Recent Advances in Fullerene Deposition on Semiconductor Surfaces

  • C. G. Zhou
  • L. C. Ning
  • J. P. Wu
  • S. J. Yao
  • Z. B. Pi
  • Y. S. Jiang
  • H. Cheng
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 4)


Development of novel chemistry on semiconductor surfaces is an area of increasing research interests due to its technological importance. The possibility of depositing fullerenes on semiconductor surfaces via the formation of stable chemical bonds provides an opportunity to design and develop novel materials that meet the increasing stringent technology challenge. In this chapter, we review recent advances in the theoretical modeling of fullerene chemisorption on GaAs and Si surfaces. We show that strong covalent chemical bonds can be formed upon deposition of fullerenes of various sizes on these surfaces, forming well-ordered thin films. The chemical/physical properties of such thin films can be tailored by using different sizes of fullerenes


Fullerenes Semiconductor surfaces GaAs(001) -c(4× 4) Si(001) -(2× 1) Density of States vs-6 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vilan A,Shanzer A,Cahen D (2000) Molecular Control Over Au/GaAs Diodes, Nature 404:166–168PubMedCrossRefADSGoogle Scholar
  2. 2.
    Seker F,Meeker K,Kuech TF,Ellis AB (2000) Surface Chemistry of Prototypical Bulk II-VI and III-V Semiconductors and Implications for Chemical Sensing, Chem Rev 100: 2505–2536PubMedCrossRefGoogle Scholar
  3. 3.
    Maier G (2001) Low Dielectric Constant Polymers for Microelectronics, Prog Polym Sci 26(1): 3–65CrossRefMathSciNetGoogle Scholar
  4. 4.
    Ma Y,Yang H,Guo J,Sathe C,Agui A,Nordgren J (1998) Structural and Electronic Properties of Low Dielectric Constant Fluorinated Amorphous Carbon Films, Appl Phys Lett 72(25): 3353–3355CrossRefADSGoogle Scholar
  5. 5.
    Tsai MH,Whang WT (2002) Low Dielectric Polyimide/Poly(silsesquioxane)-Like Nanocomposite Material, Polymer 42(9): 4197–4207Google Scholar
  6. 6.
    Yang S,Mirau PA,Pai C-S,Nalamasu O,Reichmanis E,Pai JC,Obeng YS,Seputro J,Lin EK,Lee H-J,Sun J,Gidley DW (2002) Nanoporous Ultralow Dielectric Constant Organosilicates Templated by Triblock Copolymers Chem Mater 14(1): 369–374Google Scholar
  7. 7.
    Miller RD (1999) In Search of Low- k Dielectrics, Science 286(5439): 421–423CrossRefGoogle Scholar
  8. 8.
    Peters L (1998) Pursuing the Perfect Low-K Dielectric, Semiconductor International 21(10):64–67Google Scholar
  9. 9.
    Ohno TR,Chen Y,Harvey SE,Kroll GH,Weaver JH,Haufler RE,Smalley RE (1991) C60 Bonding and Energy-Level Alignment on Metal and Semiconductor Surfaces, Phys Rev B 44(24): 13747–13755CrossRefADSGoogle Scholar
  10. 10.
    Wang Y (1992) Photoconductivity of Fullerene-Doped Polymers, Nature 356: 585–587CrossRefADSGoogle Scholar
  11. 11.
    Kawazoe Y,Kamiyama H,Maruyama Y,Ohno K (1993) Electronic Structures of Layered C60 and C70 on Si(100) Surface, Jpn J Appl Phys 32: 1433–1437CrossRefGoogle Scholar
  12. 12.
    Wang X-D,Hashizume T,Shinohara H,Saito Y,Nishina Y,Sakurai T (1993) Adsorption of C60 and C84 on the Si(100)2× 1 surface studied by using the scanning tunneling microscope, Phys Rev B 47(23): 15923–15930CrossRefADSGoogle Scholar
  13. 13.
    Chen D,Sarid D (1995) An STM Study of C60 Adsorption on Si(100) -(2× 1) Surfaces: from Physisorption to Chemisorption Surf Sci 329(3): 206–218Google Scholar
  14. 14.
    Klyachko D,Chen DM (1995) Ordering of C60 on Anisotropic Surfaces, Phys Lett 75(20): 3693–3696CrossRefADSGoogle Scholar
  15. 15.
    Beardmore K,Smith R (1995) C60 Film Growth and The Interaction of Fullerenes with Bare and H Terminated Si Surfaces, Studied by Molecular Dynamics, Nucl. Instrum. Methods Phys Res, Sect B 106:74–79CrossRefADSGoogle Scholar
  16. 16.
    Yao X,Ruskell TG,Workman RK,Sarid D,Chen D (1996) Scanning Tunneling Microscopy and Spectroscopy of Individual C60 Molecules on Si(100) -(2× 1) Surfaces, Surf Sci 366(3): 743–749CrossRefGoogle Scholar
  17. 17.
    Suto S,Sakamoto K,Wakita T,Hu C-W,Kasuya A (1997) Vibrational Properties and Charge Transfer of C60 Adsorbed on Si(111) -(7× 7) and Si(100) -(2× 1) Surfaces, Phys Rev B 56(12): 7439–7445CrossRefADSGoogle Scholar
  18. 18.
    Katircio and gcaron;lu c S,Erkoç cS (1997) Decomposition of C60 Molecules on Si(111) Surface, Surf Sci 383: 775–778CrossRefGoogle Scholar
  19. 19.
    Suto S,Sakamoto K,Wakita T,Harada M,Kasuya A (1998) Interaction of C60 with Silicon Dangling Bonds on the Si(111) -(7× 7) Surface, Surf Sci 402–404: 523–526CrossRefGoogle Scholar
  20. 20.
    Shachal D,Manassen Y (1998) Adsorption of 1,13-tetradecadiene on Si(111)7× 7 Studied by STM: Possible Electrostatic Interactions Between the Aliphatic Chain and the Surface, Appl Phys A: Mater Sci. & Processing 66: 1229–1231CrossRefADSGoogle Scholar
  21. 21.
    Sakamoto K,Harada M,Kondo D,Kimura A,Kakizaki A,Suto S (1998) Bonding State of the C60 Molecule Adsorbed on a Si(111) -(7× 7) Surface, Phys Rev B 58: 13951–13956CrossRefADSGoogle Scholar
  22. 22.
    Hou JG,Yang J,Wang H,Li Q, Zeng C,Lin H, Bing W,Chen DM,Zhu Q (1999) Identifying Molecular Orientation of Individual C60 on a Si(111) -(7× 7) Surface, Phys Rev Lett 83: 3001–3004CrossRefADSGoogle Scholar
  23. 23.
    Wang H,Zeng C,Li Q, Wang B,Yang J,Hou J,Zhu Q (1999) Scanning Tunneling Spectroscopy of Individual C60 Molecules Adsorbed on Si(111) -7× 7 Surface, Surf Sci 442: 1024–1028CrossRefGoogle Scholar
  24. 24.
    Suto S,Sakamoto K,Kondo D,Wakita T,Kimura A,Kakizaki A,Hu CW,Kasuya A (1999) Interaction of C60 with Si(111)7× 7 and Si(100)2× 1 Surfaces studied by STM, HREELS and PES, Surf Sci 438: 242–247CrossRefGoogle Scholar
  25. 25.
    Suto S,Sakamoto K,Kondo D,Wakita T,Kimura A,Kakizaki A (1999) Bonding Nature of C60 Adsorbed on Si(111)7× 7 and Si(100)2× 1 Surfaces Studied by HREELS and PES, Surf Sci 427–428:85–90CrossRefGoogle Scholar
  26. 26.
    Sakamoto K,Kondo D,Harada M,Kimura A,Kakizaki A,Suto S (1999) Electronic Structures of C60 Adsorbed on Si(111) -(7× 7) and Si(001) -(2× 1) Surfaces, Surf Sci 433–435: 642–646CrossRefGoogle Scholar
  27. 27.
    Iizumi K,Saiki K,Koma A (2002) Investigation of the Interaction Between a C60 Epitaxial Film and a Si(111) -7× 7 Surface by Electron Energy Loss Spectroscopy, Surf Sci 518: 126–132CrossRefGoogle Scholar
  28. 28.
    Godwin PD,Kenny SD,Smith R (2003) The Bonding Sites and Structure of C60 on the Si(100) Surface, Surf Sci 529: 237–246CrossRefGoogle Scholar
  29. 29.
    Kunitsyn AE,Kozyrev SV,Novikov SV,Savel’ev IG,Chaldyshev VV,Sharonova LV (1994) Production of Fullerene Films on GaAs Semiconducting Substrates, Phys Solid State 36: 2573–2579Google Scholar
  30. 30.
    Xue Q,Ling Y,Ogino T,Sakata T,Hasegawa Y,Hashizume T,Shinohara H,Sakurai T (1996) C60 Single Crystal Films on GaAs(001) Surfaces, Thin Solid Films 281–282: 618–623CrossRefGoogle Scholar
  31. 31.
    Ohno K,Li ZQ,Kamiyama H,Kawazoe Y,Yue Q,Hashizume T,Hasegawa Y,Shinohara H,Sakurai T (1997) A Mechanism of 13% Lattice Expansion in C60 FCC(110) Thin Films Grown on the GaAs(001) As-rich Surface, Sci. Reports Research Institutes Tohoku University Series A – Phys Chem & Met 43(1):61–65Google Scholar
  32. 32.
    Yao JH,Zou YJ,Zhang XW,Chen GH (1997) The (111) Oriented Growth of C60 Films on GaAs(100) Substrates, Thin Solid Films 305(1–2):22–25CrossRefGoogle Scholar
  33. 33.
    Dunphy JC,Klyachko D,Xu H,Chen DM (1997) A Novel Bi-directional Step-flow Growth Mode: C60 on Ge(100)and GaAs(110) Surf Sci 383: 760–765CrossRefGoogle Scholar
  34. 34.
    Sakurai T,Xue QK,Hashizume T,Hasegawa Y (1997) Extraordinary Growth of C60 on a GaAs(001) As-rich 2× 4 Surface, J Vac Sci Tech B 15: 1628–1632CrossRefGoogle Scholar
  35. 35.
    Moriarty P,Upward MD,Ma YR,Dunn AW,Beton PH,Teehan D,Woolf DA (1998) Reconstruction Dependent Adsorption of C60 on GaAs(111)B, Surf Sci 405:21–26CrossRefGoogle Scholar
  36. 36.
    Colder A,Canut B,Levalois M,Marie P,Portier X,Ramos SMM (2002) Latent Track Formation in GaAs Irradiated with 20, 30, and 40 MeV Fullerenes, J Appl Phys 91(9): 5853–5857CrossRefADSGoogle Scholar
  37. 37.
    Nishinaga J,Ogawa M,Horikoshi Y (2004) Selective Growth of C60 Layers on GaAs and Their Crystalline Characteristics, Thin Solid Films 464–465: 323–326CrossRefGoogle Scholar
  38. 38.
    Yao SJ,Zhou CG,Ning LC,Wu JP,Pi ZB,Cheng HS,Jiang YS (2005) Chemisorption of C28 Fullerene on c(4× 4) Reconstructed GaAs(001) Surface: A Density Functional Theory Study, Phys Rev B 71: 195316–195322CrossRefADSGoogle Scholar
  39. 39.
    Su JS,Chen YF,Chiu KC (1999) Dielectric Properties of Fullerene Films, Appl Phys Lett 74(3): 439–441CrossRefADSGoogle Scholar
  40. 40.
    Vosko SH,Wilk L,Nusair M (1980) Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis, Can J Phys Chem B 58: 1200–1211ADSGoogle Scholar
  41. 41.
    Perdew JP,Wang Y (1992) Accurate and Simple Analytic Representation of the Electron-gas Correlation Energy, Phys Rev B 45: 13244–13249CrossRefADSGoogle Scholar
  42. 42.
    Perdew JP,Chevary JA,Vosko SH,Jackson KA,Pederson MR,Singh DJ,Fiolhais C (1992) Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation, Phys Rev B 46: 6671–6687CrossRefADSGoogle Scholar
  43. 43.
    Perdew JP,Burke K,Ernzerhof M (1996) Generalized Gradient Approximation Made Simple, Phys Rev Lett 77: 3865–3868PubMedCrossRefADSGoogle Scholar
  44. 44.
    Sànchez-Portal D,Ordejòn P,Artacho E,Soler JM (1997) Density-Functional Method for Very Large Systems with LCAO Basis Sets, Int J Quant Chem 65: 453–461CrossRefGoogle Scholar
  45. 45.
    Artacho E, Sànchez-Portal D,Ordejòn P,Garcìa A, Soler JM (1999) Linear-Scaling ab-initio Calculations for Large and Complex Systems, Phys Status Solidi B 215: 809–817CrossRefGoogle Scholar
  46. 46.
    Soler JM,Artacho E,Gale JD,Garcìa A,Junquera J,Ordejòn P, Sànchez-Portal D (2002) The SIESTA Method for ab initio Order- N Materials Simulation, J Phys: Condens Matter 14: 2745–2779CrossRefADSGoogle Scholar
  47. 47.
    Caron B,Derome L,Flaminio R,Grave X,Marion F,Mours B,Verkindt D,Cavalier F,Viceré A (1999) SIESTA, a Time Domain, General Purpose Simulation Program for the VIRGO Experiment, Astropart Phys 10: 369–386CrossRefADSGoogle Scholar
  48. 48.
    Kohn W (1999) Nobel Lecture: Electronic Structure of Matter—Wave Functions and Density Functionals, Rev Mod Phys 71: 1253–1266CrossRefADSGoogle Scholar
  49. 49.
    Kleinman L,Bylander DM (1982) Spiral-Vortex Expansion Instability in Type-II Superconductors, Phys Rev Lett 38: 1425–1428CrossRefADSGoogle Scholar
  50. 50.
    Troullier N,Martins JL (1991) Efficient Pseudopotentials for Plane-Wave Calculations, Phys Rev B 43: 1993–2006CrossRefADSGoogle Scholar
  51. 51.
    Ordejòn P,Artacho E,Cachau R,Gale J,Garcìa A,Junquera J,Kohanoff J,Machado M,Sanchez-Portal D,Soler JM Weht R (2001) Linear Scaling DFT Calculations with Numerical Atomic Orbitals, Mat Res Soc Symp Proc 677: AA9.6.1–AA9.6.12Google Scholar
  52. 52.
    Hawkins JM,Meyer A,Lewis TA,Loren SD,Hollander FJ (1991) Crystal-Structure of Osmylated C60 -Confirmation of the Soccer Framework, Science 252: 312–313CrossRefADSGoogle Scholar
  53. 53.
    Liu S,Lu YJ,Kappes MM,Ibers JA (1991) The Structure of the C60 Molecule-X-ray Crystal-Structure Determination of a Twin at 110K, Science 254: 408–410CrossRefADSGoogle Scholar
  54. 54.
    Hedberg K,Hedberg L,Bethune DS,Brown CA,Dorn HC,Johnson RD,Vries MD (1991) Bond Lengths in Free Molecules of Buckminsterfullerene, C60 from Gas-Phase Electron Diffraction, Science 254: 410–412CrossRefADSGoogle Scholar
  55. 55.
    Kietzmann H,Rochow R,Ganteför G,Eberhardt W (1998) Electronic Structure of Small Fullerenes: Evidence for the High Stability of C32 , Phy Rev Lett 81: 5378–5381CrossRefADSGoogle Scholar
  56. 56.
    Hamers RJ,Hovis JS,Lee S,Liu H,Shan J (1997) Formation of Ordered, Anisotropic Organic Monolayers on the Si(001) Surface, J Phys Chem B 101: 1489–1492CrossRefGoogle Scholar
  57. 57.
    Konečn and ygrave; R,Doren DJ (1997) Theoretical Prediction of a Facile Diels-Alder Reaction on the Si(100) -2× 1 Surface, J Am Chem Soc 119: 11098–11099CrossRefGoogle Scholar
  58. 58.
    John T Yates Jr. (1998) A New Opportunity in Silicon-Based Microelectronics, Science 279: 335–336CrossRefGoogle Scholar
  59. 59.
    Hamers RJ,Hovis JS,Greenlief CM,Padowitz DF (1999) Scanning Tunneling Microscopy of Organic Molecules and Monolayers on Silicon (001) Surfaces, Jpn J Appl Phys, Part 1 38: 3879–3887CrossRefGoogle Scholar
  60. 60.
    Schwartz MP,Ellison MD,Coulter SK,Hovis JS,Hamers RJ (2000) Interaction of UPpi -conjugated Organic Molecules with UPpi -bonded Semiconductor Surfaces: Structure, Selectivity, and Mechanistic Implication, J Am Chem Soc 122: 8529–8538CrossRefGoogle Scholar
  61. 61.
    Hamers RJ,Coulter SK,Ellison MD,Hovis JS,Padowitz DF,Schwartz MP,Greenlief CM,Russell JJN (2000) Cycloaddition Chemistry of Organic Molecules with Semiconductor Surfaces, Acc Chem Res 33: 617–624PubMedCrossRefGoogle Scholar
  62. 62.
    Bent SF (2002) Attaching Organic Layers to Semiconductor Surfaces, J Phys Chem B 106: 2830–2842CrossRefGoogle Scholar
  63. 63.
    Bent SF (2002) Organic Functionalization of Group IV Semiconductor Surfaces: Principle, Examples, Applications, and Prospects, Surf Sci 500: 879–903CrossRefGoogle Scholar
  64. 64.
    Konečn and ygrave; R,Doren DJ (1998) Cycloaddition Reactions of Unsaturated Hydrocarbons on the Si(100) -(2× 1) Surface- Theoretical Prediction, Surf Sci 417: 169–188CrossRefGoogle Scholar
  65. 65.
    Lin JS,Kuo YT,Lee MH,Lee KH,Chen JC (2000) Density Functional Study of Structural and Electronic Properties of Silane Adsorbed Si(100) Surface, J Mol Struct (Theochem) 496: 163–173CrossRefGoogle Scholar
  66. 66.
    Linford MR,Fenter P,Eisenberger PM,Chidsey CED (1995) Alkyl Monolayers on Silicon Prepared from 1-Alkenes and Hydrogen-Terminated Silicon, J Am Chem Soc 117: 3145–3155CrossRefGoogle Scholar
  67. 67.
    Tao F,Dai YJ,Xu GQ (2002) Tetra- UPsigma Attachment of Allyl Cyanide on Si(111) -7× 7 , Phys Rev B 66: 035420–035426CrossRefADSGoogle Scholar
  68. 68.
    Cao Y,Yong KS,Wang ZH,Deng JF,Lai YH,Xu GQ (2001) Cycloaddition Chemistry of Thiophene on the Silicon (111) -7× 7 Surface, J Chem Phys 115: 3287–3296CrossRefADSGoogle Scholar
  69. 69.
    Ohno K,Li ZQ,Kamiyama H,Kawazoe Y,Yue Q,Hashizume T,Hasegawa Y,Shinohara H,Sakurai T (1997) A mechanism of 13 % lattice expansion in C-60 FCC(110) thin films grown on the GaAs(001) as-rich surface, Sci. Reports Research Institutes Tohoku University Series A – Phys Chem & Met 43(1):61–65Google Scholar
  70. 70.
    Yoshinobu J,Fukushi D,Uda M,Nomura E,Aono M (1992) Acetylene adsorption on Si(111)(7× 7) : A scanning-tunneling-microscopy study, Phys Rev B 46: 9520–9524CrossRefADSGoogle Scholar
  71. 71.
    Weiner B,Carmer CS,Frenklach M (1991) Acetylene Reaction With the Si(111) Surface: A Semiempirical Quantum Chemical Study, Phys Rev B 43: 1678–1684CrossRefADSGoogle Scholar
  72. 72.
    Tao F,Wang ZH,Qiao HM,Liu Q,Sim WS,Xu GQ (2001) Covalent Attachment of Acetonitrile on Si(100) Through Si-C and Si-N Linkages, J Chem Phys 115: 8563–8569CrossRefADSGoogle Scholar
  73. 73.
    Carbone M,Piancastelli MN,Casaletto MP,Zanoni R,Comtet G,Dujardin G,Hellner L (2000) Low-Temperature Adsorption States of Benzene on Si(111)7× 7 Studied by Synchrotron-Radiation Photoemission, Phys Rev B 61: 8531–8536CrossRefADSGoogle Scholar
  74. 74.
    Heringdorf F-JMZ,Reuter MC,Tromp RM (2001) Growth Dynamics of Pentacen Thin Films, Nature 412: 517–520CrossRefADSGoogle Scholar
  75. 75.
    Rochet F,Dufour G,Prieto P,Sirotti F,Stedile FC (1998) Electronic Structure of Acetylene on Si(111) -7× 7 : X-ray Photoelectron and X-ray Absorption Spectroscopy, Phys Rev B 57: 6738–6748CrossRefADSGoogle Scholar
  76. 76.
    Rochet F,Jolly F,Bournel F,Dufour G,Sirotti F,Cantin J-L (1998) Ethylene on Si(001) -2× 1 and Si(111) -7× 7 : X-ray Photoemission Spectroscopy with Synchrotron Radiation, Phys Rev B 58: 11029–11042CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • C. G. Zhou
    • 1
  • L. C. Ning
    • 1
  • J. P. Wu
    • 1
  • S. J. Yao
    • 1
  • Z. B. Pi
    • 1
  • Y. S. Jiang
    • 2
  • H. Cheng
    1. 1.Institute of Theoretical Chemistry and Computational Materials ScienceChina University of GeosciencesWuhanChina
    2. 2.Institute of Computational ChemistryNanjing UniversityNanjingChina

    Personalised recommendations