Advertisement

Nonlinear Optical Properties of Chiral Liquids

Electric-dipolar pseudoscalars in nonlinear optics
  • Peer Fischer
  • Benoît Champagne
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 1)

Abstract

We give an overview of linear and nonlinear optical processes that can be specific to chiral molecules in isotropic media. Specifically, we discuss the pseudoscalars that underlie nonlinear optical activity and chiral frequency conversion processes in fluids. We show that nonlinear optical techniques open entirely new ways of exploring chirality: Sum-frequency-generation (SFG) at second-order and BioCARS at fourth-order arise in the electric-dipole approximation and do not require circularly polarized light to detect chiral molecules in solution. Here the frequency conversion in itself is a measure of chirality. This is in contrast to natural optical activity phenomena which are based on the interference of radiation from induced oscillating electric and magnetic dipoles, and which are observed as a differential response to right and left circularly polarized light. We give examples from our SFG experiments in optically active solutions and show how the application of an additional static electric field to sum-frequency generation allows the absolute configuration of the chiral solute to be determined via an electric-dipolar process. Results from ab initio calculations of the SFG pseudoscalar are presented for a number of chiral molecules

Keywords

chiral molecules optical activity pseudoscalars liquids second-order nonlinear optics sum-frequency generation SFG electric field induced SFG nonlinear optical activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kelvin, L.: Baltimore Lectures. C.J. Clay & Sons, London (1904)zbMATHGoogle Scholar
  2. [2]
    Barron, L.D.: Molecular Light Scattering and Optical Activity. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  3. [3]
    Butcher, P.N., Cotter, D.: The Elements of Nonlinear Optics. Cambridge University Press, Cambridge (1990)Google Scholar
  4. [4]
    Fischer, P., Hache, F.: Chirality 17, 421 (2005)PubMedCrossRefGoogle Scholar
  5. [5]
    Barron, L.D., Buckingham, A.D.: Accounts Of Chemical Research. 34, 781 (2001)PubMedCrossRefGoogle Scholar
  6. [6]
    Condon, E.U.: Reviews of Modern Physics. 9, 432 (1937)zbMATHCrossRefADSGoogle Scholar
  7. [7]
    Buckingham, A.D.: In: J.O. Hirschfelder Advances in Chemical Physics. Interscience, New York, vol. 12, p. 107 (1967)Google Scholar
  8. [8]
    Buckingham, A.D., Dunn, M.B.: Journal of The Chemical Society A -Inorganic Physical Theoretical, 1988 (1971)Google Scholar
  9. [9]
    Rosenfeld, L.: Theory of Electrons. Dover, New York (1965)Google Scholar
  10. [10]
    Pershan, P.S.: Phys. Rev. 130, 919 (1963)zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. [11]
    Buckingham, A.D., Fischer, P.: Phys. Rev. A 61, 035801 (2000)CrossRefADSGoogle Scholar
  12. [12]
    Buckingham, A.D., Fischer, P.: Phys. Rev. A 63, 047802 (2001)CrossRefADSGoogle Scholar
  13. [13]
    Wagniére, G.: J. Chem. Phys. 77, 2786 (1982)CrossRefADSGoogle Scholar
  14. [14]
    Wagniére, G.H.: Chem. Phys. 245, 165 (1999)CrossRefGoogle Scholar
  15. [15]
    Rikken, G.L.J.A., Raupach, E.: Nature. 390, 493 (1997)CrossRefADSGoogle Scholar
  16. [16]
    Kleindienst, P., Wagniére, G.H.: Chem. Phys. Lett. 288, 89 (1998)CrossRefGoogle Scholar
  17. [17]
    Akhmanov, S.A., Zharikov, V.I.: JETP Lett. 6, 137 (1967)ADSGoogle Scholar
  18. [18]
    Atkins, P.W., Barron, L.D.: Proc. Roy. Soc. A 304, 303 (1968)ADSCrossRefGoogle Scholar
  19. [19]
    Akhmanov, S.A., Lyakhov, G.A., Makarov, V.A. et al.: Opt. Acta 29, 1359 (1982)Google Scholar
  20. [20]
    Cameron, R., Tabisz, G.C.: Mol. Phys. 90, 159 (1996)CrossRefGoogle Scholar
  21. [21]
    Mesnil, H., Hache, F.: Phys. Rev. Lett. 85, 4257 (2000)PubMedCrossRefADSGoogle Scholar
  22. [22]
    Hache, F., Mesnil, H., Schanne-Klein, M.-C.: Phys. Rev. B 60, 6405 (1999)CrossRefADSGoogle Scholar
  23. [23]
    Spiegel, H., Schneider, F.W.: In: Spectroscopy of Biological Molecules – State of the Art. A. Bertoluzza, C. Fagnano and P. Monti (eds) Wiley, p. 317 (1989)Google Scholar
  24. [24]
    Koroteev, N.I.: In: Frontiers in Nonlinear Optics. The Serguei Akhmanov memorial volume, H. Walther, N.I. Koroteev and M. Scully (eds) Inst. of Physics Publishing, Bristol, p. 228 (1993)Google Scholar
  25. [25]
    Romero, L.C.D., Meech, S.R., Andrews, D.L.: Journal Of Physics B-Atomic Molecular And Optical Physics. 30, 5609 (1997)CrossRefADSGoogle Scholar
  26. [26]
    Shkurinov, A.P., Dubrovskii, A.V., Koroteev, N.I.: Physical Review Letters. 70, 1085 (1993)PubMedCrossRefADSGoogle Scholar
  27. [27]
    Koroteev, N.I.: Biospectroscopy. 1, 341 (1995)CrossRefGoogle Scholar
  28. [28]
    Volkov, S.N., Konovalov, N.I., Koroteev, N.I. et al.: Quantum Electronics. 25, 62 (1995)CrossRefGoogle Scholar
  29. [29]
    Giordmaine, J.A.: Physical Review. 138, 1599 (1965)CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    Fischer, P., Wise, F.W., Albrecht, A.C.: Journal Of Physical Chemistry. A 107, 8232 (2003)CrossRefGoogle Scholar
  31. [31]
    Fischer, P., Beckwitt, K., Wise, F.W. et al.: Chemical Physics Letters. 352, 463 (2002)CrossRefGoogle Scholar
  32. [32]
    Buckingham, A.D., Fischer, P.: Chemical Physics Letters. 297, 239 (1998)CrossRefGoogle Scholar
  33. [33]
    Fischer, P., Buckingham, A.D., Beckwitt, K. et al.: Phys. Rev. Lett. 91, 173901 (2003)PubMedCrossRefADSGoogle Scholar
  34. [34]
    Bishop, D.M.: Rev. Mod. Phys. 62, 343 (1990)CrossRefADSGoogle Scholar
  35. [35]
    Bishop, D.M., Kirtman, B., Champagne, B.: J. Chem. Phys. 107, 5780 (1997)CrossRefADSGoogle Scholar
  36. [36]
    Kirtman, B., Champagne, B.: Int. Rev. Phys. Chem. 16, 389 (1997)CrossRefGoogle Scholar
  37. [37]
    Bishop, D.M.: Adv. Chem. Phys. 104, 1 (1998)CrossRefMathSciNetGoogle Scholar
  38. [38]
    Quinet, O., Champagne, B., Kirtman, B.: J. Mol. Struct. (Theochem) 633, 199 (2003)CrossRefGoogle Scholar
  39. [39]
    Bishop, D.M.: Int. Rev. Phys. Chem. 13, 21 (1994)MathSciNetCrossRefGoogle Scholar
  40. [40]
    Wortmann, R., Bishop, D.M.: J. Chem. Phys. 108, 1001 (1998)CrossRefADSGoogle Scholar
  41. [41]
    Macak, P., Norman, P., Luo, Y., et al.: J. Chem. Phys. 112, 1868 (2000)CrossRefADSGoogle Scholar
  42. [42]
    Tomasi, J., Cammi, R., Mennucci, B., et al.: Phys. Chem. Chem. Phys. 4, 5697 (2002)CrossRefGoogle Scholar
  43. [43]
    Docherty, V.J., Pugh, D., Morley, J.O.: J. Chem. Soc. Faraday Trans. II 81, 1179 (1985)CrossRefGoogle Scholar
  44. [44]
    Spassova, M., Monev, V., Kanev, I. et al.: In: Quantum Systems in Chemistry and Physics, A. Hernandez-Laguna (eds) Kluwer, Dordrecht, vol. 1: Basic Problems and Model Systems, p. 101 (2000)Google Scholar
  45. [45]
    Kanis, D.R., Ratner, M.A., Marks, T.J.: Chem. Rev. 94, 195 (1994)CrossRefGoogle Scholar
  46. [46]
    Stanton, J.F., Bartlett, R.J.: J. Chem. Phys. 98, 7029 (1993)CrossRefADSGoogle Scholar
  47. [47]
    Morley, J.O.: J. Phys. Chem. 99, 10166 (1995)CrossRefGoogle Scholar
  48. [48]
    Christiansen, O., Jørgensen, P., Hättig, C.: Int. J. Quantum Chem. 68, 1 (1998)CrossRefGoogle Scholar
  49. [49]
    Grimme, S., Waletzke, M.: Phys. Chem. Chem. Phys. 2, 2075 (2000)CrossRefGoogle Scholar
  50. [50]
    Kohn, A., Hättig, C.: J. Chem. Phys. 119, 5021 (2003)CrossRefADSGoogle Scholar
  51. [51]
    Grimme, S., Izgorodina, E.I.: Chem. Phys. 305, 223 (2004)CrossRefGoogle Scholar
  52. [52]
    Sekino, H., Bartlett, R.J.: J. Chem. Phys. 85, 976 (1986)CrossRefADSGoogle Scholar
  53. [53]
    Karna, S.P., Dupuis, M.: J. Comp. Chem. 12, 487 (1991)CrossRefGoogle Scholar
  54. [54]
    Quinet, O., Champagne, B.: Int. J. Quantum Chem. 85, 463 (2001)CrossRefGoogle Scholar
  55. [55]
    Hättig, C., Hess, B.A.: J. Chem. Phys. 105, 9948 (1996)CrossRefADSGoogle Scholar
  56. [56]
    Aiga, F., Itoh, R.: Chem. Phys. Lett. 251, 372 (1996)CrossRefGoogle Scholar
  57. [57]
    Olsen, J., Jørgensen, P.: J. Chem. Phys. 82, 3235 (1985)CrossRefADSGoogle Scholar
  58. [58]
    Luo, Y., Ågren, H., Jørgensen, P. et al.: Adv. Quantum Chem. 26, 165 (1995)CrossRefGoogle Scholar
  59. [59]
    Champagne, B., Fischer, P., Buckingham, A.D.: Chemical Physics Letters 331, 83 (2000)CrossRefGoogle Scholar
  60. [60]
    Botek, E., Champagne, B.: Appl. Phys. B 74, 627 (2002)CrossRefADSGoogle Scholar
  61. [61]
    Zangwill, A.: J. Chem. Phys. 78, 5926 (1983)CrossRefADSGoogle Scholar
  62. [62]
    van Gisbergen, S.J.A., Snijders, J.G., Baerends, E.J.: J. Chem. Phys. 109, 10644 (1998)CrossRefGoogle Scholar
  63. [63]
    Aiga, F., Tada, T., Yoshimura, R.: J. Chem. Phys. 111, 2878 (1999)CrossRefADSGoogle Scholar
  64. [64]
    Iwata, J.I., Yabana, K., Bertsch, G.F.: J. Chem. Phys. 115, 8773 (2001)CrossRefADSGoogle Scholar
  65. [65]
    Heinze, H.H., Della Sala, F., Görling, A.: J. Chem. Phys. 116, 9624 (2002)CrossRefADSGoogle Scholar
  66. [66]
    Salek, P., Vahtras, O., Helgaker, T. et al.: J. Chem. Phys. 117, 9630 (2002)CrossRefADSGoogle Scholar
  67. [67]
    Tretiak, S., Chernyak, V.: J. Chem. Phys. 119, 8809 (2003)CrossRefADSGoogle Scholar
  68. [68]
    Champagne, B., Perpete, E.A., Jacquemin, D. et al.: J. Phys. Chem. A 104, 4755 (2000)CrossRefGoogle Scholar
  69. [69]
    van Faassen, M., de Boeij, P.L., van Leeuwen, R. et al.: J. Chem. Phys. 118, 1044 (2003)CrossRefADSGoogle Scholar
  70. [70]
    Bulat, F., Toro-Labbe, A., Champagne, B. et al.: J. Chem. Phys. 123, 014319 (2005)PubMedCrossRefADSGoogle Scholar
  71. [71]
    Fischer, P., Wiersma, D.S., Righini, R. et al.: Physical Review Letters 85, 4253 (2000)PubMedCrossRefADSGoogle Scholar
  72. [72]
    Botek, E., Champagne, B., Turki, M. et al.: Journal Of Chemical Physics 120, 2042 (2004)PubMedCrossRefADSGoogle Scholar
  73. [73]
    Champagne, B., Andre, J.M., Botek, E. et al.: Chem. Phys. Chem. 5, 1438 (2004)PubMedGoogle Scholar
  74. [74]
    Rentzepis, P.M., Giordmaine, J.A., Wecht, K.W.: Physical Review Letters 16, 792 (1966)CrossRefADSGoogle Scholar
  75. [75]
    Giordmaine, J.A., Rentzepis, P.M.: J. Chim. Phys. 64, 215 (1967)Google Scholar
  76. [76]
    Jiang, H., Dolain, C., Léger, J.M. et al.: J. Am. Chem. Soc. 126, 1034 (2004)PubMedCrossRefGoogle Scholar
  77. [77]
    Martin, R.H.: Angew. Chem., Int. Ed. Engl. 13, 649 (1974)CrossRefGoogle Scholar
  78. [78]
    Verbiest, T., Van Elshocht, S., Kauranen, M. et al.: Science 282, 913 (1998)PubMedCrossRefADSGoogle Scholar
  79. [79]
    Verbiest, T., Sioncke, S., Persoons, A. et al.: Angew. Chem. Int. Ed. 114, 4038 (2002)CrossRefGoogle Scholar
  80. [80]
    Schmidt-Radde, R.H., Vollhardt, K.P.C.: J. Am. Chem. Soc. 114, 9713 (1992)CrossRefGoogle Scholar
  81. [81]
    Han, S., Bond, A.D., Disch, R.L. et al.: Angew. Chem. Int. Ed. 41, 3227 (2002)CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Peer Fischer
    • 1
  • Benoît Champagne
    • 2
  1. 1.The Rowland Institute at HarvardHarvard UniversityCambridgeUSA
  2. 2.Laboratoire de Chimie Théorique Appliquée FacultésUniversitaires Notre-Dame de la Paix (FUNDP)Rue de Bruxelles, 61Belgium

Personalised recommendations