Advertisement

The Remarkable Capacities of (6,0) Carbon and Carbon/Boron/Nitrogen Model Nanotubes for Transmission of Electronic Effects

  • Peter Politzer
  • Jane S. Murray
  • Pat Lane
  • Monica C. Concha
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 4)

Abstract

We have found that at least some (6,0) carbon and carbon/boron/nitrogen model nanotubes possess a remarkable capability for transmitting electronic effects along their full lengths. This can be triggered by even a rather minor asymmetric perturbation at one or both ends of the system. We have analyzed these quite striking effects as they are manifested in the computed electrostatic potentials and local ionization energies on the tube surfaces and, in one instance, in a reorganization of the framework structure. These observations, and some implications, are presented and discussed

Keywords

(6,0) carbon nanotubes (6,0) C/B/N nanotubes electrostatic potentials local ionization energies charge delocalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60 : Buckminsterfullerene. Nature 318:162CrossRefADSGoogle Scholar
  2. 2.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–57CrossRefADSGoogle Scholar
  3. 3.
    Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–221CrossRefADSGoogle Scholar
  4. 4.
    Fowler PW (1990) Carbon cylinders: a class of closed-shell clusters. J. Chem. Soc., Faraday Trans. 86:2073–2077CrossRefGoogle Scholar
  5. 5.
    Wang S, Buseck PR (1991) Packing of C60 molecules and related fullerenes in crystals: a direct view. Chem. Phys. Lett. 182:1–4Google Scholar
  6. 6.
    Dresselhaus MS, Dresselhaus G, Saito R, (1992) Carbon fibers based on C60 and their symmetry. Phys. Rev. B 45:6234–6242CrossRefADSGoogle Scholar
  7. 7.
    Mintmire JW, Dunlap BI, White CT (1992) Are fullerene tubules metallic? Phys. Rev. Lett. 68:631–634CrossRefGoogle Scholar
  8. 8.
    Harris PJF (1999) Carbon Nanotubes and Related Structures. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  9. 9.
    Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150PubMedCrossRefGoogle Scholar
  10. 10.
    Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284:1340–1344PubMedCrossRefADSGoogle Scholar
  11. 11.
    Saito R, Dresselhaus G, Dresselhaus MS (1996) Tunneling conductance of connected carbon nanotubes. Phys. Rev. B 53:2044–2050CrossRefADSGoogle Scholar
  12. 12.
    Treboux G, Lapstun P, Silverbrook K (1999) An intrinsic carbon nanotube heterojunction diode. J. Phys. Chem. B 103:1871–1875CrossRefGoogle Scholar
  13. 13.
    Chico L, Crespi VH, Benedict LX, Louie SG, Cohen ML (1996) Pure carbon nanoscale devices: nanotube heterojunctions. Phys. Rev. Lett. 76:971–974PubMedCrossRefADSGoogle Scholar
  14. 14.
    Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerlings LJ, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386:s474–476CrossRefADSGoogle Scholar
  15. 15.
    Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49CrossRefADSGoogle Scholar
  16. 16.
    Frackowiak E, Delpeux S, Jurewicz K, Szostak K, Cazorla-Amoros D, Beguin F (2002) Enhanced capacitance of carbon nanotubes through chemical activation. Chem. Phys. Lett. 361: 35–41Google Scholar
  17. 17.
    Liu X, Si J, Chang B, Xu G, Yang Q, Pan Z, Xie S, Ye P, Fan J, Wan M (1999) Appl. Phys. Lett. 74: 164Google Scholar
  18. 18.
    Freitag M, Martin Y, Misewich JA, Martel R, Avouris Ph (2003) Photoconductivity of single carbon nanotubes. Nano Lett. 3: 1067–1071CrossRefGoogle Scholar
  19. 19.
    Zhang X, Cao D, Chen J (2003) Hydrogen adsorption storage on single-walled carbon nanotube arrays by a combination of classical potential and density functional theory. J. Phys. Chem. B 107: 4942–4950, and papers citedCrossRefGoogle Scholar
  20. 20.
    Long RQ, Yang RT (2001) Carbon nanotubes as a superior sorbant for nitrogen oxides. Ind. Eng. Chem. Res. 40: 4288–4291CrossRefGoogle Scholar
  21. 21.
    Long RQ, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal, J. Am. Chem. Soc. 123: 2058–2059PubMedCrossRefGoogle Scholar
  22. 22.
    Halls MD, Schlegel HB (2002) Chemistry inside carbon nanotubes: the Menshutkin SN2 reaction. J. Phys. Chem. B 106: 1921–1925CrossRefGoogle Scholar
  23. 23.
    Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2000) Nanotube molecular wires as chemical sensors. Science 287: 622–625PubMedCrossRefADSGoogle Scholar
  24. 24.
    Chen RJ, Bangsaruntip S, Drouvalakis KA, Wong Shi Kam N, Shim M, Li Y, Kim W, Utz PJ, Dai H (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Nat. Acad. Sci. 100: 4984–4989PubMedCrossRefADSGoogle Scholar
  25. 25.
    Chen RJ, Choi HC, Bangsaruntip S, Yenilmez E, Tang X, Wang Q, Chang Y-L, Dai H (2004) An investigation of the mechanism of electronic sensing of protein adsorption on carbon nanotube devices. J. Am. Chem. Soc. 126: 1563–1568PubMedCrossRefGoogle Scholar
  26. 26.
    Saito R., Dresselhaus G, Dresselhaus MS (1998) Physical Properties of Carbon Nanotubes, Imperial College Press, LondonCrossRefGoogle Scholar
  27. 27.
    Ajayan PM (1999) Nanotubes from carbon. Chem. Rev. 99: 1787–1800PubMedCrossRefGoogle Scholar
  28. 28.
    Politzer P, Murray JS, Lane P, Concha MC (2005) Computed electrostatic potentials and local ionization energies on model nanotube surfaces. In: Balandin AA, Wang WL (eds) Handbook of Semiconductor Nanostructures and Devices, American Scientific Publishers, Los Angeles (in press)Google Scholar
  29. 29.
    Politzer P, Lane P, Concha MC, Murray JS (2005) Effect of different caps on model nanotube surface properties. Microelectronic Eng. 81: 485–493CrossRefGoogle Scholar
  30. 30.
    Peralta-Inga Z, Lane P, Murray JS, Boyd S, Grice V, O’Connor CJ, Politzer P (2003) Characterization of surface electrostatic potentials of some (5,5) and (n,1) carbon and boron/nitrogen nanotubes. NanoLett. 3: 21–28Google Scholar
  31. 31.
    Politzer, Lane P, Murray JS, Concha MC (2005) Comparative analysis of surface electrostatic potentials of carbon, boron/nitrogen and carbon/boron/nitrogen model nanotubes. J. Mol. Mod. 11:1–7CrossRefGoogle Scholar
  32. 32.
    Politzer P, Murray JS, Lane P, Concha MC, Jin P, Peralta-Inga Z (2005) An unusual feature of end-substituted model carbon (6,0) nanotubes. J. Mol. Mod. 11:258–264CrossRefGoogle Scholar
  33. 33.
    Mavrandonakis A, Froudakis GE, Schnell M, Muehlhaeuser M (2003) From pure carbon to silicon-carbon nanotubes: an ab initio study. Nano Lett. 3:1481–1484CrossRefGoogle Scholar
  34. 34.
    Zhang D, Zhang RQ (2003) Theoretical prediction on aluminum nitride nanotube. Chem. Phys. Lett. 371:426–432CrossRefGoogle Scholar
  35. 35.
    Cotton FA, Wilkinson G (1980) Advanced Inorganic Chemistry, 4th edn. Wiley-Interscience, New YorkGoogle Scholar
  36. 36.
    Windholz M (ed) (1983) The Merck Index, 10th edn. Merck, Rahway, NJGoogle Scholar
  37. 37.
    Burdett JK (1995) Chemical Bonding in Solids. Oxford University Press, New YorkGoogle Scholar
  38. 38.
    Bengu E, Marks LD (2001) Single-walled BN nanostructures. Phys. Rev. Lett. 86:2385–2387PubMedCrossRefADSGoogle Scholar
  39. 39.
    Bae SY, Seo HW, Park J, Choi YS, Park JC, Lee SY (2003) Boron nitride synthesized in the temperature range 1000–1200 ˆ C. Chem. Phys. Lett. 374:534–541 and references citedGoogle Scholar
  40. 40.
    Suenaga K, Colliex C, Demoncy N, Loiseau A, Pascard H, Willaime F (1997) Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science 278:653–655CrossRefADSGoogle Scholar
  41. 41.
    Golberg D, Bando Y, Mitome M, Kurashima K, Grobert N, Reyes-Reyes M, Terrones H, Terrones M (2002) Nanocomposites: synthesis and elemental mapping of aligned B-C-N nanotubes. Chem. Phys. Lett. 360:1–7CrossRefGoogle Scholar
  42. 42.
    Stewart RF (1972) Valence structure from X-ray diffraction data: physical properties. J. Chem. Phys. 57:1664–1668CrossRefGoogle Scholar
  43. 43.
    Politzer P, Truhlar DG (eds) (1981) Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum, New YorkGoogle Scholar
  44. 44.
    Naray-Szabo G, Ferenczy GG (1995) Molecular Electrostatics. Chem. Rev. 95:829–847CrossRefGoogle Scholar
  45. 45.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: atomic volumes. J. Am. Chem. Soc. 109:7968–7979CrossRefGoogle Scholar
  46. 46.
    Murray JS, Brinck T, Lane P, Paulsen K, Politzer P (1994) Statistically-based interaction indices derived from molecular surface electrostatic potentials; a General Interaction Properties Function (GIPF). J. Mol. Struct. (Theochem) 307:55–64CrossRefGoogle Scholar
  47. 47.
    Murray JS, Politzer P (1994) A General Interaction Properties Function (GIPF): An approach to understanding and predicting molecular interactions, In: Murray JS, Politzer P (eds) Quantitative Treatments of Solute/Solvent Interactions. Elsevier, Amsterdam, Ch. 8Google Scholar
  48. 48.
    Murray JS, Politzer P (1998) Statistical analysis of the molecular surface electrostatic potential: An approach to describing noncovalent interactions in condensed phases. J. Mol. Struct. (Theochem) 425:107–114CrossRefGoogle Scholar
  49. 49.
    Politzer P, Murray JS (1999) Representation of condensed phase properties in terms of molecular surface electrostatic potentials. Trends Chem. Phys. 7:157Google Scholar
  50. 50.
    Politzer P, Murray JS (2001) Computational prediction of condensed phase properties from statistical characterization of molecular surface electrostatic potentials. Fluid Phase Equilib. 185:129–137CrossRefGoogle Scholar
  51. 51.
    Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Average local ionization energies on the molecular surfaces of aromatic systems as guides to chemical reactivity. Can. J. Chem. 68:1440–1443CrossRefGoogle Scholar
  52. 52.
    Koopmans TA (1933) Uber die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1:104–113zbMATHCrossRefADSGoogle Scholar
  53. 53.
    Politzer P, Abu-Awwad F, Murray JS (1998) Comparison of density functional and Hartree-Fock average local ionization energies on molecular surfaces. Int. J. Quantum Chem. 69:607–613CrossRefGoogle Scholar
  54. 54.
    Politzer P, Murray JS, Concha MC (2002) The complementary roles of molecular surface electrostatic potentials and average local ionization energies with respect to electrophilic processes. Int. J. Quantum Chem. 88:19–27CrossRefGoogle Scholar
  55. 55.
    Murray JS, Peralta-Inga Z, Politzer P, Ekanayake K, LeBreton P (2001) Computational characterization of nucleotide bases: Molecular surfaceelectrostatic potentials and local ionization energies, and local polarization energies, Int. J. Quantum Chem. 83:245–254CrossRefGoogle Scholar
  56. 56.
    Brinck T, Murray JS, Politzer P (1993) Molecular surface electrostatic potentials and local ionization energies of groups V–VII hydrides and their anions. Relationships for aqueous and gas phase acidities. Int. J. Quantum Chem. 48:73–88CrossRefGoogle Scholar
  57. 57.
    Politzer P, Murray JS, Grice ME, Brinck T, Ranganathan S (1991) Radial behavior of the average local ionization energies of atoms. J. Chem. Phys. 95:6699–6704CrossRefADSGoogle Scholar
  58. 58.
    Politzer P, Grice ME, Murray JS (2005) Electronegativity and average local ionization energy. Coll. Czech. Chem. Comm. 70:550–558CrossRefGoogle Scholar
  59. 59.
    Murray JS, Seminario JM, Politzer P, Sjoberg P (1990) Average local ionization energies computed on the surfaces of some strained molecules. Int. J. Quantum Chem., Quantum Chem. Symp. 24:645–653CrossRefGoogle Scholar
  60. 60.
    Nagy A, Parr RG, Liu S (1996) Local temperature in an electronic systems. Phys. Rev. A 53:3117–3121PubMedCrossRefADSGoogle Scholar
  61. 61.
    Jin P, Brinck T, Murray JS, Politzer P (2003) Computational prediction of relative group polarizabilities. Int. J. Quantum Chem. 95: 632–637CrossRefGoogle Scholar
  62. 62.
    Jin P, Murray JS, Politzer P (2004) Local ionization energy and local polarizability. Int. J. Quantum Chem. 96: 394–401CrossRefGoogle Scholar
  63. 63.
    Politzer P, Murray JS (2006) The average local ionization energy: Concepts and applications, In: Toro-Labbe A (ed) Theoretical Approaches to Chemical Reactivity. Elsevier, Amsterdam, (In press)Google Scholar
  64. 64.
    Politzer P, Murray JS (1991) Molecular electrostatic potentials and chemical reactivity. In: Lipkowitz KB, Boyd DB (eds) Reviews in Computational Chemistry, vol 2. VCH Publishers, New York, Ch. 7, references citedGoogle Scholar
  65. 65.
    Murray JS, Brinck T, Politzer P (1992) Applications of calculated local surface ionization energies to chemical reactivity. J. Mol. Struct. (Theochem) 255: 271–281CrossRefGoogle Scholar
  66. 66.
    Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386: 377–378CrossRefADSGoogle Scholar
  67. 67.
    A. Fujiwara, K. Ishii, H. Suematsu, H. Kataura, Y. Maniwa, S. Suzuki Y. Achiba (2001) Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chem. Phys. Lett. 336: 205–211CrossRefGoogle Scholar
  68. 68.
    Kuznetsova A, Yates JT Jr., Liu J, Smalley RE (2000) Physical adsorption of xenon in open single walled carbon nanotubes: observations of a quasi-one-dimensional confined Xe phase. J. Chem. Phys. 112: 9590–9598CrossRefADSGoogle Scholar
  69. 69.
    Mazzoni MSC, Chacham H, Ordejon P, Sanchez-Portal D, Soler JM, Artacho E (1999) Energetics of the oxidation and opening of a carbon nanotube. Phys. Rev. B 60: R2208–R2211CrossRefADSGoogle Scholar
  70. 70.
    Bauschlicher CW, Jr. (2001) High coverages of hydrogens on a (10,0) carbon nanotube. Nano Lett. 1: 223–226CrossRefGoogle Scholar
  71. 71.
    S. Irle, A. Mews and K. Morokuma, Theoretical study of structure and Raman spectra for model nanotubes in their pristine and oxidized forms, J. Phys. Chem. A 106, 11973–11980 (2002).CrossRefGoogle Scholar
  72. 72.
    Jaffe RL (2003) Quantum chemistry study of fullerene and carbon nanotube fluorination. J. Phys. Chem. B 107: 10378–10388CrossRefGoogle Scholar
  73. 73.
    Zhou Z, Steigerwald M, Hybertsen M, Brus L, Friesner RA (2004) Electronic structure of tubular aromatic molecules derived from the metallic (5,5) armchair single wall carbon nanotube. J. Am. Chem. Soc. 126: 3597–3607PubMedCrossRefGoogle Scholar
  74. 74.
    Peralta-Inga Z, Murray JS, Grice ME, Boyd S, O’Connor CJ, Politzer P (2001) Computational characterization of surfaces of model graphene systems. J. Mol. Struct. (Theochem)549: 147–158CrossRefGoogle Scholar
  75. 75.
    Chen J, Haddon RC, Fang S, Rao AM, Lee WH, Dickey EC, Grulke EA, Pendergrass JC, Chavan A, Haley BE, Smalley RE (1998) J. Mater. Res. 13: 2423Google Scholar
  76. 76.
    Srivastava D, Brenner DW, Schall JD, Ausman KD, Yu M-F, Ruoff RS (1999) Predictions of enhanced chemical reactivity at regions of local conformational strain on carbon nanotubes: kinky chemistry. J. Phys. Chem. B 103: 4330–4337CrossRefGoogle Scholar
  77. 77.
    Dekker C (1999) Carbon nanotubes as molecular quantum wires. Phys. Today 52(5): 22CrossRefGoogle Scholar
  78. 78.
    Benedict LX, Louie SG, Cohen ML (1995) Static polarizabilities of single-wall carbon nanotubes. Phys. Rev. B 52: 8541–8549CrossRefADSGoogle Scholar
  79. 79.
    Wan X, Dong J, Xing DY (1998) Optical properties of carbon nanotubes. Phys. Rev. B 58: 6756–6759CrossRefADSGoogle Scholar
  80. 80.
    Jensen L, Astrand P-O, Mikkelsen KV (2004) The static polarizability and the second hyperpolarizability of fullerenes and carbon nanotubes. J. Phys. Chem. A 108: 8795–8800CrossRefGoogle Scholar
  81. 81.
    Exner O (1978) In: Chapman NB, Shorter J (eds) Correlation Analysis in Chemistry, Plenum Press, London, ch. 10Google Scholar
  82. 82.
    Williams DJ (1984) Organic polymeric and non-polymeric materials with large optical nonlinearities. Angew. Chem. Int. Ed. Engl. 23: 690–703CrossRefGoogle Scholar
  83. 83.
    Beratan DN (1991) In: Marder SR, Sohn JE, Stucky GD Marder SR, Sohn JE, Stucky GD (eds) New Materials for Nonlinear Optics. ACS Symposium Series 455, American Chemical Society, Washington, DC., p. 89Google Scholar
  84. 84.
    Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum mechanical aspects. Chem. Rev. 94: 195–242CrossRefGoogle Scholar
  85. 85.
    Bredas JL, Adant C, Tackx P, Persoons A, Pierce BM (1994) Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chem. Rev. 94: 243–278CrossRefGoogle Scholar
  86. 86.
    Wilson WL (2001) In: Moore JH, Spencer ND (eds) Encyclopedia of Chemical Physics and Physical Chemistry, vol III. Institute of Physics, London, C2.15Google Scholar
  87. 87.
    Karna SP (2000) Electronic and nonlinear optical materials: the role of theory and modeling. J. Phys. Chem. A 104: 4671–4673CrossRefGoogle Scholar
  88. 88.
    Matsuzawa N, Dixon DA (1994) Density functional theory predictions of polarizablities and first- and second-order hyperpolarizabilities for molecular systems. J. Phys. Chem. 98: 2545–2554CrossRefGoogle Scholar
  89. 89.
    May JC, Lim JH, Biaggio I, Moonen NNP, Michinobu T, Diederich F (2005) Highly efficient third-order optical nonlinearities in donor-substituted cyanoethynyl-ethene molecules, Optics Lett. 30 (in press)Google Scholar
  90. 90.
    Liu X, Si J, Chang B, Xu G, Yang Q, Pan Z, Xie S, Ye P, Fan J, Wan M (1999) Third-order optical nonlinearity of the carbon nanotubes. Appl. Phys. Lett. 74: 164–166CrossRefADSGoogle Scholar
  91. 91.
    Jiang J, Dong J, Xing DY (1999) Size and helical symmetry effects on the nonlinear optical properties of chiral carbon nanotubes. Phys. Rev. B 59: 9838–9841CrossRefADSGoogle Scholar
  92. 92.
    G. Ya Slepyan, S. A. Maksimenko, V. P. Kalosha, J. Herrmann, E. E. B. Campbell and I V. Hertel, Highly efficient high-order harmonic generation by metallic carbon nanotubes, Phys. Rev. A 60, R777–R780 (1999).CrossRefADSGoogle Scholar
  93. 93.
    Chen P, Wu X, Sun X, Lin J, Ji W, Tan KL (1999) Electronic structure and optical limiting behavior of carbon nanotubes. Phys. Rev. Lett. 82: 2548–2551CrossRefADSGoogle Scholar
  94. 94.
    Mishra SR, Rawat HS, Mehendale SC, Rustagi KC, Sood AK, Bandyopadhyay R, Govindaraj A, Rao CNR (2000) Optical limiting in single-walled carbon nanotube suspensions. Chem. Phys. Lett. 317: 510–514CrossRefGoogle Scholar
  95. 95.
    Szopa M, Marganska M, Zipper E, Lisowski M (2004) Coherence of persistent currents in multiwall carbon nanotubes. Phys. Rev. B 70: 75406–75412CrossRefADSGoogle Scholar
  96. 96.
    Zipper E, Szopa M, Marganska M, Lisowski M, Persistent currents in single- and multiwall carbon nanotubes, paper presented by Zipper E. at Nano and Giga Challenges Conference. Jagellonian University, Krakow, Poland, September 2004Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Peter Politzer
    • 1
  • Jane S. Murray
    • 1
  • Pat Lane
    • 1
  • Monica C. Concha
    • 1
  1. 1.Department of ChemistryUniversity of New OrleansNew OrleansUSA

Personalised recommendations