Skip to main content

BIOGEOCHEMICAL AND PHYSICAL CONTROL ON SHELF ANOXIA AND WATER COLUMN HYDROGEN SULPHIDE IN THE BENGUEL A COASTAL UPWELLING SYSTEM OFF NAMIBIA

  • Conference paper
Past and Present Water Column Anoxia

Abstract

Shelf anoxia and recurring sulphidic water column conditions are characteristic features of the coastal upwelling system off Namibia. The development of oxygen-depleted water column conditions is linked to the relative dominance of South Atlantic Central Water, which flows southward from the Angolan Dome over Eastern South Atlantic Central Water. Inter-and intra-annual variations in the strength of upwelling influence the thickness and stability of the relatively stagnant boundary layer. Hydrogen sulphide accumulation in this boundary layer is mainly driven by the diffusive flux of hydrogen sulphide from the sediment. The hydrogen sulphide derives from the rapid degradation of organic material by bacterial sulphate reduction in the topmost 20 cm of sediment. Low reactive iron contents in the diatomaceous mud belt limit iron sulphide precipitation and sulphide oxidation by oxidized iron. In the absence of oxygen, iron, and manganese as important electron acceptors, sulphide oxidation proceeds largely by the reduction of nitrate by the large sulphur bacteria Beggiatoa and Thiomargarita, which cover large areas of the shelf. Regional differences in the distribution of these bacteria affect the development of sulphidic bottom waters. While hydrogen sulphide is quantitatively oxidized in sediments covered by Beggiatoa mats, only a fraction of the sulphide is removed by Thiomargarita. Areal estimations of aerobic water column respiration, diffusive fluxes of hydrogen sulphide from the sediment, and rates of bacterial sulphate reduction indicate that oxidation of sulphide at the sediment-water interface and oxidation of water column sulphide may comprise up to 25 % of the total oxygen consumption in the coastal upwelling system. Advective transport of methane and hydrogen sulphide from gas-charged sediments has an intermittent and locally restricted impact on water column sulphide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aller R.C. and Rude P.D. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochim Cosmochim Ac 1988; 52:751-65.

    Article  Google Scholar 

  2. Bailey G.W., Boyd A.J., Duncombe Rae C.R., Mitchell-Innes B. and van der Plas A. Synthesis of marine science research in the Benguela Current system during cruises linked to the BENEFIT training programme in 1999. S Afr J Sci 2001; 97:271-74.

    Google Scholar 

  3. Berg P., Petersen-Risgaard N. and Rysgaard S. Interpretation and measured concentration profiles in sediment pore water. Limnol Oceanogr 1998; 43:1500-10.

    Article  Google Scholar 

  4. Bleil U. Report and Preliminary Results of METEOR Cruise 34/1, Cape Town -Walvis Bay, 31.01.1996 -25.01.1996. Bremen, Berichte Fachbereich Geowissenschaften, Universität Bremen, 1996.

    Google Scholar 

  5. Borchers S.L., Schnetger B., Böning P. and Brumsack H.-J. Geochemical signatures of the Namibian diatom belt: Perennial upwelling and intermittent anoxia. Geochem Geophy Geosy 2005; 6:1-20.

    Google Scholar 

  6. Boyd A.J. Intensive study of the currents, winds and hydrology at a coastal site off central South West Africa, June/July 1978. Investigational Report, Sea Fisheries Institute, Republic of South Africa, 1983; 1-47.

    Google Scholar 

  7. Brüchert V., Jørgensen B.B., Neumann K., Riechmann D., Schlösser M. and Schulz H. Regulation of bacterial sulfate reduction and hydrogen sulfide fiuxes in the central Namibian coastal upwelling zone. Geochim Cosmochim Ac 2003; 67:4505-18.

    Google Scholar 

  8. Brüchert V., Pérez M.E. and Lange C.B. Coupled primary production, benthic foraminiferal assemblage, and sulfur diagenesis in organic-rich sediments of the Benguela upwelling system. Mar Geol 2000; 163:27-40.

    Google Scholar 

  9. Campillo-Campbell C. and Gordoa A. Physical and biological variability in the Namibian upwelling system: October 1997-October 2001. Deep-Sea Res 2004; 51:147-58.

    Google Scholar 

  10. Carr M.-E. Estimation of potential productivity in Eastern Boundary Currents using remote sensing. Deep-Sea Res 2002; 49:59-80.

    Google Scholar 

  11. Chapman P. and Shannon L.V. The Benguela Ecosystem Part II. Chemistry and related processes. Oceanogr Mar Biol Ann Rev 1985; 23:183-251.

    Google Scholar 

  12. Cline J.D. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 1969; 14:454-59.

    Article  Google Scholar 

  13. Emeis K.-C., Bening G., Berger J., Brüchert V., Currie B., Endler R., Ferdelman T., Finke N., Graco M., Haferburg G., Heyn T., Kiessling A., Lage S., Leipe T., Mollenhauer G., Neumann K., Nickel G., Noli K., Riechmann D., Schippers A., Schneider R., Schulz H., Shidjuu A., Sonnabend H., Stregel S., Struck U., Treppke U., Vogt T. and Zemskaya T. Cruise Report Meteor Expedition M48-2, Walvis Bay -Walvis Bay, August 8 -August 23, 2000. Bremen, Berichte Fachbereich Geowissenschaften Universität , 2002.

    Google Scholar 

  14. Emeis K.-C., Brüchert V., Currie B., Endler R., Ferdelman T.G., Kiessling A., Leipe T., Noli-Peard K., Struck U. and Vogt T. Shallow gas in shelf sediments of the Namibian coastal upwelling ecosystem. Cont Shelf Res 2004; 24:627-42.

    Article  Google Scholar 

  15. Hamukuaya H., O’toole M. and Woodhead P.M.J. Observations of severe hypoxia and offshore displacements of Cape Hake over the Namibian Shelf in 1994. S Afr J Marine Sci 1998; 19:41-57.

    Google Scholar 

  16. Hardman-Mountford N.J., Richardson A.J., Agenbag J.J., Hagen E., Nykjaer L., Shillington F.A. and Villacastin C. Ocean climate of the South East Atlantic observed from satellite data and wind models. Prog Oceanogr 2003; 59:181-221.

    Google Scholar 

  17. Helly J.J. and Levin L.A. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Res 2004; 51:1159-68.

    Google Scholar 

  18. Jørgensen B.B. Bacteria and biogeochemistry, In Marine Geochemistry, H.D. Schulz and M. Zabel, eds. Berlin: Springer Verlag, 2000.

    Google Scholar 

  19. Kiørboe T. and Jackson G.A. Marine snow, organic solute plumes, and optimal chemosensory behaviour of bacteria. Limnol Oceanogr 2001; 46:1309-18.

    Google Scholar 

  20. Kiørboe T., Tiselius P., Mitchell-Innes B., Hansen J.L.S., Visser A.W. and Mari X. Intensive aggregate formation with low vertical fiux during an upwelling-induced diatombloom. Limnol Oceanogr 1998; 43:104-16.

    Google Scholar 

  21. Kuypers M.M.M., Lavik G., Woebken D., Schmid M., Fuchs B.M., Amann R., Jørgensen B.B. and Jetten M.S.M. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. PNAS 2005; 102:6478-83.

    Article  Google Scholar 

  22. Martens C.S., Albert D.B. and Alperin M.J. Biogeochemical processes controlling methane in gassy coastal sediments-part 1. A model coupling organic matter fiux to gas production, oxidation, and transport. Cont Shelf Res 1998; 18:1741-70.

    Google Scholar 

  23. Martens C.S. and Klump J.V. Biogeochemical cycling in an organic-rich coastal marine basin-I. Methane sediment-water exchange processes. Geochim Cosmochim Ac 1980; 44:471-90.

    Google Scholar 

  24. McHatton S.C., Barry J.P., Jannasch H.W. and Nelson D.C. High nitrate concentrations in vacuolate, autotrophic marine Beggiatoa spp. Appl Environ Microb 1996; 62:954-58.

    Google Scholar 

  25. Mohrholz V., Schmidt M. and Lutjeharms J.R.E. The hydrography and dynamics of the Angola-Benguela frontal zone and environment in 1999. S Afr J Sci 2001; 97:199-208.

    Google Scholar 

  26. Naqvi S.W.A., Jayakumar D.A., Narvekar P.V., Nalk H., Sarma V.V.S.S., D'Souza W., Joseph S. and George M.D. Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 2000; 408:346-49.

    Article  Google Scholar 

  27. Nelson D.C., Jørgensen B.B. and Revsbech N.P. Growth pattern and yield of a chemoautotrophic Beggiatoa spp. in oxygen-sulfide microgradients. Appl Environ Microb 1986; 52:225-33.

    Google Scholar 

  28. O'Hara S.C.M., Dando P.R., Schuster U., Bennis A., Boyle J.D., Chui F.T.W., Hatherell T.V.J., Niven S.J. and Taylor L.J. Gas seep induced interstitial water circulation: observations and environmental applications. Cont Shelf Res 1995; 15:931-48.

    Article  Google Scholar 

  29. Otte S., Kuenen J.G., Nielsen L.P., Paerl H.W., Zopfi J., Schulz H.N., Teske A., Strotmann B., Gallardo V.A. and Jørgensen B.B. Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples. Appl Environ Microb 1999; 65:3148-57.

    Google Scholar 

  30. Ploug H., Hietanen S. and Kuparinen J. Diffusion and advection within and around sinking, porous diatom aggregates. Limnol Oceanogr 2002; 47:1129-36.

    Article  Google Scholar 

  31. Poole R. and Tomczak M. Optimum multiparameter analysis of the water mass structure in the Atlantic Ocean thermocline. Deep-Sea Res I 1999; 46:1895-921.

    Google Scholar 

  32. Schippers A. and Jørgensen B.B. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Gechim Cosmochim Ac 2002; 66:85-92.

    Google Scholar 

  33. Schulz H.N., Brinkhoff T., Ferdelman T.G., Mariné H.M., Teske A. and Jørgensen B.B. Dense populations of a giant sulfur bacterium in Namibian sediments. Science 1999; 284:493-95.

    Article  Google Scholar 

  34. Shannon L.V. and Nelson G. The Benguela: Large scale features and processes and system variability, In The South Atlantic, present and past circulation, Wefer G., Berger W., Siedler G. and Webb D. J., eds. Berlin: Springer, 1996.

    Google Scholar 

  35. Shillington F.A. The Benguela Upwelling System off south-western Africa, In The Sea, Robinson A.R. and Brink K.H., eds. New York: Wiley, 1998.

    Google Scholar 

  36. Spiess V. Digitale Sedimentechographie-Neue Wege zu einer hochaufiösenden Akustostratigraphie. Bremen: Fachbereich Geowissenschaften, Universität Bremen, 1993.

    Google Scholar 

  37. Thamdrup B., Fossing H. and Jørgensen B.B. Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Ac 1994; 58:5115-29.

    Google Scholar 

  38. Tyrrell T. and Lucas M.I. Geochemical evidence of denitrification in the Benguela upwelling system. Cont Shelf Res 2002; 22:2497-511.

    Article  Google Scholar 

  39. Ulloa O., Escribano R., Hormaźabal S., Quiñones R., Gonzales R. and Ramos M. Evolution and biological effects of the 1997-1998 El Nino in the upwelling ecosystem of northern Chile. Geophy Res Lett 2001; 28:1591-94.

    Article  Google Scholar 

  40. Weeks S.J., Currie B., Bakun A. and Peard K.R. Hydrogen sulphide eruptions in the Atlantic Ocean off southern Africa: implications of a new view based on SeaWIFS satellite imagery. Deep-Sea Res 2004; 51:153-72.

    Google Scholar 

  41. Wilkens R.H. and Richardson M.D. The infiuence of gas bubbles on sediment acoustic properties: in situ, laboratory and theoretical results from Eckernförde Bay, Baltic Sea. Cont Shelf Res 1998; 18:1859-92.

    Article  Google Scholar 

  42. Zabel M., Brüchert V. and Schneider R.R. The Benguela Upwelling System 2003, Cruise No. 57, 20 January -13 April 2003, Meteor Berichte. Hamburg: Universität Hamburg, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Brüchert, V. et al. (2006). BIOGEOCHEMICAL AND PHYSICAL CONTROL ON SHELF ANOXIA AND WATER COLUMN HYDROGEN SULPHIDE IN THE BENGUEL A COASTAL UPWELLING SYSTEM OFF NAMIBIA. In: Neretin, L. (eds) Past and Present Water Column Anoxia. Nato Science Series: IV: Earth and Environmental Sciences, vol 64. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4297-3_07

Download citation

Publish with us

Policies and ethics