Advertisement

Third-Order Nonlinear Optical Response of Metal Nanoparticles

  • Bruno Palpant
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 1)

Abstract

We present a review of the main results reported in the literature regarding the third-order nonlinear optical response of nanocomposite media consisting of noble metal nanoparticles surrounded by a dielectric host. This phenomenon, known as optical Kerr effect, can be characterized by the intensity-dependent complex optical index of the material or, equivalently, its complex third-order susceptibility. The theoretical basis of the linear and nonlinear optical properties of metal nanoparticles and nanocomposite media are described first. The different third-order optical phenomena which have been observed in such materials are then examined. The dependence of the nonlinear properties on morphological parameters – nature of the dielectric host, metal concentration, particle size and shape – as well as on laser excitation characteristics – wavelength, intensity, pulsewidth – will be explained and illustrated by selected experimental results. The final part points out the important role played by thermal effects in the nonlinear optical response

Keywords

Noble metals nanoparticles nanocomposite materials surface plasmon resonance local field enhancement nonlinear optical response optical Kerr effect third-order susceptibility saturation of absorption optical limiting self-focusing metal concentration size effects spectral dispersion interband transitions hot electrons thermal lensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ehrenreich, H., Philipp, H.R.: Optical properties of Ag and Cu. Phys. Rev. 128, 1622–1629 (1962)ADSCrossRefGoogle Scholar
  2. [2]
    Théye, M.L.: Investigation of the optical properties of Au by means of thin semitransparent films. Phys. Rev. B 2, 3060–3078 (1970)ADSCrossRefGoogle Scholar
  3. [3]
    Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)ADSCrossRefGoogle Scholar
  4. [4]
    Aspnes, D.E., Kinsbron, E., Bacon, D.D.: Optical properties of Au: Sample effects. Phys. Rev. B 21, 3290–3299 (1980)ADSCrossRefGoogle Scholar
  5. [5]
    Innes, R.A., Sambles, J.R.: Optical characterisation of gold using surface plasmon-polaritons. J. Phys. F: Metal Phys. 17, 277–287 (1987)ADSCrossRefGoogle Scholar
  6. [6]
    Nash, D.J., Sambles, J.R.: Surface plasmon-polariton study of the optical dielectric function of silver. J. Mod. Opt. 43, 81–91 (1996)ADSCrossRefGoogle Scholar
  7. [7]
    Palik, E.D. (ed.): (1985/1991) Handbook of Optical Constants of Solids, vols. I and II, Academic, New YorkGoogle Scholar
  8. [8]
    Ashkroft, N.W., Mermin, N.D.: Solid State Physics. Saunders College Publishing, Philadelphia (1976)Google Scholar
  9. [9]
    Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1983)Google Scholar
  10. [10]
    Cooper, B.R., Ehrenreich, H., Philipp, H.R.: Phys. Rev. 138, A494–A507 (1965)CrossRefGoogle Scholar
  11. [11]
    Rosei, R., Lynch, D.W.: Thermomodulation Spectra of Al, Au, and Cu. Phys. Rev. B 5, 3883–3894 (1972)ADSCrossRefGoogle Scholar
  12. [12]
    Rosei, R.: Temperature modulation of the optical transitions involving the Fermi surface in Ag: Theory. Phys. Rev. B 10, 474–483 (1974)ADSCrossRefGoogle Scholar
  13. [13]
    Rosei, R., Culp, C.H., Weaver, J.H.: Temperature modulation of the optical transitions involving the Fermi surface in Ag: Experimental. Phys. Rev. B 10, 484–489 (1974)ADSCrossRefGoogle Scholar
  14. [14]
    Mie, G.: Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen. Ann. Phys. (Leibzig) 25, 377 (1908)ADSGoogle Scholar
  15. [15]
    Born, M., Wolf, E.: Principles of Optics. University Press, Cambridge (1999)Google Scholar
  16. [16]
    Bohren, C.F., Huffman, D.P.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983)Google Scholar
  17. [17]
    Russell, B.K., Mantovani, J.G., Anderson, V.E., Warmack, R.J., Ferrell, T.L.: Experimental test of the Mie theory for microlithographically produced silver spheres. Phys. Rev. B 35, 2151–2154 (1987)ADSCrossRefGoogle Scholar
  18. [18]
    Kolwas, K., Demianiuk, S., Kolwas, M.: Optical excitation of radius-dependent plasmon resonances in large metal clusters. J. Phys. B: At. Mol. Opt. Phys. 29, 4761–4770 (1996)ADSCrossRefGoogle Scholar
  19. [19]
    Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer Verlag, Berlin, Heidelberg (1995)Google Scholar
  20. [20]
    Fedrigo, S., Harbich, W., Buttet, J.: Collective dipole oscillations in small silver clusters embedded in rare-gas matrices. Phys. Rev. B 47, 10706–10715 (1993)ADSCrossRefGoogle Scholar
  21. [21]
    Kawabata, A., Kubo, R.: Electronic properties of fine metallic particles. II Plasma resonance absorption. J. Phys. Soc. Jpn. 21, 1765–1772 (1966)ADSCrossRefGoogle Scholar
  22. [22]
    Yannouleas, C., Broglia, R.A.: Landau damping and wall dissipation in large metal clusters. Ann. Phys. N. Y. 217, 105–141 (1992)ADSCrossRefGoogle Scholar
  23. [23]
    Persson, B.N.J.: Polarizability of small spherical metal particles: influence of the matrix environment. Surf. Sci. 281, 153–162 (1993)CrossRefGoogle Scholar
  24. [24]
    Kasperovich, V., Kresin, V.V.: Ultraviolet photoabsorption spectra of silver and gold nanoclusters. Philos. Mag. B 78, 385–396 (1998)ADSCrossRefGoogle Scholar
  25. [25]
    Palpant, B., Prével, B., Lermé, J., Cottancin, E., Pellarin, M., Treilleux, M., Perez, A., Vialle, J.L., Broyer, M.: Optical properties of gold clusters in the size range 2–4 nm. Phys. Rev. B 57, 1963–1970 (1998)ADSCrossRefGoogle Scholar
  26. [26]
    Lermé, J., Palpant, B., Prével, B., Pellarin, M., Treilleux, M., Vialle, J.L., Perez, A., Broyer, M.: Quenching of the size effects in free and matrix-embedded silver clusters. Phys. Rev. Lett. 80, 5105–5108 (1998)ADSCrossRefGoogle Scholar
  27. [27]
    Celep, G., Cottancin, E., Lermé, J., Pellarin, M., Arnaud, L., Huntzinger, J.R., Broyer, M., Palpant, B., Boisron, O., Mélinon, P.: Size evolution of the optical properties of copper clusters embedded in alumina: an experimental and theoretical study of size dependence. Phys. Rev. B 70, 165409 (2004)ADSCrossRefGoogle Scholar
  28. [28]
    Quinten, M.: Optical constants of gold and silver clusters in the spectral range between 1.5eV and 4.5 eV. Z. Phys. B 101, 211–217 (1996)CrossRefGoogle Scholar
  29. [29]
    Link, S., El-Sayed, M.A.: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999)CrossRefGoogle Scholar
  30. [30]
    Lee, M., Chae, L., Lee, K.C.: Microstructure and surface plasmon absorption of sol-gel-prepared Au nanoclusters in TiO2 thin films. Nanostruct. Mater. 11, 195–201 (1999)CrossRefGoogle Scholar
  31. [31]
    Dalacu, D., Martinu, L.: Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films. J. Appl. Phys. 87, 228–235 (2000)ADSCrossRefGoogle Scholar
  32. [32]
    Cai, W., Hofmeister, H., Dubiel, M.: Importance of lattice contraction in surface plasmon resonance shift for free and embedded silver particles. Eur. Phys. J. D 13, 245–253 (2001)ADSCrossRefGoogle Scholar
  33. [33]
    Sasai, J., Hirao, K.: Relaxation behavior of nonlinear optical response in borate glasses containing gold nanoparticles. J. Appl. Phys. 89, 4548–4553 (2001)ADSCrossRefGoogle Scholar
  34. [34]
    Klar, T., Perner, M., Grosse, S., von Plessen, G., Spirkl, W., Feldmann, J.: Surface-plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett. 80, 4249–4252 (1998)ADSCrossRefGoogle Scholar
  35. [35]
    Grésillon, S., Aigouy, L., Boccara, A.C., Rivoal, J.C., Quelin, X., Desmarest, C., Gadenne, P., Shubin, V.A., Sarychev, A.K., Shalaev, V.M.: Experimental observation of localized optical excitations in random metal-dielectric films. Phys. Rev. Lett. 82, 4520–4523 (1999)ADSCrossRefGoogle Scholar
  36. [36]
    Stroud, D., Pan, F.P.: Self-consistent approach to electromagnetic wave propagation in composite media: Application to model granular metals. Phys. Rev. B 17, 1602–1610 (1978)ADSCrossRefGoogle Scholar
  37. [37]
    Niklasson, G.A., Granqvist, C.G.: Optical properties and solar selectivity of coevaporated Co-Al2O3 composite films. J. Appl. Phys. 55, 3382–3410 (1984)ADSCrossRefGoogle Scholar
  38. [38]
    See, for a large review of the advances in this field, the proceedings of the conferences on Electrical Transport and Optical Properties of Inhomogeneous Media: (2003) ETOPIM 1, edited by Garland, J.C., Tanner, D.B. (AIP, New York, 1978); ETOPIM 2, edited by Lafait, J., Tanner, D.B.: Physica A 157 (1) (1989); ETOPIM 3, edited by Mochan W.L., Barrera, R.G.: Physica A 207 (1–3) (1994); ETOPIM 4, edited by Dykhne, A.M., Lagarkov, A.N., Sarychev, A.K.: Physica A 24 (1–2) (1997); ETOPIM 5, edited by Hui, P.M., Sheng, P., Tang, L.-H.: Physica B 279 (1–3) (2000); ETOPIM 6, edited by Milton, G.W., Golden, K.M., Dobson, D., Vardeny, A.Z.: Physica B 338 (1–3)Google Scholar
  39. [39]
    Maxwell-Garnett, J.C.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. London 203, 385 (1904)ADSGoogle Scholar
  40. [40]
    Bruggeman, D.A.G.: (1935) The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances. Ann. Phys. (Leipzig) 24, 636–664 (1935); 665-679ADSGoogle Scholar
  41. [41]
    Marton, J.P., Lemon, J.R.: Optical properties of aggregated metal systems. I. Theory. Phys. Rev. B 4, 271–280 (1971)ADSCrossRefGoogle Scholar
  42. [42]
    Marton, J.P., Lemon, J.R.: Optical properties of aggregated metal systems: Real metals. J. Appl. Phys. 44, 3953–3959 (1973)ADSCrossRefGoogle Scholar
  43. [43]
    Gehr, R.J., Boyd, R.W.: Optical properties of nanostructured optical materials. Chem. Mater. 8, 1807–1819 (1996)CrossRefGoogle Scholar
  44. [44]
    Polder, D., van Santen, J.H.: The effective permeability of mixtures of solids. Physica 12, 257 (1946)ADSCrossRefGoogle Scholar
  45. [45]
    Cohen, R.W., Cody, G.D., Coutts, M.D., Abeles, B.: Optical properties of granular silver and gold films. Phys. Rev. B 8, 3689–3701 (1973)ADSCrossRefGoogle Scholar
  46. [46]
    Foss, Jr., C.A., Hornyak, G.L., Stockert, J.A., Martin, C.R.: Template-synthesized nanoscopic gold particles: Optical spectra and the effects of particle size and shape. J. Phys. Chem. 98, 2963–2971 (1994)CrossRefGoogle Scholar
  47. [47]
    Granqvist, C.G., Hunderi, O.: Optical properties of ultrafine gold particles. Phys. Rev. B 16, 3513–3534 (1977)ADSCrossRefGoogle Scholar
  48. [48]
    Neeves, A.E., Birnboim, M.H.: Composite structures for the enhancement of nonlinear optical materials. Opt. Lett. 13, 1087–1089 (1988); Composite structures for the enhancement of nonlinear-optical susceptibility. J. Opt. Soc. Am. B 6, 787–796 (1989)Google Scholar
  49. [49]
    Zhang, X., Stroud, D.: Numerical studies of the nonlinear properties of composites. Phys. Rev. B 49, 944–955 (1994)ADSCrossRefGoogle Scholar
  50. [50]
    Fedotov, V.A., Emel’yanov, V.I., MacDonald, K.F., Zheludev, N.I.: Optical properties of closely packed nanoparticle films: spheroids and nanoshells. J. Opt. A: Pure Appl. Opt. 6, 155–160 (2004)ADSCrossRefGoogle Scholar
  51. [51]
    Hui, P.M., Xu, C., Stroud, D.: Second-harmonic generation for a dilute suspension of coated particles. Phys. Rev. B 69, 014203 (2004)ADSCrossRefGoogle Scholar
  52. [52]
    Chýlek, P., Srivastava, V.: Dielectric constant of a composite inhomogeneous medium. Phys. Rev. B 27, 5098–5106 (1983)ADSCrossRefGoogle Scholar
  53. [53]
    Barrera, R.G., Villaseñor–González, P., Mochán, W.L., Monsivais, G.: Effective dielectric response of polydispersed composites. Phys. Rev. B 41, 7370–7376 (1990)ADSCrossRefGoogle Scholar
  54. [54]
    Spanoudaki, A., Pelster, R.: Effective dielectric properties of composite materials: The dependence on the particle size distribution. Phys. Rev. B 64, 064205 (2001)ADSCrossRefGoogle Scholar
  55. [55]
    Ducourtieux, S., Gresillon, S., Boccara, A.C., Rivoal, J.C., Quelin, X., Gadenne, P., Drachev, V.P., Bragg, W.D., Safonov, V.P., Podolskiy, V.A., Ying, Z.C., Armstrong, R.L., Shalaev, V.M.: Percolation and fractal composites: optical studies. J. Nonlinear Opt. Phys. Mater. 9, 105–116 (2000)ADSGoogle Scholar
  56. [56]
    Ping Sheng: Theory for the dielectric function of granular composite media. Phys. Rev. Lett. 45, 60–63 (1980)CrossRefGoogle Scholar
  57. [57]
    Andraud, C., Lafait, J., Beghdadi, A.: Entropic model for the optical properties of heterogeneous media: Validation on granular gold films near percolation. Phys. Rev. B 57, 13227–13234 (1998)ADSCrossRefGoogle Scholar
  58. [58]
    Bergman, D.: The dielectric constant of a composite material – A problem in classical physics. Phys. Rep. C 43, 377–407 (1978); Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric constant of a two-component composite material. Phys. Rev. Lett. 44, 1285–1287 (1980)Google Scholar
  59. [59]
    Markel, V.A., Shalaev, V.M., Stechel, E.B., Kim, W., Armstrong, R.L.: Small-particle composites. I. Linear optical properties. Phys. Rev. B 53, 2425–2436 (1996)ADSCrossRefGoogle Scholar
  60. [60]
    Pustovit, V.N., Niklasson, G.A.: Observability of resonance optical structure in fractal metallic clusters. J. Appl. Phys. 90, 1275–1279 (2001)ADSCrossRefGoogle Scholar
  61. [61]
    Panoiu, N.-C., Osgood, Jr., R.M.: Subwavelength nonlinear plasmonic nanowire. Nano Lett. 4, 2427–2430 (2004)CrossRefGoogle Scholar
  62. [62]
    Granqvist, C.G., Hunderi, O.: (1978) Conductivity of inhomogeneous materials: Effective-medium theory with dipole-dipole interaction. Phys. Rev. B 18, 1554–1561 (1978); Optical properties of Ag-SiO2 cermet films: A comparison of effective-medium theories. Phys. Rev. B 18, 2897–2906Google Scholar
  63. [63]
    Quinten, M., Kreibig, U.: Optical properties of aggregates of small metal particles. Surf. Sci. 172, 557–577 (1986)CrossRefGoogle Scholar
  64. [64]
    Gérardy, J.M., Ausloos, M.: (1982) Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. The long-wavelength limit. Phys. Rev. B 22, 4950–4959 (1980); II. Optical properties of aggregated metal spheres. ibid. 25, 4204–4229Google Scholar
  65. [65]
    Auger, J.C., Stout, B., Lafait, J.: Dependent light scattering in dense heterogeneous media. Physica B 279, 21–24 (2000)ADSCrossRefGoogle Scholar
  66. [66]
    Stout, B., Auger, J.-C., Lafait, J.: Individual and aggregate scattering matrices and crosssections: conservation laws and reciprocity. J. Mod. Opt. 48, 2105–2128 (2001)zbMATHADSCrossRefGoogle Scholar
  67. [67]
    Prot, D., Stout, D.B., Lafait, J., Pinçon, N., Palpant, B., Debrus, S.: Local electric field enhancements and large third-order optical nonlinearity in nanocomposite materials. J. Opt. A: Pure and Appl. Opt. 4, S99–S102 (2002)ADSCrossRefGoogle Scholar
  68. [68]
    Butcher, P.N., Cotter, D.: The Elements of Nonlinear Optics. University Press, Cambridge (1991)Google Scholar
  69. [69]
    Boyd, R.W.: Nonlinear Optics. Academic, San Diego (1992)Google Scholar
  70. [70]
    Lambrecht, B., Leitner, A., Aussenegg, F.R.: (1999) Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles. Appl. Phys. B 64, 269–272 (1997); SHG studies of plasmon dephasing in nanoparticles. ibid. 68, 419–423Google Scholar
  71. [71]
    Antoine, R., Brevet, P.F., Girault, H.H., Bethell, D., Schiffrin, D.J.: Surface plasmon enhanced non-linear optical response of gold nanoparticles at the air/toluene interface. Chem. Commun. 1997 (1901–1902)Google Scholar
  72. [72]
    Antoine, R., Pellarin, M., Palpant, B., Broyer, M., Prével, B., Perez, A., Galetto, P., Brevet, P.F., Girault, H.H.: Surface plasmon enhanced second harmonic response from gold clusters embedded in an alumina matrix. J. Appl. Phys. 84, 4532–4536 (1998)ADSCrossRefGoogle Scholar
  73. [73]
    Smith, D.D., Yoon, Y., Boyd, R.W., Campbell, J.K., Baker, L.A., Crooks, R.M., George, M.: z-scan measurement of the nonlinear absorption of a thin gold film. J. Appl, Phys. 86, 6200–6205 (1999)ADSCrossRefGoogle Scholar
  74. [74]
    Palpant, B., Prot, D., Mouketou-Missono, A.-S., Rashidi-Huyeh, M., Sella, C., Debrus, S.: Evidence for electron thermal effect in the third-order nonlinear optical response of matrix-embedded gold nanoparticles. Proc. of SPIE 5221, 14–23 (2003)ADSCrossRefGoogle Scholar
  75. [75]
    del Coso, R., Solis, J.: Relation between nonlinear refractive index and third-order susceptibility in absorbing media. J. Opt. Soc. Am. B 21, 640–644 (2004)ADSCrossRefGoogle Scholar
  76. [76]
    Ando, M., Kadono, K., Haruta, M., Sakaguchi, T., Miya, M.: Large third-order optical nonlinearities in transition-metal oxides. Nature 374, 625–627 (1995)ADSCrossRefGoogle Scholar
  77. [77]
    Cattaruzza, E., Battaglin, G., Gonella, F., Polloni, R., Mattei, G., Maurizio, C., Mazzoldi, P., Sada, C., Montagna, M., Tosello, C., Ferrari, M.: On the optical absorption and nonlinearity of silica films containing metal nanoparticles. Philos. Mag. B 82, 735–744 (2002)ADSCrossRefGoogle Scholar
  78. [78]
    Battaglin, G., Cattaruzza, E., Gonella, F., Polloni, R., Scremin, B.F., Mattei, G., Mazzoldi, P., Sada, C.: Structural and optical properties of Cu:silica nanocomposite films prepared by co-sputtering deposition. Appl. Surf. Sci. 226, 52–56 (2004)ADSCrossRefGoogle Scholar
  79. [79]
    Ricard, D., Roussignol, P., Flytzanis, C.: Surface-mediated enhancement of optical phase conjugation in metal colloids. Opt. Lett. 10, 511–513 (1985)ADSGoogle Scholar
  80. [80]
    Hache, F., Ricard, D., Flytzanis, C.: Optical nonlinearities of small metal particles: Surface-mediated resonance and quantum size effects. J. Opt. Soc. Am. B 3, 1647–1655 (1986)ADSGoogle Scholar
  81. [81]
    Stroud, D., Hui, P.M.: Nonlinear susceptibilities of granular matter. Phys. Rev. B 37, 8719–8724 (1988)ADSCrossRefGoogle Scholar
  82. [82]
    Stroud, D., Van E. Wood: Decoupling approximation for the nonlinear-optical response of composite media. J. Opt. Soc. Am. B 6, 778–786 (1989)ADSGoogle Scholar
  83. [83]
    Ma, H., Xiao, R., Sheng, P.: Third-order optical nonlinearity enhancement through composite microstructures. J. Opt. Soc. Am. B 15, 1022–1029 (1998)ADSGoogle Scholar
  84. [84]
    Hellwarth, R.W.: Third-order optical susceptibilities of liquids and solids. Prog. Quantum Electron. 5, 1–68 (1979)CrossRefGoogle Scholar
  85. [85]
    Buchalter, B., Meredith, G.R.: Third-order optical susceptibility of glasses determined by third harmonic generation. Appl. Opt. 21, 3221–3224 (1982)ADSGoogle Scholar
  86. [86]
    Santran, S., Canioni, L., Sarger, L., Cardinal, T., Fargin, E.: Precise and absolute measurements of the complex third-order optical susceptibility. J. Opt. Soc. Am. B 21, 2180-2190 (2004)ADSCrossRefGoogle Scholar
  87. [87]
    Hache, F., Ricard, D., Girard, C.: Optical nonlinear response of small metal particles: A self-consistent calculation. Phys. Rev. B 38, 7990–7996 (1988)ADSCrossRefGoogle Scholar
  88. [88]
    Sipe, J.E., Boyd, R.W.: Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model. Phys. Rev. A 43, 1614–1629 (1992)ADSCrossRefGoogle Scholar
  89. [89]
    Hache, F., Ricard, D., Flytzanis, C., Kreibig, U.: The optical Kerr effect in small metal particles and metal colloids: the case of gold. Appl. Phys. A 47, 347–357 (1988)ADSCrossRefGoogle Scholar
  90. [90]
    Flytzanis, C., Hache, F., Klein, M.C., Ricard, D., Roussignol, Ph.: Nonlinear optics in composite materials. In: Wolf, E. (ed.) Progress in Optics XXIX, Elsevier Science Publishers B.V., pp. 321–411 (1991)Google Scholar
  91. [91]
    Rautian, S.G.: Nonlinear spectroscopy of the degenerate electron gas in spherical metallic particles. JETP 85, 451–461 (1997)ADSCrossRefGoogle Scholar
  92. [92]
    Eesley, G.L.: Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses. Phys. Rev. B 33, 2144–2151 (1986)ADSCrossRefGoogle Scholar
  93. [93]
    Schoenlein, R.W., Lin, W.Z., Fujimoto, J.G., Eesley, G.L.: Femtosecond studies of nonequilibrium electronic processes in metals. Phys. Rev. Lett. 58, 1680–1683 (1987)PubMedADSCrossRefGoogle Scholar
  94. [94]
    Smith, D.D., Fischer, G., Boyd, R., Gregory, D.A.: Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects. J. Opt. Soc. Am. B 14, 1625–1631 (1997)ADSGoogle Scholar
  95. [95]
    Peiponen, K.-E., Vartiainen, E.M., Asakura, T.: Dispersion theory of effective meromorphic nonlinear susceptibilities of nanocomposites. J. Phys.: Condens. Matter 10, 2483–2488 (1998)ADSCrossRefGoogle Scholar
  96. [96]
    Agarwal, G.S., Dutta Gupta, S.: T-matrix approach to the nonlinear susceptibilities of heterogeneous media. Phys. Rev. A 38, 5678–5687 (1988)PubMedADSCrossRefGoogle Scholar
  97. [97]
    Zeng, X.C., Bergman, D.J., Hui, P.M., Stroud, D.: Effective-medium theory for weakly nonlinear composites. Phys. Rev. B 38, 10970–10973 (1988)ADSCrossRefGoogle Scholar
  98. [98]
    Blumenfeld, R., Bergman, D.J.: Exact calculation to second order of the effective dielectric constant of a strongly nonlinear inhomogeneous composite. Phys. Rev. B 40, 1987–1989 (1989)ADSCrossRefGoogle Scholar
  99. [99]
    Haus, J.W., Inguva, R., Bowden, C.M.: Effective-medium theory of nonlinear ellipsoidal composites. Phys. Rev. A 40, 5729–5734 (1989)PubMedADSCrossRefGoogle Scholar
  100. [100]
    Haus, J.W., Kalyaniwalla, N., Inguva, R., Bloemer, M., Bowden, C.M.: Nonlinear-optical properties of conductive spheroidal particle composites. J. Opt. Soc. Am. B 6, 797–807 (1989)ADSGoogle Scholar
  101. [101]
    Shalaev, V.M., Stockman, M.I.: Resonant excitation and nonlinear optics of fractals. Physica A 185, 181–186 (1992)ADSCrossRefGoogle Scholar
  102. [102]
    Levy, O., Bergman, D.J.: Clausius-Mossotti approximation for a family of nonlinear composites. Phys. Rev. B 46, 7189–7192 (1992)ADSCrossRefGoogle Scholar
  103. [103]
    Boyd, R.W., Gehr, R.J., Fischer, G.L., Sipe, J.E.: Nonlinear optical properties of nanocomposite materials. Pure Appl. Opt. 5, 505–512 (1996)ADSCrossRefGoogle Scholar
  104. [104]
    Shalaev, V.M., Poliakov, E.Y., Markel, V.A.: Small-particle composites. II. Nonlinear optical properties. Phys. Rev. B 53, 2437–2449 (1996)ADSCrossRefGoogle Scholar
  105. [105]
    Shalaev, V.M., Sarychev, A.K.: Nonlinear optics of random metal-dielectric films. Phys. Rev. B 57, 13265–13288 (1998)ADSCrossRefGoogle Scholar
  106. [106]
    Sarychev, A.K., Shalaev, V.M.: Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites. Phys. Rep. 375, 275–371 (2000)ADSCrossRefGoogle Scholar
  107. [107]
    Gao, L., Li, Z.-Y.: (2000) Temperature dependence of nonlinear optical response in metal/dielectrics composite media. Sol. State Commun. 107, 751–755 (1998); Temperature dependence of nonlinear optical properties in metal/dielectric composites. Phys. Stat. Sol. (b) 218, 571–582Google Scholar
  108. [108]
    Stockman, M.I., Kurlayev, K.B., George, T.F.: Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory. Phys. Rev. B 60, 17071–17083 (1999)ADSCrossRefGoogle Scholar
  109. [109]
    Wu, Y.M., Gao, L., Li, Z.-Y.: The influence of particle shape on nonlinear optical properties of metal-dielectric composites. Phys. Stat. Sol. (b) 220, 997–1008 (2000)ADSCrossRefGoogle Scholar
  110. [110]
    Gao, L., Yu, K.W., Li, Z.Y., Bambi Hu, Effective nonlinear optical properties of metal-dielectric composite media with shape distribution. Phys. Rev. E 64, 036615-1–8 (2001)ADSCrossRefGoogle Scholar
  111. [111]
    Mackay, T.G., Lakhtakia A., Weiglhofer, W.S.: Homogeneisation of isotropic, cubically nonlinear, composite mediums by the strong-permittivity-fluctuation theory: third-order considerations. Opt. Commun. 204, 219–228 (2002)ADSCrossRefGoogle Scholar
  112. [112]
    Ma, H., Sheng, P., Wong, G.K.L.: Third-order nonlinear properties of Au clusters containing dielectric thin films. Topics Appl. Phys. 82, 41–62 (2002)ADSGoogle Scholar
  113. [113]
    Gao, L., Li, Z.-Y.: Effect of temperature on nonlinear optical properties of composite media with shape distribution. J. Appl. Phys. 91, 2045–2050 (2002)ADSCrossRefGoogle Scholar
  114. [114]
    Neeves, A.E., Birnboim, M.H.: (1989) Composite structures for the enhancement of nonlinear optical materials. Opt. Lett. 13, 1087–1089 (1988); Composite structures for the enhancement of nonlinear-optical susceptibility. J. Opt. Soc. Am. B 6, 787–796Google Scholar
  115. [115]
    Goncharenko, A.V., Popelnukh, V.V., Venger, E.F.: Effect of weak nonsphericity on linear and nonlinear optical properties of small particle composites. J. Phys. D: Appl. Phys. 35, 1833–1838 (2002)ADSCrossRefGoogle Scholar
  116. [116]
    Pinchuk, A.: Optical bistability in nonlinear composites with coated ellipsoidal nanoparticles. J. Phys. D: Appl. Phys. 36, 460–464 (2003)ADSCrossRefGoogle Scholar
  117. [117]
    Ducourtieux, S., Podolskiy, V.A., Grésillon, S., Buil, S., Berini, B., Gadenne, P., Boccara, A.C., Rivoal, J.C., Bragg, W.D., Banerjee, K., Safonov, V.P., Drachev, V.P., Ying, Z.C., Sarychev, A.K., Vladimir M. Shalaev, Near-field optical studies of semicontinuous metal films. Phys. Rev. B 64, 165403 (2001)ADSCrossRefGoogle Scholar
  118. [118]
    Sheik-Bahae, M., Said, A.A., Wei, T.-H., Hagan, D.J., Van Stryland, E.W.: Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quant. Electron. 26, 760–769 (1990)CrossRefGoogle Scholar
  119. [119]
    Lippitz, M., van Dijk, M.A., Orrit, M.: Third-harmonic generation from single gold nanoparticles. Nano Lett. 5, 799–802 (2005)PubMedCrossRefGoogle Scholar
  120. [120]
    Ganeev, R.A., Ryasnyansky, A.I., Kamalov, Sh.R., Kodirov, M.K., Usmanov, T.: Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals. J. Phys. D: Appl. Phys. 34, 1602–1611 (2001)ADSCrossRefGoogle Scholar
  121. [121]
    Lamprecht, B., Krenn, J.R., Leitner, A., Aussenegg, F.R.: Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation. Phys. Rev. Lett. 83, 4421–4424 (1999)ADSCrossRefGoogle Scholar
  122. [122]
    Aktsipetrov, O.A., Murzina, T.V., Kim, E.M., Kapra, R.V., Fedyanin, A.A., Inoue, M., Kravets, A.F., Kuznetsova, S.V., Ivanchenko, M.V., Lifshits, V.G.: Magnetization-induced second- and third-harmonic generation in magnetic thin films and nanoparticles. J. Opt. Soc. Am. B 22, 138–147 (2005)ADSCrossRefGoogle Scholar
  123. [123]
    Philip, R., Kumar, G.R., Sandhyarani N., Pradeep, T.: Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters. Phys. Rev. B 62, 13160–13166 (2000)ADSCrossRefGoogle Scholar
  124. [124]
    Qu, S., Zhao, C., Jiang, X., Fang, G., Gao, Y., Zeng, H., Song, Y., Qiu, J., Zhu, C., Hirao, K.: Optical nonlinearities of space selectively precipitated Au nanoparticles inside glasses. Chem. Phys. Lett. 368, 352–358 (2003)CrossRefGoogle Scholar
  125. [125]
    Puech, K., Henari, F., Blau, W., Duff, D., Schmid, G.: Intensity-dependent optical absorption of colloidal solutions of gold nanoparticles. Europhys. Lett. 32, 119–124 (1995)Google Scholar
  126. [126]
    Huang, H.H., Yan, F.Q., Kek, Y.M., Chew, C.H., Xu, G.Q., Ji, W., Oh, P.S., Tang, S.H.: Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13, 172–175 (1997)CrossRefGoogle Scholar
  127. [127]
    Danilova, Y.E., Lepeshkin, N.N., Rautian, S.G., Safonov, V.P.: Excitation localization and nonlinear optical processes in colloidal silver aggregates. Physica A 241, 231–235 (1997)ADSCrossRefGoogle Scholar
  128. [128]
    Debrus, S., Lafait, J., May, M., Pinçon, N., Prot, D., Sella, C., Venturini, J.: Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites. J. Appl. Phys. 88, 4469–4475 (2000)ADSCrossRefGoogle Scholar
  129. [129]
    Wang, W.-T., Yang, G., Chen, Z.-H., Zhou, Y.-L., Lü, H.-B., Yang, G.-Z.: Large third-order optical nonlinearity in Au nanometer particle doped BaTiO3 composite films near the resonant frequency. Chinese Phys. 11 1324–1327 (2002)ADSCrossRefGoogle Scholar
  130. [130]
    Wang, W., Yang, G., Chen, Z., Lu, H., Zhou, Y., Yang, G., Kong, X.: Nonlinear refraction and saturable absorption in Au:BaTiO3 composite films. Appl. Opt. 42, 5591–5595 (2003)PubMedADSGoogle Scholar
  131. [131]
    Wang, P., Lu, Y., Tang, L., Zhang, J., Ming, H., Xie, J., Ho, F.-H., Chang, H.-H., Lin, H.-Y., Tsai, D.-P.: Surface-enhanced optical nonlinearity of a gold film. Opt. Commun. 229, 425–429 (2004)ADSCrossRefGoogle Scholar
  132. [132]
    Ganeev, R.A., Ryasnyansky, A.I., Stepanov, A.L., Usmanov, T.: Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm. Opt. Quant. Electron. 36, 949–960 (2004)CrossRefGoogle Scholar
  133. [133]
    Puech, K., Henari, F., Blau, W., Duff, D., Schmid, G.: Investigation of the ultrafast dephasing time of gold nanoparticles using incoherent light. Chem. Phys. Lett. 247, 13–17 (1995)ADSCrossRefGoogle Scholar
  134. [134]
    Ganeev, R.A., Ryasnyansky, A.I., Stepanov, A.L., Usmanov, T.: Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at λ = 1064 nm. Phys. Stat. Sol. (b) 241, 935–944 (2004)ADSCrossRefGoogle Scholar
  135. [135]
    Kyoung, M., Lee, M.: Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scan technique. Opt. Commun. 171, 145–148 (1999)ADSCrossRefGoogle Scholar
  136. [136]
    Haglund, Jr., R.F., Yang, L., Magruder III, R.H., Wittig, J.E., Becker, K., Zuhr, R.A., Picosecond nonlinear optical response of a Cu:silica nanocluster composite. Opt. Lett. 18, 373–375 (1993)ADSGoogle Scholar
  137. [137]
    Magruder, III, R.H., Osborne, Jr., D.H., Zuhr, R.A.: Non-linear optical properties of nanometer dimension Ag—Cu particles in silica formed by sequential ion implantation. J. Non-Cryst. Solids 176, 299–303 (1994)CrossRefGoogle Scholar
  138. [138]
    Yang, G., Wang, W., Zhou, Y., Lu, H., Yang, G., Chen, Z.: Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films. Appl. Phys. Lett. 81, 3969–3971 (2002)ADSCrossRefGoogle Scholar
  139. [139]
    Scalisi, A.A., Compagnini, G., D’Urso, L., Puglisi, O.: Nonlinear optical activity in Ag–SiO2 nanocomposite thin films with different silver concentration. Appl. Surf. Sci. 226, 237–241 (2004)ADSCrossRefGoogle Scholar
  140. [140]
    Unnikrishnan, K.P., Nampoori, V.P.N., Ramakrishnan, V., Umadevi, M., Vallabhan, C.P.G.: Nonlinear optical absorption in silver nanosol. J. Phys. D: Appl. Phys. 36, 1242–1245 (2003)ADSCrossRefGoogle Scholar
  141. [141]
    Qu, S., Gao, Y., Jiang, X., Zeng, H., Song, Y., Qiu, J., Zhu, C., Hirao, K.: Nonlinear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser. Opt. Commun. 224, 321–327 (2003)ADSCrossRefGoogle Scholar
  142. [142]
    Ispasoiu, R.G., Balogh, L., Varnavski, O.P., Tomalia, D.A., Goodson, III, T.: Large optical limiting from novel metal-dendrimer nanocomposite materials. J. Am. Chem. Soc. 122, 11005–11006 (2000)CrossRefGoogle Scholar
  143. [143]
    François, L., Mostafavi, M., Belloni, J., Delouis, J.F., Delaire, J., Feneyrou, P.: Optical limitation induced by gold clusters. 1. Size effect. J. Phys. Chem. B 104, 6133–6137 (2000)CrossRefGoogle Scholar
  144. [144]
    François, L., Mostafavi, M., Belloni, J., Delaire, J.A.: Optical limitation induced by gold clusters: Mechanism and efficiency. Phys. Chem. Chem. Phys. 3, 4965–4971 (2001)CrossRefGoogle Scholar
  145. [145]
    Zhang, H., Zelmon, D.E., Deng, L., Liu, H.-K., Teo, B.K.: Optical limiting behavior of nanosized polyicosahedral gold-silver clusters based on third-order nonlinear optical effects. J. Am. Chem. Soc. 123, 11300–11301 (2001)PubMedCrossRefGoogle Scholar
  146. [146]
    Sun, N., Wang, Y., Song, Y., Guo, Z., Dai, L., Zhu, D.: Novel [60]fullerene-silver nanocomposite with large optical limiting effect. Chem. Phys. Lett. 344, 277–282 (2001)CrossRefGoogle Scholar
  147. [147]
    Qu, S., Du, C., Song, Y., Wang, Y., Gao, Y., Liu, S., Li, Y., Zhu, D.: Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands. Chem. Phys. Lett. 356, 403–408 (2002)CrossRefGoogle Scholar
  148. [148]
    Fang, H., Du, C., Qu, S., Li, Y., Song, Y., Li, H., Liu, H., Zhu, D.: Self-assembly of the [60]fullerene-substituted oligopyridines on Au nanoparticles and the optical nonlinearities of the nanoparticles. Chem. Phys. Lett. 364, 290–296 (2002)CrossRefGoogle Scholar
  149. [149]
    Qu, S., Li, H., Peng, T., Gao, Y., Qiu, J., Zhu, C.: Optical nonlinearities from transverse plasmon resonance in gold nano-rods. Mat. Lett. 58, 1427–1430 (2004)CrossRefGoogle Scholar
  150. [150]
    Zhan, C., Li, D., Zhang, D., Xu, W., Nie, Y., Zhu, D.: The excited-state absorption and third-order optical nonlinearity from 1-dodecanethiol protected gold nanoparticles: Application for optical limiting. Opt. Mat. 26, 11–15 (2004)CrossRefGoogle Scholar
  151. [151]
    Bloemer, M.J., Haus, J.W., Ashley, P.R.: Degenerate four-wave mixing in colloidal gold as a function of particle size. J. Opt. Soc. Am. B 7, 790–795 (1990)ADSGoogle Scholar
  152. [152]
    Fukumi, K., Chayahara, A., Kadono, K., Sakaguchi, T., Horino, Y., Miya, M., Fujii, K., Hayakawa, J., Satou, M.: Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties. J. Appl. Phys. 75, 3075–3080 (1994)ADSCrossRefGoogle Scholar
  153. [153]
    Yang, L., Becker, K., Smith, F.M., Magruder III, R.H., Haglund, Jr., R.F., Yang, L., Dorsinville, R., Alfano, R.R., Zuhr, R.A.: Size dependence of the third-order susceptibility of copper nanoclusters investigated by four-wave mixing. J. Opt. Soc. Am. B 11, 457–461 (1994)ADSCrossRefGoogle Scholar
  154. [154]
    Uchida, K., Kaneko, S., Omi, S., Hata, C., Tanji, H., Asahara, Y., Ikushima, A.J., Tokizaki, T., Nakamura, A.: Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles. J. Opt. Soc. Am. B 11, 1236–1243 (1994)ADSGoogle Scholar
  155. [155]
    Puech, K., Blau, W., Grund, A., Bubeck, C., Gardenas, G.: Picosecond degenerate four-wave mixing in colloidal solutions of gold nanoparticles at high repetition rates. Opt. Lett. 20, 1613–1615 (1995)ADSGoogle Scholar
  156. [156]
    Tanahashi, I., Manabe, Y., Tohda, T., Sasaki, S., Nakamura, A.: Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method. J. Appl. Phys. 79, 1244–1249 (1996)ADSCrossRefGoogle Scholar
  157. [157]
    Lee, M., Kim, T.S., Choi, Y.S.: Third-order optical nonlinearities of sol–gel-processed Au–SiO2 thin films in the surface plasmon absorption region. J. Non-Cryst. Solids 211, 143–149 (1997)CrossRefGoogle Scholar
  158. [158]
    Hosoya, Y., Suga, T., Yanagawa, T., Kurokawa, Y.: Linear and nonlinear optical properties of sol-gel-derived Au nanometer-particle-doped alumina. J. Appl. Phys. 81, 1475–1480 (1997)ADSCrossRefGoogle Scholar
  159. [159]
    Liao, H.B., Xiao, R.F., Fu, J.S., Wang, H., Wong, K.S., Wong, G.K.L.: Origin of third-order optical nonlinearity in Au:SiO2 composite films on femtosecond and picosecond time scales. Opt. Lett. 23, 388–390 (1998)ADSGoogle Scholar
  160. [160]
    Ballesteros, J.M., Solis, J., Serna, R., Afonso, C.N.: Nanocrystal size dependence of the third-order nonlinear optical response of Cu:Al2O3 thin films. Appl. Phys. Lett. 74, 2791–2793 (1999)ADSCrossRefGoogle Scholar
  161. [161]
    Hamanaka, Y., Nakamura, A., Omi, S., Del Fatti, N., Vallée, F., Flytzanis, C.: Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass. Appl. Phys. Lett. 75, 1712–1714 (1999)ADSCrossRefGoogle Scholar
  162. [162]
    Hamanaka, Y., Nakamura, A., Hayashi, N., Omi, S.: Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal–glass composites. J. Opt. Soc. Am. B 20, 1227–1232 (2003)ADSGoogle Scholar
  163. [163]
    del Coso, R., Requejo-Isidro, J., Solis, J., Gonzalo, J., Afonso, C.N.: Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold. J. Appl. Phys. 95, 2755–2762 (2004)ADSCrossRefGoogle Scholar
  164. [164]
    Wang, W., Yang, G., Wu, W., Chen, Z.: Effects of the morphology and nanostructure on the optical nonlinearities of Au:BaTiO3 nanocomposite films. J. Appl. Phys. 94, 6837–6840 (2003)ADSCrossRefGoogle Scholar
  165. [165]
    Magruder, III, R.H., Haglund, Jr., R.F., Yang, L., Wittig, J.E., Zuhr, R.A.: Physical and optical properties of Cu nanoclusters fabricated by ion implantation in fused silica. J. Appl. Phys. 76, 708–715 (1994)ADSCrossRefGoogle Scholar
  166. [166]
    Serna, R., Ballesteros, J.M., Solis, J., Afonso, C.N., Osborne, D.H., Haglund, Jr., R.F., Petford-Long, A.K.: Laser-induced modification of the nonlinear optical response of laser-deposited Cu:Al2O3 nanocomposite films. Thin Sol. Films 318, 96–99 (1998)CrossRefGoogle Scholar
  167. [167]
    Ma, G., Sun, W., Tang, S.-H., Zhang, H., Shen, Z., Qian, S.: Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices. Opt. Lett. 27, 1043–1045 (2002)ADSGoogle Scholar
  168. [168]
    Selvan, S.T., Hayakawa, T., Nogami, M., Kobayashi, Y., Liz-Marzán, L.M., Hamanaka, Y., Nakamura, A.: Sol-gel derived gold nanoclusters in silica glass possessing large optical nonlinearities. J. Phys. Chem. B 106, 10157–10162 (2002)CrossRefGoogle Scholar
  169. [169]
    Liao, H.B., Wen, W., Wong, G.K.L.: Preparation and optical characterization of Au/SiO2 composite films with multilayer structure. J. Appl. Phys. 93, 4485–4488 (2003)ADSCrossRefGoogle Scholar
  170. [170]
    Liao, H., Wen, W., Wong, G.K.L., Yang, G.: Optical nonlinearity of nanocrystalline Au/ZnO composite films. Opt. Lett. 28, 1790–1792 (2003)PubMedADSGoogle Scholar
  171. [171]
    Yang, Y., Nogami, M., Shi, J., Chen, H., Ma, G., Tang, S.: Enhancement of third-order optical nonlinearities in 3-dimensional films of dielectric shell capped Au composite nanoparticles. J. Phys. Chem. B 109, 4865–4871 (2005)PubMedCrossRefGoogle Scholar
  172. [172]
    Takeda, Y., Lu, J., Plaksin, O.A., Kono, K., Amekura, H., Kishimoto, N.: Control of optical nonlinearity of metal nanoparticle composites fabricated by negative ion implantation. Thin Sol. Films 464–465, 483–486 (2004)CrossRefGoogle Scholar
  173. [173]
    Gao L., Li, Z.-Y.: Third-order nonlinear optical response of metal dielectric composites. J. Appl. Phys. 87, 1620–1625 (2000)ADSCrossRefGoogle Scholar
  174. [174]
    Ishizaka, T., Muto, S., Kurokawa, Y.: Nonlinear optical and XPS properties of Au and Ag nanometer-size particle-doped alumina films prepared by the sol–gel method. Opt. Commun. 190, 385–389 (2001)ADSCrossRefGoogle Scholar
  175. [175]
    Yang, L., Osborne, D.H., Haglund, Jr., R.F., Magruder, R.H., White, C.W., Zuhr, R.A., Hosono, H.: Probing interface properties of nanocomposites by third-order nonlinear optics. Appl. Phys. A 62, 403–415 (1996)ADSCrossRefGoogle Scholar
  176. [176]
    Wang, W.T., Chen, Z.H., Yang, G., Guan, D.Y., Yang, G.Z., Zhou, Y.L., Lu, H.B.: Resonant absorption quenching and enhancement of optical nonlinearity in Au:BaTiO3 composite films by adding Fe nanoclusters. Appl. Phys. Lett. 83, 1983–1985 (2003)ADSCrossRefGoogle Scholar
  177. [177]
    Zhang, Q.F., Liu, W.M., Xue, Z.Q., Wu, J.L., Wang, S.F., Wang, D.L., Gong, Q.H.: Ultrafast optical Kerr effect of Ag–BaO composite thin films. Appl. Phys. Lett. 82, 958–960 (2003)ADSCrossRefGoogle Scholar
  178. [178]
    Zhou, P., You, G., Li, J., Wang, S., Qian, S., Chen, L.: Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films. Opt. Expr. 13, 1508–1514 (2005)ADSCrossRefGoogle Scholar
  179. [179]
    Cotell, C.M., Schiestel, S., Carosella, C.A., Flom, S., Hubler, G.K., Knies, D.L.: Ion-beam assisted deposition of Au nanocluster/Nb2O5 thin films with nonlinear optical properties. Nucl. Instr. and Meth. in Phys. Res. B 127/128, 557–561 (1997)ADSCrossRefGoogle Scholar
  180. [180]
    Liao, H.B., Xiao, R.F., Wang, H., Wong, K.S., Wong, G.K.L.: Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale. Appl. Phys. Lett. 72, 1817–1819 (1998)ADSCrossRefGoogle Scholar
  181. [181]
    Zhang, C.-F., You, G.-J., Dong, Z.-W., Liu, Y., Ma, G.-H., Qian, S.-X.: Off-resonant third-order optical nonlinearity of an Ag:TiO2 composite film. Chin. Phys. Lett. 22, 475–477 (2005)ADSCrossRefGoogle Scholar
  182. [182]
    Yang, G., Wang, W.-T., Yang, G.-Z., Chen, Z.-H.: Enhanced nonlinear optical properties of laser deposited Ag/BaTiO3 nanocomposite films. Chin. Phys. Lett. 20, 924–927 (2003)ADSCrossRefGoogle Scholar
  183. [183]
    Wang, W., Qu, L., Yang, G., Chen, Z.: Large third-order optical nonlinearity in BaTiO3 matrix-embedded metal nanoparticles. Appl. Surf. Sci. 218, 24–28 (2003); Wang, W., Yang, G., Chen, Z., Lu, H., Zhou, Y., Yang, G., Kong, X.: Nonlinear refraction and saturable absorption in Au:BaTiO3 composite films. Appl. Opt. 42, 5591–5595 (2003)Google Scholar
  184. [184]
    Zhou, P., You, G., Li, J., Wang, S., Qian, S., Chen, L.: Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films. Opt. Expr. 13, 1508–1514 (2005)ADSCrossRefGoogle Scholar
  185. [185]
    Williams, E.K., Ila, D., Sarkisov, S., Curley, M., Cochrane, J.C., Poker, D.B., Hensley, D.K., Borel, C.: Study of the effects of MeV Ag and Au implantation on the optical properties of LiNbO3. Nucl. Instr. and Meth. in Phys. Res. B 141, 268–273 (1998); Sarkisov, S.S., Williams, E., Curley, M., Ila, D., Venkateswarlu, P., Poker, D.B., Hensley, D.K.: Third order optical nonlinearity of colloidal metal nanoclusters formed by MeV ion implantation. Nucl. Instr. and Meth. in Phys. Res. B 141, 294–298 (1998)Google Scholar
  186. [186]
    Ryasnyansky, A., Palpant, B., Debrus, S., Ganeev, R., Stepanov, A., Can, N., Buchal, C., Uysal, S.: Nonlinear optical absorption of ZnO doped with copper nanoparticles in the picosecond and nanosecond pulse laser field. Appl. Opt. 44, 2839–2845 (2005)PubMedADSCrossRefGoogle Scholar
  187. [187]
    Huang, H.H., Yan, F.Q., Kek, Y.M., Chew, C.H., Xu, G.Q., Ji, W., Oh, P.S., Tang, S.H.: Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13, 172–175 (1997)CrossRefGoogle Scholar
  188. [188]
    Pinçon-Roetzinger, N., Prot, D., Palpant, B., Charron, E., Debrus, S.: Large optical Kerr effect in matrix-embedded metal nanoparticles. Mat. Sci. Eng. C 19, 51–54 (2002)CrossRefGoogle Scholar
  189. [189]
    Pinçon, N., Palpant, B., Prot, D., Charron, E., Debrus, S.: Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters. Eur. Phys. J. D 19, 395–402 (2002)ADSCrossRefGoogle Scholar
  190. [190]
    Liao, H.B., Xiao, R.F., Fu, J.S., Yu, P., Wong, G.K.L., Ping Sheng, Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold. Appl. Phys. Lett. 70, 1–3 (1997)ADSCrossRefGoogle Scholar
  191. [191]
    Liao, H.B., Xiao, R.F., Fu, J.S., Wong, G.K.L.: Large third-order nonlinear optical susceptibility of Au–Al2O3 composite films near the resonant frequency. Appl. Phys. B 65, 673–676 (1997)CrossRefGoogle Scholar
  192. [192]
    Zhou, P., You, G.J., Li, Y.G., Han, T., Li, J., Wang, S.Y., Chen, L.Y., Liu, Y., Qian, S.X.: Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composite films. Appl. Phys. Lett. 83, 3876–3878 (2003)ADSCrossRefGoogle Scholar
  193. [193]
    Hamanaka, Y., Fukuta, K., Nakamura, A., Liz-Marzán, L.M., Mulvaney, P.: Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations. Appl. Phys. Lett. 84, 4938–4940 (2004)ADSCrossRefGoogle Scholar
  194. [194]
    Takeda, Y., Lu, J., Plaksin, O.A., Amekura, H., Kono, K., Kishimoto, N.: Optical properties of dense Cu nanoparticle composites fabricated by negative ion implantation. Nucl. Instr. and Meth. in Phys. Res. B 219–220, 737–741 (2004)CrossRefGoogle Scholar
  195. [195]
    Liao, H.B., Wen, W., Wong, G.K.L.: Preparation and characterization of Au/SiO2 multilayer composite films with nonspherical Au particles. App. Phys. A: Mat. Sci. Proc. 80, 861–864 (2005)CrossRefGoogle Scholar
  196. [196]
    West, R., Wang, Y., Goodson III, T.: Nonlinear absorption properties in novel gold nanostructured topologies. J. Phys. Chem. B 107, 3419–3426 (2003)CrossRefGoogle Scholar
  197. [197]
    Okada, N., Hamanaka, Y., Nakamura, A., Pastoriza-Santos, I., Liz-Marzán, L.M.: Linear and nonlinear optical response of silver nanoprisms: Local electric fields of dipole and quadrupole plasmon resonances. J. Phys. Chem. B 108, 8751–8755 (2004)CrossRefGoogle Scholar
  198. [198]
    Zhao, C.-J., Qu, S.-L., Gao, Y.-C., Song, Y.-L., Qiu, J.-R., Zhu, C.-S.: Preparation and nonlinear optical properties of Au colloid. Chin. Phys. Lett. 20, 1752–1754 (2003)ADSCrossRefGoogle Scholar
  199. [199]
    Ganeev, R.A., Ryasnyansky, A.I., Stepanov, A.L., Usmanov, T.: Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm. Opt. Quant. Electron. 36, 949–960 (2004)CrossRefGoogle Scholar
  200. [200]
    Faccio, D., Di Trapani, P., Borsella, E., Gonella, F., Mazzoldi, P., Malvezzi, A.M.: Measurement of the third-order nonlinear susceptibility of Ag nanoparticles in glass in a wide spectral range. Europhys. Lett, 43, 213–218 (1998)ADSCrossRefGoogle Scholar
  201. [201]
    Li, Y., Takata, M., Nakamura, A.: Size-dependent enhancement of nonlinear optical susceptibilities due to confined excitons in CuBr nanocrystals. Phys. Rev. B 57, 9193–9200 (1998)ADSCrossRefGoogle Scholar
  202. [202]
    Bigot, J.-Y., Merle, J.-C., Cregut, O., Daunois, A.: Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses. Phys. Rev. Lett. 75, 4702–4705 (1995)PubMedADSCrossRefGoogle Scholar
  203. [203]
    Hamanaka, Y., Hayashi, N., Omi, S., Nakamura, A.: Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass. J. Lumin. 76&77, 221–225 (1997)Google Scholar
  204. [204]
    Nisoli, M., Stagira, S., De Silvestri, S., Stella, A., Tognini, P., Cheyssac, P., Kofman, R.: Ultrafast electronic dynamics in solid and liquid gallium nanoparticles. Phys. Rev. Lett. 78, 3575–3578 (1997)ADSCrossRefGoogle Scholar
  205. [205]
    Perner, M., Bost, P., Becker, U., Mennig, M., Schmitt, M., Schmidt, H.: (1999) Optically induced damping of the surface plasmon resonance in gold colloids. Phys. Rev. Lett. 78, 2192–2195 (1997); Hartland, G.V., Hodak, J.H., Martini, I.: Comment. ibid. 82, 3188 (1999); Perner, M., von Plessen, G., Feldmann, J.: Reply. ibid. 82, 3189Google Scholar
  206. [206]
    Inouye, H., Tanaka, K., Tanahashi, I., Hirao, K.: Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticles system. Phys. Rev. B 57, 11334–11340 (1998)ADSCrossRefGoogle Scholar
  207. [207]
    Inouye, H., Tanaka, K., Tanahashi, I., Hirao, K.: Femtosecond optical Kerr effect in the gold nanoparticles system. Jpn. J. Appl. Phys. 37, L1520–L1522 (1998)CrossRefGoogle Scholar
  208. [208]
    Bigot, J.-Y., Halté, V., Merle, J.-C., Daunois, A.: Electron dynamics in metallic nanoparticles. Chem. Phys. 251, 181–203 (2000)CrossRefGoogle Scholar
  209. [209]
    Del Fatti, N., Vallée, F.: Ultrafast optical nonlinear properties of metal nanoparticles. Appl. Phys. B 73, 383–390 (2001)ADSCrossRefGoogle Scholar
  210. [210]
    Hamanaka, Y., Kuwabata, J., Tanahashi, I., Omi, S., Nakamuka, A.: Ultrafast electron relaxation via breathing vibration of gold nanocrystals embedded in a dielectric medium. Phys. Rev. B 63, 104302 (2001)ADSCrossRefGoogle Scholar
  211. [211]
    Voisin, C., Del Fatti, N., Christofilos, D., Vallée, F.: Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J. Phys. Chem. B 105, 2264–2280 (2001)CrossRefGoogle Scholar
  212. [212]
    Falconieri, M.: Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers. J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999)ADSCrossRefGoogle Scholar
  213. [213]
    Rashidi-Huyeh, M., Palpant, B.: Thermal response of nanocomposite materials under pulsed laser excitation. J. Appl. Phys. 96, 4475–4482 (2004)ADSCrossRefGoogle Scholar
  214. [214]
    Halté, V., Bigot, J.-Y., Palpant, B., Broyer, M., Prével, B., Pérez, A.: Size dependence of the energy relaxation in silver nanoparticles embedded in dielectric matrices. Appl. Phys. Lett. 75, 3799–3801 (1999)ADSCrossRefGoogle Scholar
  215. [215]
    Hu, M., Hartland, G.V.: Heat dissipation for Au particles in aqueous solution: Relaxation time versus size. J. Phys. Chem. B 106, 7029–7033 (2002)CrossRefGoogle Scholar
  216. [216]
    Heilweil, E.J., Hochstrasser, R.M.: Nonlinear spectroscopy and picosecond transient grating study of colloidal gold. J. Chem. Phys. 82, 4762–4770 (1985)ADSCrossRefGoogle Scholar
  217. [217]
    Inouye, H., Tanaka, K., Tanahashi, I., Hattori, T., Nakatsuka, H.: Ultrafast optical switching in a silver nanoparticle system. Jpn. J. Appl. Phys. 39, 5132–5133 (2000)CrossRefGoogle Scholar
  218. [218]
    Mehendale, S.C., Mishra, S.R., Bindra, K.S., Laghate, M., Dhami, T.S., Rustagi, K.C.: Nonlinear refraction in aqueous colloidal gold. Opt. Commun. 133, 273–276 (1997)ADSCrossRefGoogle Scholar
  219. [219]
    de Nalda, R., del Coso, R., Requejo-Isidro, J., Olivares, J., Suarez-Garcia, A., Solis, J., Afonso, C.N.: Limits to the determination of the nonlinear refractive index by the z-scan method. J. Opt. Soc. Am. B 19, 289–296 (2002)ADSGoogle Scholar
  220. [220]
    Ballesteros, J.M., Serna, R., Solís, J., Afonso, C.N., Petford-Long, A.K., Osborne, D.H., Haglund, Jr., R.F.: Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third-order optical susceptibility. Appl. Phys. Lett. 71, 2445–2447 (1997)ADSCrossRefGoogle Scholar
  221. [221]
    Corti, C.W., Holliday, R.J., Thompson, D.T.: Developing new industrials applications for gold: gold nanotechnology. Gold Bulletin. 35, 111–117 (2002)Google Scholar
  222. [222]
    Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Rivera, B., Price, R.E., Hazle, J.D., Halas, N.J., West, J.L.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS 100, 13549–13554 (2003); Loo, C., Lin, A., Hirsch, L., Lee, M.H., Barton, J., Halas, N., West, J., Drezek, R.: Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3, 33–40 (2004)Google Scholar
  223. [223]
    Inouye, H., Kanemitsu, Y.: Direct observation of nonlinear effects in a one-dimensional photonic crystal. Appl. Phys. Lett. 82, 1155–1157 (2003); Inouye, H., Kanemitsu, Y., Hirao, K.: Nonlinear optical response in a total-reflection-type one-dimensional photonic crystal with gold nanoparticles. Physica E 17, 414–417 (2003)Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Bruno Palpant
    • 1
  1. 1.Institut des Nano-Sciences de ParisUniversité Pierre et Marie Curie – Paris 6, Université Denis Diderot – Paris 7140 rue de LourmelFrance

Personalised recommendations