Molecular Dynamics Simulations of Hydrogen Adsorption in Finite and Infinite Bundles ofSingle Walled Carbon Nanotubes

  • Hansong Cheng
  • Alan C. Cooper
  • Guido P. Pez
  • Milen K. Kostov
  • M. Todd Knippenberg
  • Pamela Piotrowski
  • Steven J. Stuart
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 4)


Molecular dynamics simulations have been used to systematically study hydrogen storage in single walled carbon nanotubes of various diameters and chiralities using a recently developed curvature-dependent force field. Several fundamental issues related to the effects of nanotube size, chirality and the thickness of nanotube bundles have been examined. A novel methodology for the analysis of effective average adsorption energy and storage capacity was developed. Our simulation results suggest strong dependence of H2 adsorption energies on the nanotube diameter but less dependence on the chirality. Substantial lattice expansion upon H2 adsorption was found. The average adsorption energy increases with the lowering of nanotube diameter (higher curvature) and decreases with higher H2 loading. The calculated H2 vibrational power spectra and radial distribution functions indicate a strong attractive interaction between H2 and nanotube walls. The calculated diffusion coefficients are much higher than what has been reported for H2 in microporous materials such as zeolites, indicating that diffusivity does not present problem for adsorption energy and effective capacity hydrogen storage in carbon nanotubes. We show that adsorption energy and effective storage capacity can be defined in a distance-dependent manner, providing a more comprehensive understanding of adsorption behavior


carbon nanotubes hydrogen adsorption molecular dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379CrossRefADSGoogle Scholar
  2. 2.
    Shiraishi M, Takenobu T, Ata M (2003) Gas-solid interactions in the hydrogen/single-walled carbon nanotube system. Chem. Phys. Lett. 367:633–636CrossRefGoogle Scholar
  3. 3.
    Liu CY, Fan Y, Lu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature. Science 286:1127–1129PubMedCrossRefGoogle Scholar
  4. 4.
    Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler AG, Colbert D, Smith KA, Smalley RE (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74:2307–2309CrossRefADSGoogle Scholar
  5. 5.
    Pace EL, Siebert AR (1959) Heat of adsorption of parahydrogen and orthodeuterium on graphon. J. Phys. Chem. 63:1398-1400CrossRefGoogle Scholar
  6. 6.
    Dericbourg J (1976) Adsorption de l’hydrogene sur le graphite. Surf. Sci. 59:565–574CrossRefGoogle Scholar
  7. 7.
    Constabaris G, Sams JR Jr., Halsey GD Jr., (1961) The interaction of H2, D2, CH4, and CD4 with graphitized carbon black. J. Phys. Chem. 65:367–369CrossRefGoogle Scholar
  8. 8.
    Pez G, Steyert W, (1985) U.S. Patent 4:580–404Google Scholar
  9. 9.
    Benard P, Chahine R (2001) Determination of the adsorption isotherms of hydrogen on activated carbons above the critical temperature of the adsorbate over wide temperature and pressure ranges. Langmuir 17:1950–1955CrossRefGoogle Scholar
  10. 10.
    Watanabe K, Soma M, Onishi T, Tamaru K (1971) Sorption of molecular hydrogen by potassium graphite. Nature 233:160ADSGoogle Scholar
  11. 11.
    Watanabe K, Knodow T, Soma M, Onishi T, Tamaru K (1973) Molecular-sieve type sorption on alkali graphite intercalation compounds. Proc. Roy. Soc. Lond. A. A333:51–67ADSGoogle Scholar
  12. 12.
    Lagrange P, Metrot A, Herold AC (1972) Physisorption of hydrogen on KC24. C. R. Acad. Sci. Ser. C275:765Google Scholar
  13. 13.
    Terai T, Takahashi Y (1989) Formulation of isotherms for low-temperature absorption of H2 and D2 on KC24 prepared from natural graphite. Synth. Met. 34:329–334CrossRefGoogle Scholar
  14. 14.
    Okamoto Y, Miyamoto Y (2001) Ab initio investigation of physisorption of molecular hydrogen on planar and curved graphemes. J. Phys. Chem. B. 105:3470–3474CrossRefGoogle Scholar
  15. 15.
    Cheng H, Pez GP, Cooper AC (2001) Mechanism of hydrogen sorption in single-walled carbon nanotubes. J. Am. Chem. Soc. 123:5845–5846PubMedCrossRefGoogle Scholar
  16. 16.
    Canto G, Ordejon P, Cheng H, Cooper AC, Pez GP (2003) First-principles molecular dynamics study of the stretching frequencies of hydrogen molecules in carbon nanotubes. New J. Phys. 5:124.1–8Google Scholar
  17. 17.
    Cheng H, Pez GP, Kern G, Kresse G, Hafner J (2001) Hydrogen adsorption in potassium-intercalated graphite of second stage: an ab initio molecular dynamics study. J. Phys. Chem. B. 105:736–742CrossRefGoogle Scholar
  18. 18.
    Kostov MK, Cheng H, Cooper AC, Pez GP (2002) Influence of carbon curvature on molecular adsorptions in carbon-based materials: a force field approach. Phys. Rev. Lett. 89:146105–1–146105–4CrossRefADSGoogle Scholar
  19. 19.
    Cheng H, Pez GP, Cooper AC (2003) Spontaneous cross linking of small-diameter single-walled carbon nanotubes. Nano. Lett. 3:585–587CrossRefGoogle Scholar
  20. 20.
    Frankland SJV, Brenner DW (2001) Hydrogen Raman shifts in carbon nanotubes from molecular dynamics simulation. Chem. Phys. Lett. 334:18–23CrossRefGoogle Scholar
  21. 21.
    Wang Q, Johnson JK (1999) Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. J. Chem. Phys. 110:577–586CrossRefADSGoogle Scholar
  22. 22.
    Williams KA, Eklund PC (2000) Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes. Chem. Phys. Lett. 320:352–358CrossRefGoogle Scholar
  23. 23.
    Darkrim F, Levesque D (1998) Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes. J. Chem. Phys. 109:4981–4984CrossRefADSGoogle Scholar
  24. 24.
    Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112:6472–6486CrossRefADSGoogle Scholar
  25. 25.
    Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott S (2002) A second generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.: Cond. Matt. 14:s783–802CrossRefADSGoogle Scholar
  26. 26.
    Brenner DW (2000) The art and science of an analytic potential. Physica Status Solidi B 217:23–40CrossRefGoogle Scholar
  27. 27.
    Diep P, Johnson JK (2000) An accurate H2–H2 interaction potential from first principles. J. Chem. Phys. 112:4465–4473CrossRefADSGoogle Scholar
  28. 28.
    Skoulidas AI, Sholl DS (2001) Direct tests of the darken approximation for molecular diffusion in zeolites using equilibrium molecular dynamics. J. Phys. Chem. B. 105:3151–3154CrossRefGoogle Scholar
  29. 29.
    Skoulidas AI, Sholl DS (2002) Transport diffusivities of CH4, CF4, He, Ne, Ar, Xe, and SF6 in silicalite from atomistic simulations. J. Phys. Chem. B. 106:5058–5067CrossRefGoogle Scholar
  30. 30.
    Maginn EJ, Bell AT, Theodorou DN (1993) Transport diffusivity of methane in silicalite from equilibrium and nonequilibrium simulations. J. Phys. Chem. 97:4173–4181CrossRefGoogle Scholar
  31. 31.
    Skoulidas AI, Ackerman DM, Johnson JK, Sholl DS (2002) Rapid transport of gases in carbon nanotubes. Phys. Rev. Lett. 89:185901–1–185901–4CrossRefADSGoogle Scholar
  32. 32.
    Shi W, Johnson JK (2003) Gas adsorption on heterogeneous single-walled carbon nanotube bundles. Phys. Rev. Lett. 91:015504–1–015504–4ADSGoogle Scholar
  33. 33.
    NIST Chemistry WebBook (October 3, 2005) Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Hansong Cheng
    • 1
  • Alan C. Cooper
    • 1
  • Guido P. Pez
    • 1
  • Milen K. Kostov
    • 2
  • M. Todd Knippenberg
    • 1
    • 3
  • Pamela Piotrowski
    • 3
  • Steven J. Stuart
    • 3
  1. 1.Air Products and Chemicals, IncPennsylvania State UniversityAllentown
  2. 2.Department of PhysicsPennsylvania State UniversityUniversity ParkPA
  3. 3.Department of ChemistryClemson UniversityClemsonSC

Personalised recommendations