (1992) Direct evidence for extensive paternal mitochondrial DNA inheritance in the marine mussel Mytilus. Nature 359:412.  https://doi.org/10.1038/359412a0CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mitochondrial Genetics GroupHudson Institute of Medical ResearchClaytonAustralia
  2. 2.Department of Molecular and Translational SciencesMonash UniversityClaytonAustralia

Personalised recommendations