Advertisement

Fungal Vaccines and Vaccination: Problems and Perspectives

  • Antonio MD CassoneEmail author
Chapter
  • 984 Downloads

Abstract

Vaccines against human pathogenic fungi, a rather neglected medical need until few years ago, are now gaining steps in the public health priority scale. The awareness of the rising medical threat represented by the opportunistic fungal infections among the health care-associated infections, the advances in the knowledge of fungal pathogenicity and immune response and the extraordinary progress of biotechnology have generated enthusiasm and critical new tools for active and passive anti-fungal vaccination. The discovery that antibodies play a critical role for protection against fungal infection has greatly contributed to the advancements in this field, in recognition that almost all useful vaccines against viral and bacterial pathogens owe their protective efficacy to neutralizing, opsonizing or otherwise effective antibodies. Overall, there is more hope now than few years ago about the chances of generating and having approved by the regulatory authorities one or more antifungal vaccines, be active or passive, for use in humans in the next few years. In particular, the possibility of protecting against multiple opportunistic mycoses in immuno-depressed subjects with a single, well-defined glucan-conjugate vaccine eliciting directly anti-fungal antibodies may be an important step to achieve this public health goal

Keywords

Candida Albicans Invasive Aspergillosis Protective Antibody Killer Toxin Vaginal Candidiasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Beninati, C., Oggioni M.R., Boccanera, M., Spinosa, M.R., Maggi, T., Conti, S., Magliani, W., De Bernardis, F., Teti, G., Cassone, A., Pozzi, G. and Polonelli, L. (2000) Therapy of mucosal candidiasis by expression of an anti-idiotype in human commensal bacteria. Nat. Biotechnol. 18, 1060–1064.PubMedCrossRefGoogle Scholar
  2. Bohn, J.A., BeMiller, J.N. (1995) Carbohydr. Polym. 28, 3–14.CrossRefGoogle Scholar
  3. Bozza, S., Montagnoli, C., Gaziano, R., Rossi, G., Nkwanyuo, G., Belloccio, S. and Romani, L. (2004) Dendritic cel-based vaccination against opportunistic fungi. Vaccine 22, 857–864.PubMedCrossRefGoogle Scholar
  4. Brian Mochon, A., Cutler, E. (2005) Is a vaccine needed against Candida albicans? Med. Mycol. 43, 97–115.CrossRefGoogle Scholar
  5. Bromuro, C., Torosantucci, A., Chiani, P., Conti, S., Polonelli, L. and Cassone, A. (2002) Interplay between protective and inhibitory antibodies dictates the outcome of experimentally disseminated candidiasis in recipients of a Candida albicans vaccine. Infect. Immun. 70, 5462–5470.PubMedCrossRefGoogle Scholar
  6. Brown, G.D. and Gordon, S. (2003) Fungal beta-glucans and mammalian immunity. Immunity 19, 311–315.PubMedCrossRefGoogle Scholar
  7. Casadevall, A. and Pirofski, L.A. (2006) Polysaccharide-containing conjugate vaccines for fungal diseases. Trends Mol. Med. 12, 6–9.PubMedCrossRefGoogle Scholar
  8. Casadevall, A., Feldmesser, M. and Pirofski, L.A. (2002) Induced humoral immunitá and vaccination against major human fungal pathogens. Curr. Opin. Microbiol. 5, 386–391.PubMedCrossRefGoogle Scholar
  9. Casadevall, A., Dadachova, E. and Pirofski, L.A. (2004) Passive antibody therapy for fungal infections. Nat. Rev. Microbiol. 2, 695–703.PubMedCrossRefGoogle Scholar
  10. Cassone, A. (1986) Cell wall of pathogenic yeasts and implications for antimycotic therapy. Drugs Exp. Clin. Res. 12, 635–643.PubMedGoogle Scholar
  11. Cassone, A., Torosantucci, A. (1991) Candida albicans, Springer-Verlag, Berlin Heidelberg.Google Scholar
  12. Cassone, A., Conti, S., De Bernardis, F. and Polonelli, L. (1997) Antibodies, killer toxins and antifungal immunoprotection: a lesson from nature? Immunol. Today 18, 164–169.PubMedCrossRefGoogle Scholar
  13. Cassone, A. and Cauda, R. (2002) Response: HIV proteinase inhibitors: do they really work against Candida in a clinical setting? Trends Microbiol. 10, 177–178.PubMedCrossRefGoogle Scholar
  14. Chaffin, W.L. et al. 1998 Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol. Mol. Biol. Rev. 62, 130–80.PubMedGoogle Scholar
  15. Chattaway, F.W., Holmes, M.R. and Barlow, A.J. (1968) Cell wall composition of the mycelial and blastospore forms of Candida albicans. J. Gen. Microbiol. 51, 367–376.PubMedGoogle Scholar
  16. Cox, R.A. and Magee, D.M. (2004) Coccidioidomycosis: host response and vaccine development. Clin. Microbiol. Rev. 17, 804–839.PubMedCrossRefGoogle Scholar
  17. De Bernardis, F., Boccanera, M., Adriani, D., Girolamo, A. and Casone, A. (2002) Intravaginal and intranasal immunization are equally effective in inducing vaginal antibodies and conferring protection against vaginal candidiasis. Infect. Immun. 70, 2725–2729.PubMedCrossRefGoogle Scholar
  18. De Bernardis, F. et al. (2006) Humain domain antibodies against virulence traits of Candida albicans inhibit fungus adherence to vaginal epithelium and protect against experimental vaginal candidians. J. Infect. Dis., in press.Google Scholar
  19. Deepe, G.S. Jr. (1997) Prospects for the development of fungal vaccines. Clin. Microbiol. Rev. 10, 585–596.PubMedGoogle Scholar
  20. Deepe, G.S. Jr. (2004) Preventative and therapeutic vaccines for fungal infections: from concept to implementation. Expert. Rev. Vaccines. 3, 701–709.PubMedCrossRefGoogle Scholar
  21. Deepe, G.S. Jr., Wuthrich, M. and Klein, B.S. (2005) Progress in vaccination for histoplasmosis and blastomycosis: coping with cellular immunity. Med. Mycol. 43, 381–389.PubMedCrossRefGoogle Scholar
  22. Denning, D.W. (2003) Echinocandin antifungal drugs. Lancet 362, 1142–1151.PubMedCrossRefGoogle Scholar
  23. Feldmesser, M. (2005) Prospects of vaccines for invasive aspergillosis. Med. Mycol. 43, 571–587.PubMedCrossRefGoogle Scholar
  24. Gartner, B.N., Simmons, R.M. and Underhill, D.M. (2005) Dectin-1 mediates macrophage recognition of Candida albicans yeasts but not filaments. EMBO J. 24, 1377–1286.Google Scholar
  25. Georgopapadakou, N.H. and Tkacz, J.S. (1995) The fungal cell wall as a drug target. Trends Microbiol. 3, 98–104.PubMedCrossRefGoogle Scholar
  26. Gow, N.A.R., Brown, A.J.P. and Odds, F.C. (2002) Fungal morphogenesis and host invasion. Curr. Opin. Microbiol. 5, 366–371.PubMedCrossRefGoogle Scholar
  27. Ibrahim, A.S., Spellberg, B.J., Avenissian, V., Fu, Y., Filler, S.G., Edwards, J.E. Jr. (2005) Vaccination with recombinant N-terminal domain of Als1p improves survival during murine disseminated candidiasis by enhancing cell-mediated, not humoral, immunity. Infect. Immun. 73, 999–1005.PubMedCrossRefGoogle Scholar
  28. Klis, F.M., de Groot, P. and Hellingwerf, K. (2001) Molecular organization of the cell wall of Candida albicans. Med. Mycol. 39, 1–8.PubMedGoogle Scholar
  29. Kumamoto, C.A. and Vinces, M.D. (2005) Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell Microbiol. 7, 1546–54.PubMedCrossRefGoogle Scholar
  30. Latgé, J.P. and Calderone, R. (2002) Host-microbe interactions: fungi invasive human fungal opportunistic infections. Curr. Opin. Microbiol. 5, 355–358.PubMedCrossRefGoogle Scholar
  31. Magliani, W., Conti, S., Salati, A., Arseni, S., Ravanetti, L., Frazzi, R. and Polonelli, L. (2004) Engineered killer mimotopes: new synthetic peptides for antimicrobial therapy. Curr. Med. Chem. 11, 1793–1800.PubMedGoogle Scholar
  32. Maitta, R.W., Datta, K., Lees, A., Belouski, S.S. and Pirofski, L.A. (2004) Immunogenicity and efficacy of Cryptococcus neoformans capsular polysaccharide glucuronoxylomannan peptide mimotope-protein conjugates in human immunoglobulin transgenic mice. Infect. Immun. 72, 196–208.PubMedCrossRefGoogle Scholar
  33. Martinez, L.R. and Casadevall, A. (2005) Specific antibody can prevent fungal biofilm formation and this effect correlates with protective efficacy. Infect. Immun. 73, 6350–6362.PubMedCrossRefGoogle Scholar
  34. Masuoka, J. (2004) Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses, and experimental challenges. Clin. Microbiol. Rev. 17, 281–310.PubMedCrossRefGoogle Scholar
  35. Matthews, R.C. and Burnie, J.P. (2004) Recombinant antibodies: a natural partner in combinatorial antifungal therapy. Vaccine 22, 865–871.PubMedCrossRefGoogle Scholar
  36. Matthews, R.C., Rigg, G., Hodgetts, S., Carter, T., Chapman, C., Gregory, C., Illidge, C. and Burnie, J. (2003) Preclinical assessment of the efficacy of mycograb, a human recombinant antibody against fungal HSP90. Antimicrob. Agents Chemother. 47, 2208–2216.PubMedCrossRefGoogle Scholar
  37. Montagnoli, C., Bozza, S., Bacci, A., Gaziano, R., Mosci, P., Morschhauser, J., Pitzurra, L., Kopf, M., Cutler, J. and Romani, L. (2003) A role for antibodies in the generation of memory antifungal immunity. Eur. J. Immunol. 33, 1193–1204.PubMedCrossRefGoogle Scholar
  38. Oscarson, S., Alpe, M., Svahnberg, P., Nakouzi, A. and Casadevall, A. (2005) Synthesis and immunological studies of glycoconjugates of Cryptococcus neoformans capsular glucuronoxylomannan oligosaccharide structures. Vaccine 23, 3961–3972.PubMedCrossRefGoogle Scholar
  39. Pietrella, D., Corbucci, C., Perito, S., Bistoni, G. and Vecchiarelli, A. (2005) Mannoproteins from Cryptococcus neoformans promote dendritic cell maturation and activation. Infect. Immun. 73, 820–827.PubMedCrossRefGoogle Scholar
  40. Polak, A. (2003) Antifungal therapy–state of the art at the beginning of the 21st century. Prog. Drug. Res. (Spec. No.), 59–190.Google Scholar
  41. Romagnoli, G., Nisini, R., Chiani, P., Mariotti, S., Teloni, R., Cassone, A. and Torosantucci, A. (2004) The interaction of human dendritic cells with yeast and germ-tube forms of Candida albicans leads to efficient fungal processing, dendritic cell maturation and acquisition of a Th1 response-promoting function. J. Leukoc. Biol. 75, 117–126.PubMedCrossRefGoogle Scholar
  42. Sanglard, D. (2002) Resistance of human fungal pathogens to antifungal drugs. Curr. Opin. Microbiol. 5, 379–385.PubMedCrossRefGoogle Scholar
  43. Santoni, G., Boccanera, M., Adriani, D., Lucciarini, R., Amantini, C., Morrone, S., Cassone, A. and De Bernardis, F. (2002) Immune cell-mediated protection against vaginal candidiasis: evidence for a major role of vaginal CD4(+) T cells and possible participation of other local lymphocyte effectors. Infect. Immun. 70, 4791–4797.PubMedCrossRefGoogle Scholar
  44. Schaller, M., Bein, M., Korting, H.C., Baur, S., Hamm, G., Monod, M., Beinhauer, S. and Hube, B. (2003) The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect. Immun. 71, 3227–3234.PubMedCrossRefGoogle Scholar
  45. Schaller, M., Borelli, C., Korting, H.C. and Hube, B. (2005) Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48, 365–377.PubMedCrossRefGoogle Scholar
  46. Sheppard, D.C. and Edwards, J.E. Jr. (2004) Development of a vaccine for invasive aspergillosis. Clin. Infect. Dis. 38, 1137–1138.PubMedCrossRefGoogle Scholar
  47. Sims, C.R., Ostrosky-Zeichner, L. and Rex, J.H. (2005) Invasive candidiasis in immunocompromised hospitalized patients. Arch. Med. Res. 36, 660–671.PubMedCrossRefGoogle Scholar
  48. Smulian, A.G., Sullivan, D.W. and Theus, S.A. (2000) Immunization with recombinant Pneumocystis carinii p55 antigen provides partial protection against infection: characterization of epitope recognition associated with immunization. Microbes. Infect. 2, 127–136.PubMedCrossRefGoogle Scholar
  49. Stevens, D.A. (2004) Vaccinate against aspergillosis! A call to arms of the immune system. Clin. Infect. Immun. 38, 1131–1136.Google Scholar
  50. Stone, B.A. and Clark, A.E. (1992) Chemistry and biology of (1–3)-ß-glucans. La Trobe University Press, Victoria, Australia.Google Scholar
  51. Taborda, C.P., Nakaie, C.R., Cilli, E.M., Rodrigues, E.G., Silva, L.S., Franco, M.F. and Travassos, L.R. (2004) Synthesis and immunological activity of a branched peptide carrying the T-cell epitope of gp43, the major exocellular antigen of Paracoccidioides brasiliensis. Scand. J. Immunol. 59, 58–65.PubMedCrossRefGoogle Scholar
  52. Tarcha, E.J., Basrur, V., Hung, C.Y., Gardner, M.J. and Cole, G.T. (2006) A recombinant aspartyl protease of Coccidioides posadasii induces protection against pulmonary coccidioidomycosis in mice. Infect. Immun. 74, 516–527.PubMedCrossRefGoogle Scholar
  53. Torosantucci, A., Bromuro, C., Chiani, P., De Bernardis, F., Berti, F., Galli, C., Norelli, F., Bellucci, C., Polonelli, L., Costantino, P., Rappuoli, R. and Cassone, A. (2005) A novel glyco-conjugate vaccine against fungal pathogens. J. Exp. Med. 202, 597–606.PubMedCrossRefGoogle Scholar
  54. Torres, M., May, R., Scharff, M.D. and Casadevall, A. (2005) Variable-region-identical antibodies differing in isotype demonstrate differences infine specificity and idiotype. J. Immuol. 174, 2132–2142.Google Scholar
  55. Traggiai, E., Becker, S., Subbarao, K., Kolesnikova, L., Uematsu, Y., Gismondo, M.R., Murphy, B.R., Rappuoli, R. and Lanzavecchia, A. (2004) An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat. Med. 10(8), 871–875PubMedCrossRefGoogle Scholar
  56. van der Graaf, C.A., Netea, M.G., Verschueren, I., van der Meer, J.W. and Kullberg, B.J. (2005) Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae. Infect. Immun. 73, 7458–7464.PubMedCrossRefGoogle Scholar
  57. Vilanova, M., Teixeira, L., Caramalho, I., Torrado, E., Marques, A., Madureira, P., Ribeiro, A., Ferreira, P., Gama, M. and Demengeot, J. (2004) Protection against systemic candidiasis in mice immunized with secreted aspartic proteinase 2. Immunology 111, 334–342.PubMedCrossRefGoogle Scholar
  58. Wuthrich, M., Warner, T. and Klein, B.S. (2005) CD28 is required for optimal induction, but not maintenance, of vaccine-induced immunity to Blastomyces dermatitidis. Infect. Immun. 73, 7436–7441.PubMedCrossRefGoogle Scholar
  59. Zhang, M.X., Bohlman, M.C., Itatani, C., Burton, D.R., Parren, P.W., St Jeor S.C. and Kozel T.R. (2006) Human recombinant antimannan immunoglobulin G1 antibody confers resistance to hematogenously disseminated candidiasis in mice. Infect. Immun. 74, 362–369.PubMedCrossRefGoogle Scholar
  60. Zheng, M., Ramsay, A.J., Robichaux, M.B., Norris, K.A., Kliment, C., Crowe, C., Rapaka, R.R., Steele, C., McAllister, F., Shellito, J.E., Marrero, L., Schwarzenberger, P., Zhong, Q. and Kolls, J.K. (2005) CD4 T cell-independent DNA vaccination against opportunistic infections. J. Clin. Invest. 115, 3536–3544.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Research Director and Professor of Medical Microbiology, Department of Infectious, Parasitic and Immuno-mediated DiseasesIstituto Superiore di SanitáRome(Italy)

Personalised recommendations