Advertisement

Hohenberg-Kohn-Sham Density Functional Theory

  • Tomasz A. Wesołowski
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 4)

Abstract

The emergence of a family of computational methods, known under the label ‘density functional theory∈dex theory! density functional ’ or ‘DFT’, revolutionalized the field of computer modelling of complex molecular systems. Many computational schemes belonging to the DFT family are currently in use. Some of them are designed to be universal (nonempirical) whereas other to treat specific systems and/or properties (empirical). This review starts with the introduction of the formal elements underlying all these methods: Hohenberg-Kohn theorems∈dex theorem! Hohenberg-Kohn , reference system∈dex reference system of noninteracting electrons∈dex reference system! noninteracting electrons , exchange-correlation energy∈dex energy functional! exchange-correlation functional∈dex functional , and the Kohn-Sham equations∈dex equation! Kohn-Sham . The main roads to approximate the exchange-correlation-energy functional based on: local density approximation∈dex approximation! local density (LDA), generalized gradient approximation∈dex approximation! generalized gradient (GGA), meta-GGA∈dex energy functional! exchange-correlation! meta-GGA , and adiabatic connection∈dex adiabatic connection formula (hybrid functionals∈dex energy functional! exchange-correlation! hybrid ), are outlined. The performance of these approximations in describing molecular properties of relevance to intermolecular interaction∈dex interactions! intermolecular s and their interactions with environment in condensed phase (ionization potential∈dex potential! ionization s, electron∈dex electron affinities∈dex electron! affinity , electric moments∈dex electric moment , polarizabilities∈dex polarizability ) is reviewed. Developments concerning new methods situated within the general Hohenberg-Kohn-Sham framework or closely related to it are overviewed in the last section

Keywords

computer modelling density functional theory∈dex theory! density functional dipole moment∈dex electric moment! dipole dipole polarizability electron∈dex electron affinity empirical methods exchange-correlation energy functional hydrogen bonding intermolecular interactions ionization potential Kohn-Sham equations non-empirical methods van der Waals complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron∈dex electron gas∈dex electron! gas , Phys Rev B 136: 864–871ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation Effects, Phys Rev, 140A: 1133–1138ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Gelfand IM, Fomin SV (2000) Calculus of Variations, Dover Publications Inc., Mineola, New York, p 1zbMATHGoogle Scholar
  4. 4.
    Perdew JP, Zunger A (1981) Self-interaction correction to density-functional∈dex functional approximations for many-electron∈dex electron systems, Phys Rev B, 23: 5048–5079ADSCrossRefGoogle Scholar
  5. 5.
    Shore HB, Rose JH, Zaremba E (1977) Failure of the local exchange approximation in the evaluation of the H- ground state, Phys Rev B, 15: 2858–2861ADSCrossRefGoogle Scholar
  6. 6.
    Ziegler T, Rauk A, Baerends EJ (1977) Calculation of multiplet energies by Hartree-Fock∈dex wavefunction methods! Hartree-Fock -Slater method, Theor Chim Acta, 43: 261–271CrossRefGoogle Scholar
  7. 7.
    Bally T, Sastry GN (1997) Incorrect dissociation∈dex dissociation behavior of radical ions in density functional calculations, J. Phys. Chem. A, 101: 7923–7925CrossRefGoogle Scholar
  8. 8.
    Chermette H (1999) Chemical reactivity index∈dex reactivity indiceses in density functional theory, J. Comput. Chem, 20: 129–154CrossRefGoogle Scholar
  9. 9.
    Levy M (1979) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem, Proc Natl Acad Sci USA, 76: 6062–6065PubMedADSCrossRefGoogle Scholar
  10. 10.
    Gunnarsson O, Lundqvist BI (1976) Exchange and correlation in atoms, molecules, and solids by spin-density functional formalism, Phys Rev B, 13: 4274–4298ADSCrossRefGoogle Scholar
  11. 11.
    Langreth DC, Perdew JP (1977) Exchange-correlation energy of a metallic surface – wave-vector analysis, Phys Rev B, 15: 2884–2901ADSCrossRefGoogle Scholar
  12. 12.
    Gunnarsson O, Lundqvist BI (1976) Exchange and correlation in atoms, molecules, and solids by spin-density functional formalism, Phys Rev B, 13: 4274–4298ADSCrossRefGoogle Scholar
  13. 13.
    Langreth DC, Perdew JP (1977) Exchange-correlation energy of a metallic surface – wave-vector analysis, Phys Rev B, 15: 2884–2901ADSCrossRefGoogle Scholar
  14. 14.
    Dirac PAM (1930) Note on exchange phenomena in the Thomas atom, Proc Cambridge Philos Soc, 26: 376–385Google Scholar
  15. 15.
    Slater JC (1951) A simplification of the Hartree-Fock method for the exchange energy (Ex[UPrho]) in the uniform electron gas, Phys Rev, 81: 385–390zbMATHADSCrossRefGoogle Scholar
  16. 16.
    Ceperley DM, Alder BJ (1980) Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett, 45: 566–569ADSCrossRefGoogle Scholar
  17. 17.
    Vosko SH, Wilk, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can J Phys, 58: 1200–1211ADSCrossRefGoogle Scholar
  18. 18.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy, Phys Rev B, 45: 13244–13249ADSCrossRefGoogle Scholar
  19. 19.
    Perdew JP (1991a) Generalized gradient approximations for exchange and correlation – A look backward and forward, Physica B, 172: 1–6ADSCrossRefGoogle Scholar
  20. 20.
    Herman F, Van Dyke JP, Ortenburger IB (1969) Improved statistical exchange approximation for inhomogeneous many-electron systems, Phys Rev Lett, 22: 807–811ADSCrossRefGoogle Scholar
  21. 21.
    Ma SK, Bruekner KA (1968) Correlation energy of an electron gas with a slowly varying high density, Phys Rev, 165:18–31ADSCrossRefGoogle Scholar
  22. 22.
    Perdew JP, Langreth DC, V Sahni (1977) Corrections to the local density approximation: Gradient expansion versus wave-vector analysis for the metallic surface problem, Phys Rev Lett, 38: 1030–1033ADSCrossRefGoogle Scholar
  23. 23.
    Sahni V, Gruenebaum J, Perdew JP (1982) Study of the density-gradient expansion for the exchange energy, Phys Rev B, 26: 4371–4377ADSCrossRefGoogle Scholar
  24. 24.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 38: 3098–3100PubMedADSCrossRefGoogle Scholar
  25. 25.
    Perdew JP, Yue W (1986) Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Phys Rev B, 33: 8800–8802ADSCrossRefGoogle Scholar
  26. 26.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys Rev B, 33: 8822–8824ADSCrossRefGoogle Scholar
  27. 27.
    Perdew JP (1991b) Unified theory of exchange and correlation beyond local density approximation, in: P.Ziesche and H.Eschrig (eds)., Electronic Structure of Solids’91, Akademie Verlag, Berlin,11Google Scholar
  28. 28.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple, Phys Rev Lett, 77: 3865–3868PubMedADSCrossRefGoogle Scholar
  29. 29.
    Colle R, Salvetti O (1975) Approximate calculation of correlation energy for closed shells, Theoretica Chimica Acta, 37: 329–334CrossRefGoogle Scholar
  30. 30.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys Rev B, 37: 785–789ADSCrossRefGoogle Scholar
  31. 31.
    Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) Development and assessment of new exchange-correlation functionals, J Chem Phys, 109: 6264–6271ADSCrossRefGoogle Scholar
  32. 32.
    Becke AD (1986) Density functional calculations of molecular-bond energies, J. Chem. Phys, 84: 4524–4529ADSCrossRefGoogle Scholar
  33. 33.
    Gill PWM (1996) A new gradient-corrected exchange functional, Mol Phys, 89: 433–445CrossRefGoogle Scholar
  34. 34.
    Filatov M, Thiel W (1997) A new gradient-corrected exchange-correlation density functional, Mol Phys, 91: 847–859CrossRefGoogle Scholar
  35. 35.
    Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models, J. Chem. Phys, 108: 664–675ADSCrossRefGoogle Scholar
  36. 36.
    Zhang Y, Yang W (1998) Comment on ‘‘Generalized Gradient Approximation Made Simple’’, Phys Rev Lett, 80: 890ADSCrossRefGoogle Scholar
  37. 37.
    Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys Rev B, 59: 7413–7421ADSCrossRefGoogle Scholar
  38. 38.
    Handy NC, Cohen A (2001) Left-right correlation energy, Mol Phys, 99: 403–412CrossRefGoogle Scholar
  39. 39.
    Adamo C, Barone V (2002) Physically motivated density functionals with improved performances: The modified Perdew-Burke-Ernzerhof model, J. Chem. Phys, 116: 5933–5940ADSCrossRefGoogle Scholar
  40. 40.
    Becke AD (1983) Hartree-Fock exchange energy of an inhomogeneous electron-gas, Int. J. Quant. Chem, 23: 1915–1922CrossRefGoogle Scholar
  41. 41.
    Becke A, Roussel ME (1989) Exchange holes in inhomogeneous systems: A coordinate-space model, Phys. Rev. A, 39: 3761–3767PubMedADSCrossRefGoogle Scholar
  42. 42.
    Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids, Phys Rev Lett, 91: 146401PubMedADSCrossRefGoogle Scholar
  43. 43.
    Proynov EI, Vela A, Salahub DR (1994) Nonlocal correlation functional involving the Laplacian of the density, Chem Phys Lett, 230: 419–428ADSCrossRefGoogle Scholar
  44. 44.
    Filatov M, Thiel W (1998) Exchange-correlation density functional beyond the gradient approximation, Phys Rev A, 57: 189–199ADSCrossRefGoogle Scholar
  45. 45.
    Gill PW (2001) Obituary: density functional theory (1927–1993), Austr J Chem, 54: 661–662CrossRefGoogle Scholar
  46. 46.
    Görling A, Levy M (1994) Exact Kohn-Sham scheme based on perturbation theory, Phys Rev A, 50: 196–204PubMedADSCrossRefGoogle Scholar
  47. 47.
    Görling A (2005) Orbital- and state-dependent functionals in density-functional theory, J Chem Phys, 123: 062203CrossRefGoogle Scholar
  48. 48.
    Becke AD (1993a) A new mixing of Hartree-Fock and local density-functional theories., J. Chem. Phys., 107: 8554–8560ADSCrossRefGoogle Scholar
  49. 49.
    Becke AD (1993b) Density-functional thermochemistry 3. The role of exact exchange., J. Chem. Phys, 98: 5648–5652ADSCrossRefGoogle Scholar
  50. 50.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J Phys Chem, 98: 11623–11627CrossRefGoogle Scholar
  51. 51.
    Becke AD (1997) Density-functional thermochemistry 5. Systematic optimization of exchange-correlation functionals, J. Chem. Phys, 98: 1372–1377ADSCrossRefGoogle Scholar
  52. 52.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable para-meters: The PBE0 model, J. Chem. Phys, 110: 6158–6170ADSCrossRefGoogle Scholar
  53. 53.
    Ernzerhof M, Scuseria GE (1999) Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional, J Chem Phys, 110, 5029–5036ADSCrossRefGoogle Scholar
  54. 54.
    Kafafi SA (1998) Novel density functional methodology for the computation of accurate electronic and thermodynamic properties of molecular systems and improved long-range behavior, J Phys Chem A, 102: 10404–10413CrossRefGoogle Scholar
  55. 55.
    Tao J (2002) An accurate MGGA-based hybrid exchange-correlation functional, J Chem Phys, 116: 2335–2337ADSCrossRefGoogle Scholar
  56. 56.
    Toulouse J, Adamo C (2002) A new hybrid functional including a meta-GGA approach, Chem Phys Lett, 362: 72–78CrossRefGoogle Scholar
  57. 57.
    Zhao Y, Truhlar DG (2004) Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: The MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions, J Phys Chem A, 108: 6908–6918CrossRefGoogle Scholar
  58. 58.
    Perdew JP, Ruzsinsky A, Tao J, Starovyerov V, Scuseria GE, Csonka GI (2005) Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits, J Chem Phys, 123: 062201CrossRefGoogle Scholar
  59. 59.
    Dickson RM, Becke AD (1996) Local density-functional polarizabilities and hyperpolarizabilities at the basis-set limit, J Phys Chem, 100: 16105–16108CrossRefGoogle Scholar
  60. 60.
    Becke AD, Dickson RM (1990) Numerical-solution of Schrödinger equation in polyatomic molecules, J. Chem. Phys, 92: 3610–3612ADSCrossRefGoogle Scholar
  61. 61.
    Cohen AJ, Tantirungrotechai Y (1999) Molecular electric properties: an assessment of recently developed functionals, Chem. Phys. Lett, 299: 465–472CrossRefGoogle Scholar
  62. 62.
    Jasien PG, Fitzgerald G (1990) Molecular dipole moments and polarizabilities from local density functional calculations: Applications to DNA base pairs, J Chem Phys, 93: 2554–2560ADSCrossRefGoogle Scholar
  63. 63.
    St.-Amant A, Cornell WD, Kollman PA, Halgren TA (1995) Calculation of molecular geometries, relative conformational energies, dipole-moments, and molecular electrostatic potential fitted charges of small organic-molecules of biochemical interest by density-functional theory, J Comput Chem, 16: 1483–1506CrossRefGoogle Scholar
  64. 64.
    Rashin AA, Young L, Topol IA, Burt SK (1994) Molecular dipole moments calculated with density functional theory, Chem Phys Lett, 230: 182–188ADSCrossRefGoogle Scholar
  65. 65.
    Bakalarski G, Grochowski P, Kwiatkowski JS, Lesyng B, Leszczynski J (1996) Molecular and electrostatic properties of the N-methylated nucleic acid bases by density functional theory, Chem. Phys, 204: 301–311CrossRefGoogle Scholar
  66. 66.
    de Luca G, Russo N, Sicilia E, Toscano M (1996) Molecular quadrupole moments, second moments, and diamagnetic susceptibilities evaluated using the generalized gradient approximation in the framework of Gaussian density functional method, J Chem Phys, 105: 3206–3210ADSCrossRefGoogle Scholar
  67. 67.
    Scheiner AC, Baker J, Andzelm J (1997) Molecular energies and properties from density functional theory: Exploring basis set dependence of Kohn-Sham equation using several density functionals, J Comput Chem, 18, 775–795CrossRefGoogle Scholar
  68. 68.
    Heidin L, Lundqvist BI (1971) Explicit local exchange-correlation potentials, J Phys C, 4: 2064–2083ADSCrossRefGoogle Scholar
  69. 69.
    McDowell SAC, Amos RD, Handy NC (1995) Molecular polarisabilities - a comparison of density functional theory with standard ab initio methods, Chem Phys Lett, 235: 1–4ADSCrossRefGoogle Scholar
  70. 70.
    Guan J, Duffy P, Carter JT, Chong DP, Casida KC, Casida ME, Wrinn M (1993) Comparison of local-density and Hartree–Fock calculations of molecular polarizabilities and hyperpolarizabilities, J Chem Phys, 98: 4753–4765ADSCrossRefGoogle Scholar
  71. 71.
    van Caillie C, Amos RD (1998) Static and dynamic polarisabilities, Cauchy coefficients and their anisotropies: a comparison of standard methods, Chem. Phys. Lett, 291: 71–77CrossRefGoogle Scholar
  72. 72.
    Calaminici P, Jug K, Koster AM (1998) Density functional calculations of molecular polarizabilities and hyperpolarizabilities, J. Chem. Phys, 109: 7756–7763ADSCrossRefGoogle Scholar
  73. 73.
    Guan J, Casida ME, Salahub DR (1995) ll-Electron Local and Gradient-Corrected Density-Functional Calculations of Na_n Dipole Polarizabilities for n = 1–6, Phys Rev B, 52: 2185–2200ADSGoogle Scholar
  74. 74.
    Russell AJ, Spackman MA (1995) Vibrational averaging of electrical-properties development of a routine theoretical method for polyatomic molecules, Mol Phys, 84: 1239–1255CrossRefGoogle Scholar
  75. 75.
    Russell AJ, Spackman MA (1997) An ab initio study of vibrational corrections to the electrical properties of the second-row hydrides, Mol Phys, 90: 251–264CrossRefGoogle Scholar
  76. 76.
    Wilson PJ, Bradley TJ, Tozer DJ (2001) Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials, J Chem Phys, 115: 9233–9242ADSCrossRefGoogle Scholar
  77. 77.
    Sophy KB, Pal S (2003) Density functional response approach for the linear and nonlinear electric properties of molecules, J Chem Phys, 118: 10861–10866ADSCrossRefGoogle Scholar
  78. 78.
    van Gisbergen SJA, Osinga VP, Gritsenko OV, van Leeuven R, Snijders JG, Baerends EJ (1996) Improved density functional theory for frequency-dependent polarizabilities, by the use of an exchange-correlation potential with correct asymptotic behavior, J Chem Phys, 105: 3142–3151ADSCrossRefGoogle Scholar
  79. 79.
    Zhao Q, Morrison RC, Parr RG (1994) From electron densities to Kohn-Sham kinetic energies, orbital energies, exchange-correlation potentials, and exchange-correlation energies, Phys Rev A, 50: 2138–2142PubMedADSCrossRefGoogle Scholar
  80. 80.
    van Leeuwen, Baerends EJ (1994) Exchange-correlation potential with correct asymptotic behavior, Phys Rev A, 49: 2421–2431ADSCrossRefGoogle Scholar
  81. 81.
    Mori-Sanchez P, Wu Q, Yang WT (2003) Accurate polymer polarizabilities with exact exchange density-functional theory, J Chem Phys, 119: 11001–11004ADSCrossRefGoogle Scholar
  82. 82.
    Hirata S, Ivanov S, Bartlett RJ, Grabowski I (2005) Exact-exchange time-dependent density-functional theory for static and dynamic polarizabilities, Phys. Rev. A, 71: 032507ADSCrossRefGoogle Scholar
  83. 83.
    van Gisbergen SJA, Kootstra F, Schipper PRT, Gritsenko OV, Snijders JG, Baerends (1998) Density-functional-theory response-property calculations with accurate exchange-correlation potentials, Phys Rev A, 57: 2556–2570ADSCrossRefGoogle Scholar
  84. 84.
    Jacob CR, Wesolowski TA, Visscher L (2005) Orbital-free embedding applied to the calculation of induced dipole moments in CO2 .. X (X = He, Ne, Ar, Kr, Xe, Hg) van der Waals complexes, J Chem Phys, 123: 174104PubMedADSCrossRefGoogle Scholar
  85. 85.
    Gritsenko O, Schipper PRT, Baerends EJ (1999) Approximation of the exchange-correlation Kohn-Sham potential with a statistical average of different orbital model potentials, Chem Phys Lett, 302: 199–207CrossRefGoogle Scholar
  86. 86.
    Janak JF (1978) Proof that ∂ E∂ ni=UPvarepsiloni in density functional theory, Phys Rev B, 18: 7165–7168ADSCrossRefGoogle Scholar
  87. 87.
    Perdew JP, Parr RG, Levy M, Balduz Jr JL (1982) Density-functional theory for fractional particle number: Derivative discontinuities of the energy, Phys Rev Lett, 49: 1691–1694ADSCrossRefGoogle Scholar
  88. 88.
    Perdew JP, Levy M (1995) Comment on ‘‘Significance of the highest occupied Kohn-Sham eigenvalue’’, Phys Rev B, 56: 16021–16028ADSCrossRefGoogle Scholar
  89. 89.
    Lindgren I, Salomonson S, Möller F (2005) Construction of accurate Kohn-Sham potentials for the lowest states of the helium atom: Accurate test of the ionization-potential theorem, Int J Quant Chem, 102: 1010–1017CrossRefGoogle Scholar
  90. 90.
    Grabo T, Gross EKU (1995) Density-functional-theory using an optimized exchange-correlation potential, Chem Phys Lett, 240: 141–150ADSCrossRefGoogle Scholar
  91. 91.
    Wu Q, Ayers PW, Yang WT (2003) Density-functional theory calculations with correct long-range potentials, J Chem Phys, 119: 2978–2990ADSCrossRefGoogle Scholar
  92. 92.
    Weimer M, Delle Sala F, Görling A (2004) The Kohn-Sham treatment of anions via the localized Hartree-Fock method, Chem Phys Lett, 372, 538–547CrossRefGoogle Scholar
  93. 93.
    Schwarz K (1978) Instability of stable negative ions in XUPalpha method or other local density functional schemes, Chem Phys Lett, 57: 605–607ADSCrossRefGoogle Scholar
  94. 94.
    Hamel S, Casida ME, Salahub DR (2002b) Exchange-only optimized effective potential for molecules from resolution-of-the-identity techniques: Comparison with the local density approximation, with and without asymptotic correction, J Chem Phys, 116: 8276–8291ADSCrossRefGoogle Scholar
  95. 95.
    Gritsenko O, Baerends EJ (2002) The analog of Koopmans’ theorem in spin-density functional theory, J Chem Phys, 117: 9154–9159ADSCrossRefGoogle Scholar
  96. 96.
    Chong DP, Gritsenko OV, Baerends EJ (2002) Interpretation of the Kohn-Sham orbital energies as approximate vertical ionization potentials, J. Chem. Phys, 116: 1760–1772ADSCrossRefGoogle Scholar
  97. 97.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Phys Rev B, 46: 6671–6687ADSCrossRefGoogle Scholar
  98. 98.
    Vydrov OA, Scuseria GE (2005) Ionization potentials and electron affinities in the Perdew-Zunger self-interaction corrected density-functional theory, J Chem Phys, 122: 184107PubMedADSCrossRefGoogle Scholar
  99. 99.
    Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation, J Chem Phys, 106: 1063–1079ADSCrossRefGoogle Scholar
  100. 100.
    Staroverov VN, Scuseria GE, Tao JM, Perdew JP (2003) Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes, J Chem Phys, 119: 12129–12137ADSCrossRefGoogle Scholar
  101. 101.
    Joantéguy S, Pfister-Guillouzo, Chermette H (1999) Asessment of density functional methods for the calculation of ionization potentials of unsaturated molecules, J Phys Chem A, 103, 3505–3511CrossRefGoogle Scholar
  102. 102.
    Hoe WM, Cohen A, Handy NC (2001) Assessment of a new local exchange functional OPTX, Chem Phys Lett, 341: 319–328CrossRefGoogle Scholar
  103. 103.
    Xu X, Goddard III WA (2004a) Assessment of Handy-Cohen optimized exchange density functional (OPTX), J Phys Chem A, 108: 8495–8506CrossRefGoogle Scholar
  104. 104.
    Cole LA, Perdew JP (1982) Calculated electron affinities of the elements, Phys. Rev. A, 25, 1265–1271ADSCrossRefGoogle Scholar
  105. 105.
    Rösch N, Trickey SB (1997) Comment on ‘‘Concerning the applicability of density functional methods to atomic and molecular negative ions’’, [J Chem Phys, 105, 862 (1996)], J Chem Phys, 106, 8940–8941ADSCrossRefGoogle Scholar
  106. 106.
    Galbraith JM, Schaefer HF (1996) Concerning the applicability of density functional methods to atomic and molecular negative ions, J Chem Phys, 105, 862–864ADSCrossRefGoogle Scholar
  107. 107.
    Tschumper GS, Schaefer HF (1997) Predicting electron affinities with density functional theory: Some positive results for negative ion, J Chem Phys, 107: 2529–2541ADSCrossRefGoogle Scholar
  108. 108.
    Sim F, St-Amant A, Papai I, Salahub DR (1992) Gaussian density functional calculations on hydrogen-bonded systems, J Am Chem Soc, 114: 4391–4400CrossRefGoogle Scholar
  109. 109.
    Novoa JJ, Sosa C (1995) Evaluation of the density functional approximation on the computation of hydrogen bond interactions, J Phys Chem, 99: 15837–15845CrossRefGoogle Scholar
  110. 110.
    Zhu T, Yang W (1994) Structure of the ammonia dimer studied by density functional theory, Int J Quant Chem, 49: 613–623CrossRefGoogle Scholar
  111. 111.
    Floriàn J, Johnson B (1995) Structure, energetics, and force fields of the cyclic formamide dimer: MP2, Hartree-Fock, and density functional study, J Phys Chem, 99: 5899–5908CrossRefGoogle Scholar
  112. 112.
    Han WG, Suhai S (1996) Density Functional Studies on N-Methylacatemide-Water Complex, J Phys Chem, 100: 3942–3949CrossRefGoogle Scholar
  113. 113.
    Zhao Y, Truhlar DG (2005a) Benchmark databases for nonbonded interactions and their use to test density functional theory, J Chem Theory Comput, 1: 415–432CrossRefGoogle Scholar
  114. 114.
    Pudzianowski AT, (1995) A systematic appraisal of density functional methodologies for hydrogen bonding in binary ionic complexes, J Phys Chem, 100: 4781–4789CrossRefGoogle Scholar
  115. 115.
    Hobza P, Sponer J, Reschel T (1995) Density-functional theory and molecular clusters, J Comp Chem, 16: 1315–1325CrossRefGoogle Scholar
  116. 116.
    Mele F, Mineva T, Russo N, Toscano M (1995) Hydrogen-bonded and van-der-Waals complexes studied by a gaussian density-functional method – the case of (HF)2, ArHCl, Ar2HCl systems, Theor Chim Acta, 91: 169–177Google Scholar
  117. 117.
    Süle P, Nagy A (1996) Density Functional study of strong hydrogen-bonded systems: The hydrogen diformate complex, J Chem Phys, 104: 8524–8534ADSCrossRefGoogle Scholar
  118. 118.
    Kim K, Jordan KD (1994) Comparison of density functional and MP2 calculations on the water monomer and dimer, J Phys Chem, 98: 10089–10094CrossRefGoogle Scholar
  119. 119.
    Del Bene JE, Person WB, Szczepaniak K (1995) Properties of hydrogen-bonded Complexes Obtained from B3LYP Functional with 6–31G(d,p) and 6–31 + G(d,p) Basis Sets: Comparison with MP2/631 + G(d,p) Results and Experimental Data, J Phys Chem, 99: 10705–10707CrossRefGoogle Scholar
  120. 120.
    Zhao Y, Tishchenko O, Truhlar DG (2005) How well can density functional methods describe hydrogen bonds to UPpi acceptors?, J Phys Chem B, 109: 19046–19051PubMedCrossRefGoogle Scholar
  121. 121.
    Bergés J, Caillet J, Langlet J, Kozelka J (2001) Hydration and ‘inverse hydration’ of platinum(II) complexes: an analysis using the density functionals PW91 and BLYP, Chem. Phys. Lett, 344: 573–577CrossRefGoogle Scholar
  122. 122.
    Milet A, Korona T, Moszynski R, Kochaniski E (1999) Anisotropic intermolecular interactions in van der Waals and hydrogen-bonded complexes: What can we get from density functional calculations? J Chem Phys, 111: 7727–7735ADSCrossRefGoogle Scholar
  123. 123.
    Xu X, Goddard III WA (2004b) The X3LYP extended functional for accurate description of nonbond interactions, spin states, and thermochemical properties, Proc Natl Acad Sci USA, 101: 2673–2677ADSCrossRefGoogle Scholar
  124. 124.
    Klopper W, van Duijneveldt-van de Rijdt JGCM, van Duijneveldt FB (2000) Computational determination of equilibrium geometry and dissociation energy of the water dimer, Phys Chem Chem Phys, 2: 2227–2234CrossRefGoogle Scholar
  125. 125.
    Misquitta AJ, Jeziorski B, Szalewicz K (2003) Dispersion energy from density-functional theory description of monomers, Phys Rev Lett, 91: 033201PubMedADSCrossRefGoogle Scholar
  126. 126.
    Lacks DJ, Gordon RG (1993) Pair interactions of rare-gas atoms as a test of exchange-energy-density functionals in regions of large density gradients, Phys Rev A, 47: 4681–4690PubMedADSCrossRefGoogle Scholar
  127. 127.
    Pérez-Jordà JM, Becke AD (1995) A density-functional study of van-der-Waals forces – rare-gas diatomics, Chem Phys Lett, 233: 134–137ADSCrossRefGoogle Scholar
  128. 128.
    Meijer EJ, Sprik M (1996) A density-functional study of the intermolecular interactions of benzene, J Chem Phys, 105: 8684–8689ADSCrossRefGoogle Scholar
  129. 129.
    Wesolowski TA (2000) Comment on ‘‘Anisotropic intermolecular interactions in van der Waals and hydrogen-bonded complexes: What can we get from density-functional calculations?’’ [J Chem Phys 111: 7727 (1999)], J Chem Phys, 116: 515–524Google Scholar
  130. 130.
    Tao J, Perdew JP (2005) Test of a nonempirical density functional: Short-range part of the van der Waals interaction in rare-gas dimers, J Chem Phys, 122: 11402Google Scholar
  131. 131.
    Ruzsinszky A, Perdew JP, Csonka GI (2005) Binding energy curves from nonempirical density functionals II. van der Waals bonds in rare-gas and alkaline-earth diatomics, J Phys Chem A, 109: 11015–11021PubMedCrossRefGoogle Scholar
  132. 132.
    Zhang Y, Pan W, Yang W (1997) Describing van der Waals Interaction in diatomic molecules with generalized gradient approximations: The role of the exchange functional, J Chem Phys, 107: 7921–7925ADSCrossRefGoogle Scholar
  133. 133.
    Patton DC, Porezag DV, Pederson MR (1997) Simplified generalized-gradient approximation and anharmonicity: Benchmark calculations on molecules, Phys Rev B, 55: 7454–7459ADSCrossRefGoogle Scholar
  134. 134.
    Kristyan S, Pulay P (1994) Can (semi)local density-functional theory account for London dispersion forces, Chem Phys Lett, 229: 175–180ADSCrossRefGoogle Scholar
  135. 135.
    Ŝponer J, Leszczynski J, Hobza P (1998) Base staking in cytosine dimer. A comparison of correlated ab initio calculations with three empirical models and density functional theory calculations, J Comp Chem, 17: 841–850CrossRefGoogle Scholar
  136. 136.
    Ye XY, Li ZH, Wang WN, Fan KN, Xu W, Hua ZY (2004) The parallel pi-pi stacking: a model study with MP2 and DFT methods, Chem Phys Lett, 397:56–61CrossRefGoogle Scholar
  137. 137.
    Small D, Zaitsev V, Jung Y, Rosokha SV, Head-Gordon M, Kochi JK (2004) Intermolecular UPpi -to- UPpi bonding between stacked aromatic dyads. Experimental and theoretical binding energies and near-IR optical transitions for phenalenyl radical/radical versus radical/cation dimerizations, J Am Chem Soc, 126: 138–13858. (B3LYP results are included as Supporting Materials to this article)CrossRefGoogle Scholar
  138. 138.
    Zhao Y, Truhlar DG (2005b) How well can new-generation density functional methods describe stacking interactions in biological systems, Phys Chem Chem Phys, 7: 2701–2705CrossRefGoogle Scholar
  139. 139.
    Lieb EH, Oxford S (1981) Improved lower bound on the indirect Coulomb energy, Int J Quant Chem, 19: 427–439CrossRefGoogle Scholar
  140. 140.
    Patey MD, Dessent CEH (2002) A PW91 density functional study of conformational choice in 2-pentylethanol, n-butylbenzene, and their cations: Problems for density functional theory?, J Phys Chem A, 106: 4623–4631CrossRefGoogle Scholar
  141. 141.
    Ruiz E, Salahub DR, Vela A (1995) Defining the domain of density functionals– charge-transfer complexes, J Am Chem Soc, 117: 1141–1142CrossRefGoogle Scholar
  142. 142.
    Ruiz E, Salahub DR, Vela A (1996) Charge-transfer complexes: Stringent tests for widely used density functionals, J Phys Chem, 100: 12265–12276CrossRefGoogle Scholar
  143. 143.
    Kamiya M, Tsuneda T, Hirao K (2002) A density functional study of van der Waals interactions, J Chem Phys, 117: 36010–6015ADSCrossRefGoogle Scholar
  144. 144.
    poner J, Jurecka P, Hobza P (2004) Accurate interaction energies of hydrogen-bonded nucleic acid base pairs, J Am Chem Soc, 126: 10142–10151PubMedCrossRefGoogle Scholar
  145. 145.
    Wu X, Vargas MC, Nayak S, Lotrich V, Scoles G (2001) Towards extending the applicability of density functional theory to weakly bound systems, J Chem Phys, 115: 8748–8757ADSCrossRefGoogle Scholar
  146. 146.
    Elsner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment, J Chem Phys, 114: 5149–5155ADSCrossRefGoogle Scholar
  147. 147.
    Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections, J Comp Chem, 25: 1463–1473CrossRefGoogle Scholar
  148. 148.
    Zimmerli U, Parrinello M, Koumoutsakos P (2004) Dispersion corrections to density functionals for water aromatic interactions, J Chem Phys, 120: 2693–2699PubMedADSCrossRefGoogle Scholar
  149. 149.
    Wu Q, Yang W (2002) Empirical correction to density functional theory for van der Waals interactions, J Chem Phys, 116: 515–524ADSCrossRefGoogle Scholar
  150. 150.
    von Lilienfeld OA, Tavernelli I, Rothlisberger U, Sebastiani D (2004) Optimization of effective atom centered potentials for London dispersion forces in density functional theory, Phys Rev Lett, 93: 153004ADSCrossRefGoogle Scholar
  151. 151.
    Pérez-Jordà JM, San-Fabiàn E, Pérez-Jiménez AJ (1999) Density-functional study of van der Waals forces on rare-gas diatomics: Hartree–Fock exchange, J Chem Phys, 110: 1916–1920ADSCrossRefGoogle Scholar
  152. 152.
    Wilson LC, Levy M (1990) Nonlocal Wigner-like correlation-energy density functional through coordinate scaling, Phys Rev B, 41: 12930–12932ADSCrossRefGoogle Scholar
  153. 153.
    Baerends EJ (2001) Exact exchange-correlation treatment of dissociated H2 in density functional theory, Phys. Rev. Lett, 87: 133004PubMedADSCrossRefGoogle Scholar
  154. 154.
    Sharp RT, Horton GG (1953) A variational approach to the unipotential many-electron problem, Phys Rev, 30: 317–317ADSMathSciNetCrossRefGoogle Scholar
  155. 155.
    Hirata S, Ivanov S, Grabowski I, Bartlet RJ, Burke K, Talman JD (2001) Can optimized effective potentials be determined uniquely?, J Chem Phys, 115: 1635–1649ADSCrossRefGoogle Scholar
  156. 156.
    Talman JD, Shadwick WF (1972) Optimized effective atomic central potential, Phys Rev A, 14:36–40ADSCrossRefGoogle Scholar
  157. 157.
    Krieger JB, Li Y, Iafrate GJ (1992a) Systematic approximations to the optimized effective potential: Application to orbital-density-functional theory, Phys Rev A, 46: 5453–5458ADSCrossRefGoogle Scholar
  158. 158.
    Garza J, Nichols JA, Dixon DA (2000) The optimized effective potential and the self-interaction correction in density functional theory: Application to molecules, J Chem Phys, 112: 7880–7890ADSCrossRefGoogle Scholar
  159. 159.
    Hamel S, Duffy P, Casida ME, Salahub DR (2002a) Kohn-Sham orbitals and orbital energies: fictitious constructs but good approximations all the same, J Electr Spectr and Related Phenomena, 123: 345–363CrossRefGoogle Scholar
  160. 160.
    Gunnarsson O, Jonson M, Lundqvist BI (1977) Exchange and correlation in inhomogeneous electron-systems, Solid State Commun, 24: 765–768CrossRefGoogle Scholar
  161. 161.
    Alonso JA, Girifalco LA (1978) Nonlocal approximation to exchange potential and kinetic energy∈dexenergy! kinetic in an inhomogenous electron gas, Phys. Rev. B, 17: 3735–3743ADSCrossRefGoogle Scholar
  162. 162.
    Gunnarsson O, Jonson M, Lundqvist BI (1979) Descriptions of exchange and correlation effects in inhomogeneous electron systems, Phys Rev B, 20: 3136–3164ADSCrossRefGoogle Scholar
  163. 163.
    Singh DJ (1997) Density functional studies of PbZrO3,KTaO3 and KNbO3 , Ferroelectrics, 194: 299–322Google Scholar
  164. 164.
    Wu Z, Cohen RE, Singh DJ (2004) Comparing the weighted density approximation with the LDA and GGA for ground-state properties of ferroelectric perovskites, Phys Rev B, 70: 104112ADSCrossRefGoogle Scholar
  165. 165.
    Rushton PP, Tozer DJ, Clark SJ (2002) Nonlocal density-functional description of exchange and correlation in silicon, Phys Rev B, 65: 235203ADSCrossRefGoogle Scholar
  166. 166.
    Marzari N, Singh (2004) Dielectric response of oxides in the weighted density approximation, Phys Rev B, 62: 12724–12729ADSCrossRefGoogle Scholar
  167. 167.
    Sadd M, Teter MP (1996) Weighted density approximation applied to diatomic molecules, Phys Rev B, 54: 13643–13648ADSCrossRefGoogle Scholar
  168. 168.
    Kohn W, Meir Y, Makarov DE (1998) van der Waals energies in density functional theory, Phys Rev Lett, 80: 4153–4156ADSCrossRefGoogle Scholar
  169. 169.
    Hult E, Rydberg H, Lundqvist BI, Langreth DC (1999) Unified treatment of asymptotic van der Waals forces, Phys Rev B, 59: 4708–4713ADSCrossRefGoogle Scholar
  170. 170.
    Lein M, Dobson JF, Gross EKU (1999) Dobson JF, Toward the description of van der Waals interactions within density functional theory, J Comput Chem, 20:12–22CrossRefGoogle Scholar
  171. 171.
    Dobson JF, Wang J (1999) Successful test of a seamless van der Waals density functional, Phys Rev Lett, 82: 2123–2123ADSCrossRefGoogle Scholar
  172. 172.
    Yan ZD, Perdew JP, Kurth S (2000) Density functional for short-range correlation: Accuracy of the random-phase approximation for isoelectronic energy changes, Phys Rev B, 61: 16430–16439ADSCrossRefGoogle Scholar
  173. 173.
    Fuchs M, Gonze X (2002) Accurate density functionals: Approaches using adiabatic-connection fluctuation-dissipation theorem, Phys. Rev. B, 65: 235109ADSCrossRefGoogle Scholar
  174. 174.
    Rydberg H, Dion M, Jacobson N, Schroder E, Hyldgaard P, Simak SI, Langreth DC, Lundqvist BI (2003) Van der Waals density functional for layered structures, Phys Rev Lett, 91: 126402PubMedADSCrossRefGoogle Scholar
  175. 175.
    Dion M, Rydberg H, Schroder E, Hyldgaard P, Langreth DC, Lundqvist BI (2003) Van der Waals density functional for general geometries, Phys Rev Lett, 92: 246401ADSCrossRefGoogle Scholar
  176. 176.
    Langreth DC, Dion M, Rydberg H, Schroder E, Hyldgaard P, Lundqvist BI (2005) Van der Waals density functional theory with applications, Int J Quant Chem, 101: 599–610CrossRefGoogle Scholar
  177. 177.
    Fuchs M, Niquet YM, Gonze X, Burke K (2005) Describing static correlation in bond dissociation by Kohn-Sham density functional theory, J Chem Phys, 122: 094116PubMedCrossRefGoogle Scholar
  178. 178.
    Chakarova SD, Schröder E (2005) van der Waals interactions of polycyclic aromatic hydrocarbon dimers, J. Chem. Phys, 122: 054102CrossRefGoogle Scholar
  179. 179.
    Kleis J, Schröder E (2005) van der Waals interaction of simple, parallel polymers, J Chem Phys, 122: 164902PubMedCrossRefGoogle Scholar
  180. 180.
    Likura H, Tsuneda T, Yanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals, J Chem Phys, 115: 3540–3544ADSCrossRefGoogle Scholar
  181. 181.
    Champagne B, Perpete EA, van Gisbergen SJA, Baerends EJ, Snijders JG, Soubra-Ghaoui C, Robins KA, Kirtman B (1998) Assessment of conventional density functional schemes for computing the polarizabilities and hyperpolarizabilities of conjugated oligomers: An ab initio investigation of polyacetylene chains, J. Chem. Phys, 109: 10489–10498ADSCrossRefGoogle Scholar
  182. 182.
    van Gisbergen SJA, Schipper PRT, Gritsenko OV, Baerends EJ, Snijders JG, Champagne B, Kirtman B (1999) Electric field dependence of the exchange-correlation potential in molecular chains, Phys Rev Lett, 83: 694–697ADSCrossRefGoogle Scholar
  183. 183.
    van Faassen M, de Boeij PL, van Leeuwen R, Berger JA, Snijders JG (2002) Ultranonlocality in time-dependent current-density-functional theory: Application to conjugated polymers, Phys Rev Lett, 83: 694–697Google Scholar
  184. 184.
    van Faassen M, de Boeij PL, van Leeuwen R, Berger JA, Snijders JG (2003) Application of time-dependent current-density-functional theory to nonlocal exchange-correlation effects in polymers, J Chem Phys, 118: 1044–1053ADSCrossRefGoogle Scholar
  185. 185.
    Casida ME (1996) Time-Dependent Density Functional Response Theory of Molecular Systems: Computational methods, and Functionals. In: Recent Developments and Applications of Modern Density Functional Theory: Theoretical and Computational Chemistry, Vol. 4., J.M. Seminario ed., Elsevier Science, pp. 391–439Google Scholar
  186. 186.
    Jacquemin D, André J-M, and Perpéte EA (2004) Geometry, dipole moment, polarizability and first hyperpolarizability of polymethineimine: An assessment of electron correlation contributions, J Chem Phys, 121: 4389–4396PubMedADSCrossRefGoogle Scholar
  187. 187.
    Berger JA, Snijders JG (2002) Ultranonlocality in time-dependent current-density-functional theory: Application to conjugated polymers, Phys. Rev. Lett, 83: 694–697Google Scholar
  188. 188.
    Vignale G, Kohn W (1996) Current-dependent exchange-correlation potential for dynamical linear response theory, Phys Rev Lett, 77: 2037–2040PubMedADSCrossRefGoogle Scholar
  189. 189.
    Baerends EJ, Branchadell V, Sodupe M (1997) Atomic reference energies for density functional calculations, Chem. Phys. Lett, 265: 481–489CrossRefGoogle Scholar
  190. 190.
    Becke AD (2002) Current density in exchange-correlation functionals: Application to atomic states, J. Chem. Phys, 117: 6935–6938ADSCrossRefGoogle Scholar
  191. 191.
    Savin A (1995) Beyond the Kohn-Sham Determinant. In: Recent Advances in Density Functional Methods, Part I., D. P. Chong (Ed.) Word Scientific, Singapore, pp 123–153Google Scholar
  192. 192.
    Malcolm NOJ, McDouall JJW (1996) Combining multiconfigurational wave functions with density functional estimates of dynamic electron correlation, J Phys Chem, 100: 10131–10134CrossRefGoogle Scholar
  193. 193.
    Leininger T, Stoll H, Werner HJ, Savin A (1997) Combining long-range configuration interaction with short-range density functionals, Chem Phys Lett, 275: 151–160CrossRefGoogle Scholar
  194. 194.
    Grimme S, Waletzke M (1999) A combination of Kohn-Sham density-functional theory and multi-reference configuration interaction methods, J Chem Phys, 111: 5645–5655ADSCrossRefGoogle Scholar
  195. 195.
    Filatov M, Shaik S (1999) A spin-restricted ensamble-referenced Kohn-Sham method and its application to diradical situations, Chem Phys Lett, 304: 429–437CrossRefGoogle Scholar
  196. 196.
    Gräfenstein J, Cremer D (2000) The combination of density functional theory with multi-configurational methods – CAS-DFT, Chem Phys Lett, 316: 569–577CrossRefGoogle Scholar
  197. 197.
    Pollet J, Savin A, Leininger T, Stoll H (2002a) Combining multideterminantal wave functions with density functionals to handle near-degeneracy in atoms and molecules, J Chem Phys, 116: 1250–1258ADSCrossRefGoogle Scholar
  198. 198.
    Pollet R, Colonna F, Leininger T, Stoll H, Werner HJ, Savin A (2003) Exchange-correlation energies and correlation holes for some two- and four-electron atoms along a nonlinear adiabatic connection in density functional theory, Int J Quant Chem, 91: 84–93CrossRefGoogle Scholar
  199. 199.
    Gusarov S, Malmquist P-A, Lindh R, Roos BO (2004) Correlation potrentials for a multiconfigurational-based density functional theory with exact exchange, Theor Chem Acc, 112:84–94Google Scholar
  200. 200.
    Becke AD, Johnson ER (2005a) A density-functional model of the dispersion interaction, J. Chem. Phys, 123: 154101CrossRefGoogle Scholar
  201. 201.
    Becke AD, Johnson ER (2005b) Exchange-hole dipole moment and the dispersion interaction, J. Chem. Phys, 122: 154104CrossRefGoogle Scholar
  202. 202.
    Becke AD (1994) Thermochemical tests of a kinetic-energy dependent exchange-correlation approximation, Int. J. Quant. Chem. Symp, 98: 625–632CrossRefGoogle Scholar
  203. 203.
    Cortona P (1991) Self-consistently determined properties of solids without band-structure calculations, Phys. Rev. B, 44: 8454–8458ADSCrossRefGoogle Scholar
  204. 204.
    Wesolowski TA, Weber J (1996) Kohn-Sham equations with constrained electron density: An iterative evaluation of the ground-state electron density of interacting molecules, Chem Phys Lett, 248:71–76ADSCrossRefGoogle Scholar
  205. 205.
    Wesolowski TA, Tran F (2003) Gradient-free and gradient-dependent approximations in the total energy bifunctional for weakly overlapping electron densities, J Chem Phys, 118: 2072–2080ADSCrossRefGoogle Scholar
  206. 206.
    Kevorkiants R, Dulak M, Wesolowski TA (2006) Interaction energies in hydrogen-bonded systems – a testing ground for subsystem formulation of density functional theory, J Chem Phys, 124: 024104CrossRefGoogle Scholar
  207. 207.
    Wesolowski TA, Warshel A (1993) Frozen density-functional approach for ab-initio calculations of solvated molecules, J Phys Chem, 97: 8050–8053CrossRefGoogle Scholar
  208. 208.
    Dulak M, Kevorkiants R, Tran F, Wesolowski TA (2005) Applications of the orbital-free embedding formalism to study electronic structure of atoms and molecules in condensed phase, CHIMIA, 59: 488–492CrossRefGoogle Scholar
  209. 209.
    Wesolowski TA (2006) One-electron equations for embedded electron density: Challenge for theory and practical payoffs in multi-level modeling of complex polyatomic systems, in: Computational Chemistry: Reviews of Current Trends, vol. X, J. Leszczynski, (ed.) World Scientific, pp 1–82Google Scholar
  210. 210.
    Zumbach G, Maschke K (1985) Density-matrix functional theory for the N -particle ground state, J Chem Phys, 82: 5604–5607ADSCrossRefGoogle Scholar
  211. 211.
    Goedecker S, Umrigar CJ (1998) Natural orbital functional for the many-electron problem, Phys Rev Lett, 81: 866–869ADSCrossRefGoogle Scholar
  212. 212.
    Cioslowski J, Pernal K (1999) Constraints upon natural spin orbital functionals imposed by properties of a homogeneous electron gas, J. Chem. Phys, 111: 3396–3400ADSCrossRefGoogle Scholar
  213. 213.
    Mazziotti DA (2001) Energy functional of the one-particle reduced density matrix: a geminal approach, Chem Phys Lett, 338: 323–328CrossRefGoogle Scholar
  214. 214.
    Buijse MA, Baerends EJ (2002) An approximate exchange-correlation hole density as a functional of the natural orbitals, Mol. Phys, 100: 401–421CrossRefGoogle Scholar
  215. 215.
    Yasuda K (2002) Local approximation of the correlation energy functional in the density matrix functional theory, Phys Rev Lett, 88: 053001PubMedADSCrossRefGoogle Scholar
  216. 216.
    Lathiotakis NN, Helbig N, Gross EKU (2005) Open shells in reduced-density-matrix-functional theory, Phys Rev A, 72: 030501ADSCrossRefGoogle Scholar
  217. 217.
    Gritsenko O, Pernal K, Baerends EJ (2005) An improved density matrix functional by physically motivated repulsive corrections, J Chem Phys, 122: 204102PubMedADSCrossRefGoogle Scholar
  218. 218.
    Staroverov VN, Scuseria GE (2002) Assessment of simple exchange-correlation energy functionals of the one-particle density matrix, J Chem Phys, 117: 2489–2495ADSCrossRefGoogle Scholar
  219. 219.
    Cohen AJ, Baerends EJ (2002) Variational density matrix functional calculations for the corrected Hartree and corrected Hartree-Fock functionals, Chem. Phys. Lett, 364: 409–419CrossRefGoogle Scholar
  220. 220.
    Pernal K, Cioslowski J (2002) Density matrix functional theory of weak intermolecular interactions, J Chem Phys, 116: 4802–4807ADSCrossRefGoogle Scholar
  221. 221.
    Tsuzuki S, Luthi HP (2001) Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the PW91 model, J Chem Phys, 114(9): 3949–3957ADSCrossRefGoogle Scholar
  222. 222.
    Furche F (2001) Molecular tests of the random phase approximation to the exchange-correlation energy functional, Phys Rev B, 64(19): Art. No. 195120Google Scholar
  223. 223.
    Furche F, van Voorhis (2005) Flucluation-dissipateon theorem density – functional theory, J chem phys, 122(6): Art. No. 164106Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Tomasz A. Wesołowski
    • 1
  1. 1.University of GenevaSwitzerland

Personalised recommendations