Advertisement

Digesting Oneself and Digesting Microbes

Autophagy as a Host Response to Viral Infection
  • Montrell Seay
  • Savithramma Dinesh-Kumar
  • Beth Levine
Chapter

7. Conclusions

Although research in this area is still in a stage of infancy, it seems likely that the lysosomal degradation pathway of autophagy plays an evolutionarily conserved role in antiviral immunity. The interferon-inducible, antiviral PKR signaling pathway positively regulates autophagy, and both mammalian and plant autophagy genes restrict viral replication and protect against virus-induced cell death. Given this role of autophagy in innate immunity, it is not surprising that viruses have evolved numerous strategies to inhibit host autophagy. Different viral gene products can either modulate autophagy regulatory signals or directly interact with components of the autophagy execution machinery. Moreover, certain RNA viruses have managed to “co-apt” the autophagy pathway, selectively utilizing certain components of the dynamic membrane rearrangement system to promote their own replication inside the host cytoplasm.

In addition to this newly emerging role of autophagy in innate immunity, autophagy plays an important role in many other fundamental biological processes, including tissue homeostasis, differentiation and development, cell growth control, and the prevention of aging. Accordingly, the inhibition of host autophagy by viral gene products has important implications not only for understanding mechanisms of immune evasion, but also for understanding novel mechanisms of viral pathogenesis. It will be interesting to dissect the role of viral inhibition of autophagy in acute, persistent, and latent viral replication, as well as in the pathogenesis of cancer and other medical diseases.

Keywords

Sindbis Virus Autophagy Gene Autophagic Machinery Sindbis Virus Infection Atitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    (Ed), D. K. Autophagy (Landes Biosciences, Georgetown, TX, 2003).Google Scholar
  2. 2.
    Levine, B. & Klionsky, D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental Cell 6:463–477Google Scholar
  3. 3.
    Levine, B. & Klionsky, D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental Cell 6:463–477Google Scholar
  4. 4.
    Yoshimori, T. Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Comm 313:453–458Google Scholar
  5. 5.
    Wang, C. W. & Klionsky, D. J. The molecular mechanism of autophagy. Mol Med 9:65–76Google Scholar
  6. 6.
    Duve, C. d. & Wattiaux, R. Functions of lysosomes. Annu Rev Physiol 28:435–492Google Scholar
  7. 7.
    Klionsky, D. J. et al. A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5:539–545Google Scholar
  8. 8.
    Codogno, P. & Meijer, A. J. in Autophagy (ed. Klionsky, D.) 26–47 (Landes Biosciences, Georgetown, TX, 2004).Google Scholar
  9. 9.
    Petiot, A., Pattingre, S., Arico, S., Melez, D. & Codogno, P. Diversity of Signaling Controls of Macroautophagy in Mammalian Cells. Cell Struct Function 27:431–441Google Scholar
  10. 10.
    Suzuki, K. et al. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20:5971–5981Google Scholar
  11. 11.
    Kim, J., Huang, W. P., Stromhaug, P. E. & Klionsky, D. J. Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J Biol Chem 277:763–773Google Scholar
  12. 12.
    Noda, T., Suzuki, K. & Ohsumi, Y. Yeast autophagosomes: de novo formation of a membrane structure. Trends Cell Biol 12:231–235Google Scholar
  13. 13.
    Kirkegaard, K., Taylor, M. P. & Jackson, W. T. Cellular autophagy: surrender, avoidance and subversion by microrganisms. Nature Rev in Microbiol 2:301–314Google Scholar
  14. 14.
    Kopitz, J., Kisen, G. O., Gordon, P. B., Bohley, P. & Seglen, P. O. Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol 111:941–953Google Scholar
  15. 15.
    Klionsky, D. J. & Emr, S. D. Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721Google Scholar
  16. 16.
    Elmore, S. P., Qian, T., Grissom, S. F. & Lemasters, J. J. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J 15:2286–2287Google Scholar
  17. 17.
    Williams, B. PKR: a sentinel kinase for cellular stress. Oncogene 18:6112–6120Google Scholar
  18. 18.
    Talloczy, Z. et al. Regulation of starvation-and virus-induced autophagy by the eIF2a kinase signaling pathway. Proc Natl Acad Sci USA 99:190–195Google Scholar
  19. 19.
    Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J. & Codogno, P. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275:992–998Google Scholar
  20. 20.
    Melendez, A. et al. Autophagy genes are essential for dauer development and lifespan extension in C. elegans. Science 301:1387–1391Google Scholar
  21. 21.
    Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).PubMedCrossRefGoogle Scholar
  22. 22.
    Aoki, M. & Vogt, P. K. Retroviral oncogenes and TOR. Curr Top Microbiol Immunol 279:321–338Google Scholar
  23. 23.
    Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 gene. J Clin Invest 112:1809–1820Google Scholar
  24. 24.
    Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100:15077–15082Google Scholar
  25. 25.
    Gozuacik, D. & Kimchi, A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906Google Scholar
  26. 26.
    Edinger, A. L. & Thompson, C. B. Defective autophagy leads to cancer. Cancer Cell 4:422–424Google Scholar
  27. 27.
    Ohsumi, Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell. Biol. 2:211–216Google Scholar
  28. 28.
    Tsukada, M. & Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174Google Scholar
  29. 29.
    Kamada, Y. et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150:1507–1513Google Scholar
  30. 30.
    Abeliovich, H., Zhang, C., Dunn, W. A. J., Shokat, K. M. & Klionsky, D. J. Chemical genetic analysis of Apg1 reveals a non-kinase role in the induction of autophagy. Mol Cell Biol 14:477–49Google Scholar
  31. 31.
    Schu, P. V. et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for prtoein sorting. Science 260:88–91Google Scholar
  32. 32.
    Seglen, P. O. & Gordon, P. B. 3-methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl. Acad. Sci. USA 79:1889–1892Google Scholar
  33. 33.
    Blommaart, E. F., Krause, U., Schellens, J. P., Vreeling-Sindelarova, H. & Meijer, A. J. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 243:240–246Google Scholar
  34. 34.
    Kiel, J. A. K. W. et al. The Hansenula polymorpha PDD1 gene product, essential for the selective degradation of peroxisomes, is a homologue of Saccharomyces cerevisiae Vps34p. Yeast 15:741–754Google Scholar
  35. 35.
    Kihara, A., Noda, T., Ishihara, N. & Ohsumi, Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152:519–530Google Scholar
  36. 36.
    Eskelinen, E. L. et al. Inhibition of autophagy in mitotic animal cells. Traffic 3:878–893Google Scholar
  37. 37.
    Liang, X. H. et al. Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein. J Virol 72:8586–8596Google Scholar
  38. 38.
    Talloczy, Z. & Levine, B. Unpublished data. (2004).Google Scholar
  39. 39.
    Pattingre, S., Liang, X. H. & Levine, B. Unpublished data. (2004).Google Scholar
  40. 40.
    Liu, Y., Schiff, M., Talloczy, Z., Levine, B. & Dinesh-Kumar, S. P. Autophagy genes are essential for limiting the spread of programmed cell death associated with plant innate immunity. submitted (2004).Google Scholar
  41. 41.
    Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395:395–398Google Scholar
  42. 42.
    Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408:488–492Google Scholar
  43. 43.
    Knight, D. et al. The X-ray crystal structure and putative ligand-derived peptide binding properties of gamma-aminobutyric acid receptor type A receptor-associated protein. J Biol Chem 277:5556–5561Google Scholar
  44. 44.
    Stangler, T., Mayr, L. M. & Willbold, D. Solution structure of human GAGA(A) receptor-associated protein GABARAP: implications for biological function and its regulation. J Biol Chem 277:13363–13366Google Scholar
  45. 45.
    Sugawara, K. et al. The cyrstal structure of microtubule-associated protein light chain 3, a mammalian homolgue of Saccharomyces cerevisiae Atg8. Genes Cells 9:611–618Google Scholar
  46. 46.
    Kirisako, T. et al. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol 147:435–446Google Scholar
  47. 47.
    Tanida, I. et al. HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three humans Atg8 homologues and delipidates LC3-and GABARAP-phospholipid conjugates. J Biol Chem 279:36268–36276Google Scholar
  48. 48.
    Kirisako, T. et al. The reversible modifcation regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263–276Google Scholar
  49. 49.
    Tanida, I. et al. Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy. Mol Cell Biol 10:1367–1379Google Scholar
  50. 50.
    Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728Google Scholar
  51. 51.
    Prentice, E., Jerome, W. G., Yoshimori, T., Mizushima, N. & Denison, M. R. Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem 279:10136–10141Google Scholar
  52. 52.
    Noda, T. et al. Apg9/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 148:465–480Google Scholar
  53. 53.
    Reggiori, F., Tucker, K. A., Stromhaug, P. E. & Klionsky, D. J. The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the preautophagosomal structure. Dev Cell 6:79–90Google Scholar
  54. 54.
    Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. & Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagy marker. submitted (2003).Google Scholar
  55. 55.
    Klionsky, D. J. Autophagy (Landes Bioscience, Georgetown, Texas, 2004).Google Scholar
  56. 56.
    Shintani, T. & Klionsky, D. J. Autophagy in health and disease: a double-edged sword. Science In press. (2004).Google Scholar
  57. 57.
    deDuve, C. & Wattiaux, R. Functions of lysosomes. Annu Rev Physiol 28:435–492Google Scholar
  58. 58.
    Otto, G. P., Wu, M. Y., Kazgan, N., Anderson, O. R. & Kessin, R. H. Macroautophagy is required for multicellular development of the social amoeba Dictyostelium discoideum. J Biol Chem 278:17636–17645Google Scholar
  59. 59.
    Otto, G. P., Wu, M. Y., Kazgan, N., Anderson, O. R. & Kessin, R. H. Dictyostelium macroautophagy mutants vary in the severity of their developmental defects. J Biol Chem 279:15621–15629Google Scholar
  60. 60.
    Hanaoka, H. et al. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 129:1181–1193Google Scholar
  61. 61.
    Doelling, J. H., Walker, J. M., Friedman, E. M., Thompson, A. R. & Vierstra, R. D. The APG8/12-activating enzyme APG7 is required for proper nutrientrecycling and sensescence in Arabidopsis thaliana. J Biol Chem 277:33105–33114Google Scholar
  62. 62.
    Levine, B. Unpublished data. (2004).Google Scholar
  63. 63.
    Dever, T. Translation initiation: adept at adapting. Trends Biochem Sci 10:398–340Google Scholar
  64. 64.
    Natarajan, K. et al. Trascriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347–4368Google Scholar
  65. 65.
    Jung, J. (2004).Google Scholar
  66. 66.
    Dawson, C. W., Eliopoulos, A. G., Dawson, J. & Young, L. S. BHRF1, a viral homologue of the Bcl-2 oncogene, disturbs epithelial cell differentiation. Oncogene 10:69–77Google Scholar
  67. 67.
    Gunn, J. M., Clark, M. G., Knowles, S. E., Hopgood, M. F. & Ballard, F. J. Reduced rates of proteolysis in transformed cells. Nature 266:58–60Google Scholar
  68. 68.
    Amenta, J. S., Sargus, M. J., Venkatesan, S. & Shinozuka, H. Role of the vacuolar apparatus in augmented protein degradation in cultured fibroblasts. J Cell Physiol 94:77–86Google Scholar
  69. 69.
    Furuya, N., Liang, X. H. & Levine, B. in Autophagy (ed. Klionsky, D. J.) 244–253 (Landes Bioscience, Georgetown, Texas, 2004).Google Scholar
  70. 70.
    Huang, S. & Houghton, P. J. Inhibitors of mammalian target of rapamycin as novel antitumor agents: from bench to clinic. Curr Opin Investig Drugs 3:295–304Google Scholar
  71. 71.
    Payne, E., Bowles, M. R., Don, A., Hancock, J. F. & McMillan, N. A. Human papillomavirus type 6b virus-like particles are able to activate the Ras-MAP kinase pathway and induce cell proliferation. J Virol 75:4150–4157Google Scholar
  72. 72.
    Scholle, F., Bendt, K. M. & Raab-Traub, N. Epstein-Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt. J Virol 74:10681–10689Google Scholar
  73. 73.
    Fukuda, M. & Longnecker, R. Latent membrane protein 2A inhibits transforming growth factor-beta 1-induced apoptosis through the phosphatidylinositol 3-kinase/Akt pathway. J Virol 78:1697–1705Google Scholar
  74. 74.
    Morrison, J. A., Gulley, M. L., Pathmanathan, R. & Raab-Traub, N. Differential signaling pathways are activated in the Epstein-Barr virus-associated malignancies nasopharyngela carcinoma and Hodgin lymphoma. Cancer Res 64:5251–5260Google Scholar
  75. 75.
    Chung, T. W., Lee, Y. C. & Kim, C. H. Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression trhough activation of ERK and PI-3K/Akt pathways: involvement of invasive potential. FASEB J 18:1123–1125Google Scholar
  76. 76.
    Tomlinson, C. C. & Damania, B. The K1 protein of Kaposi’s sarcoma-associated herpesvirus activates the Akt signaling pathway. J Virol 78:1918–1927Google Scholar
  77. 77.
    Street, A., Macdonald, A., Crowder, K. & Harris, M. The hepatitis C virus NS5A protein activates a phosphoinosite 3-kinase-dependent survival signaling cascade. J Biol Chem 279:12232–12241Google Scholar
  78. 78.
    Aita, V. M. et al. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59:59–65Google Scholar
  79. 79.
    Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676Google Scholar
  80. 80.
    Liang, X. H., Yu, J., Brown, K. & Levine, B. Beclin 1 contains a leucine-rich nuclear export signal that is reguired for its autophagy and tumor suppressor function. Canc Res 61:3443–3449Google Scholar
  81. 81.
    Qu, X. & Levine, B. Unpublished data (2004).Google Scholar
  82. 82.
    Cuervo, A. M. Autophagy and aging—when “all you can eat” is yourself. Sci Aging Knowledge Environ 36:pe25Google Scholar
  83. 83.
    Bergamini, E., Cavallini, G., Donati, A. & Gori, Z. The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensifid pharmacologically. Biomed Pharmacother 57:203–208Google Scholar
  84. 84.
    Guarente, L. & Kenyon, C. Genetic pathways that regulate ageing in model organisms. Nature 408:255–262Google Scholar
  85. 85.
    Cossarizza, A., Troiano, L. & Mussini, C. Mitochondria and HIV infection: the first decade. J Biol Regul Homeost Agents 16:18–24Google Scholar
  86. 86.
    Moriya, K. et al. Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated carcinogenesis. Cancer Res 61:4365–4370Google Scholar
  87. 87.
    Hsieh, Y. H. et al. Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis June 3 (epub ahead of print) (2004).Google Scholar
  88. 88.
    Teckman, J. H., An, J. K., Blomenkamp, K., Schmidt, B. & Perlmutter, D. Mitochondrial autophagy and injury in the liver in α1-antitrypsin deficiency. Am J Physiol Gastrointestin Liver Physiol 286:G851–G8562Google Scholar
  89. 89.
    Ravikumar, B., Duden, R. & Rubinsztein, D. C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107–1117Google Scholar
  90. 90.
    Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models off Huntington disease. Nat Genet 36:585–595Google Scholar
  91. 91.
    Shi, Y. et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 18:7499–7509Google Scholar
  92. 92.
    Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274Google Scholar
  93. 93.
    Dimcheff, D. E., Askovic, S., Baker, A. H., Johnson-Fowler, C. & Portis, J. L. Endoplasmic reticulum stress is a determinant of retrovirus-induced spongiform neurodegeneration. J Virol 77:12617–12629Google Scholar
  94. 94.
    Kim, H. T. et al. Activation of endoplasmic reticulum stress signaling pathway is associated with neuronal degeneratio in MoMuLV-ts1-induced spongiform encephalopathy. Lab Invest 84:816–827Google Scholar
  95. 95.
    Dimcheff, D. E., Faasse, M. A., McAtee, F. J. & Portis, J. L. Endoplasmic reticulum (ER) stress induced by a neurovirulent mouse retrovirus is associated with prolonged BiP binding and retention of a viral protein in the ER. J Biol Chem 279:33782–33790Google Scholar
  96. 96.
    Wang, H. C. et al. Different types of ground glass hepatocytes in chronic hepatitis B virus infection contain specific pre-S mutants that may induce endoplasmic reticulum stress. Am J Pathol 163:2441–2449Google Scholar
  97. 97.
    Jordan, R., Wang, L., Graczyk, T. M., Block, T. M. & Romano, P. R. Replication of a cytopathic strain of bovine viral diarrhea virus activates PERK and induces endoplasmic reticulum stress-mediated apoptosis of MDBK cells. J Virol 76:9588–9599Google Scholar
  98. 98.
    Liu, N. et al. Possible involvment of both endoplasmic reticulum-and mitochondria-dependent pathways in MoMuLV-ts1-induced apoptosis in astrocytes. J Neurovirol 10:189–198Google Scholar
  99. 99.
    Talloczy, Z., Virgin, H. & Levine, B. PKR-dependent autophagic degradation of herpes simplex virus type 1. Submitted (2004).Google Scholar
  100. 100.
    Gale, M. Jr & Katze, M. G. Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase. Pharmacol Ther 78:29–46Google Scholar
  101. 101.
    Tan, S. L. & Katze, M. G. HSV.com: maneuvering the internetworks of viral neuropathogenesis and evasion of the host defense. Proc Natl Acad Sci USA 97:5684–5686Google Scholar
  102. 102.
    Chou, J., Kern, E. R., Whitley, R. J. & Roizman, B. Mapping of herpes simplex virus-1 neurovirulence to g134.5, a gene nonessential for growth in culture. Science 250:1262–1266Google Scholar
  103. 103.
    Leib, D. A., Machalek, M. A., Williams, B. R. G., Silverman, R. H. & Virgin, H. W. Specific phenotypic restoration of an attenuated virus by knockout of a hostresistance gene. Proc. Natl. Acad. Sci. USA 97:6097–6101Google Scholar
  104. 104.
    Chou, J., Chen, J. J., Gross, M. & Roizman, B. Association of a M(r) 90,000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF-2 alpha and premature shutoff of protein synthesis after infection with gamma 134.5-mutants of herpes simplex virus 1. Proc Natl Acad Sci USA 23:10516–10520Google Scholar
  105. 105.
    He, B., Gross, M. & Roizman, B. The γ (1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1α to dephosphorylate the α subunit of the eukaryotic translation initiation factor 2 and preculde the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 94:843–848Google Scholar
  106. 106.
    Morgan, C., Rose, H. M., HOlden, M. & Jones, E. P. Electron microscopic observations on the development of herpes simplex virus. J Exp Med 110:643–656Google Scholar
  107. 107.
    Virgin, H. & Levine, B. Unpublished data (2004).Google Scholar
  108. 108.
    Levine, B., Goldman, J. E., Jiang, H. H., Griffin, D. E. & Hardwick, J. M. Bcl-2 protects mice against fatal alphavirus encephalitis. Proc Natl Acad Sci USA 93:4810–4815Google Scholar
  109. 109.
    Joe, A., Foo, H., Kleeman, L. & Levine, B. The transmembrane domains of Sindbis virus envelope glycoproteins induce cell death. J Virol 72:3935–3943Google Scholar
  110. 110.
    Bursch, W., Ellinger, A., Gerner, C. & Schultze-Hermann, R. in Autophagy (ed. Klionsky, D. J.) 290–302 (Landes Bioscience, Georgetown, Texas, 2004).Google Scholar
  111. 111.
    Bursch, W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 8:569–581Google Scholar
  112. 112.
    Yu, L. et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase 8. Science 304:1500–1502Google Scholar
  113. 113.
    Berry, D. L., Schuldiner, O., York, K. & Baehrecke, E. H. in American Society for Cell Biology 44th Annual Meeting (Washinton, D.C., 2004).Google Scholar
  114. 114.
    Dangl, J. L. & Jones, J. D. Plant pathogens and integrated defence responses to infection. Nature 411:826–833Google Scholar
  115. 115.
    Jones, D. A. & Takemoto, D. Plant innate immunity-direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol 16:48–62Google Scholar
  116. 116.
    Lam, E. Controlled cell death, plant survival and development. Nat Rev Mol Cell Biol 5:305–315Google Scholar
  117. 117.
    Erickson, F. L. et al. The helicase domain of the TMV replicase proteins induces the N-mediated defense response in tobacco. Plant J 18:67–75Google Scholar
  118. 118.
    Whitham, S. et al. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115Google Scholar
  119. 119.
    Roizman, B. (2004).Google Scholar
  120. 120.
    Arico, S. et al. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276:35243–35246Google Scholar
  121. 121.
    Dales, S., Eggers, H. J., Tamm, I. & Palade, G. E. Electron microscopic study of the formation of poliovirus. Virology 26:379–389Google Scholar
  122. 122.
    Suhy, D. A., Giddings, T. H. & Kirkegaard, K. Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol 74:8953–8955Google Scholar
  123. 123.
    Rust, R. C. et al. Cellular COOPII proteins are involved in production of the vesicles that form the poliovirus replication complex. J Virol 75:9808–9818Google Scholar
  124. 124.
    Swanson, M. (2004).Google Scholar
  125. 125.
    Matsuura, A., Tsukada, M., Wada, Y. & Ohsumi, Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192:245–250Google Scholar
  126. 126.
    Kametaka, S., Okano, T., Ohsumi, M. & Ohsumi, Y. Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem 273:22284–22291Google Scholar
  127. 127.
    Juhasz, G., Csikos, G., Sinka, R., Erdelyi, M. & Sass, M. The Drosophila homolog of Aut1 is essential for autophagy and development. FEBS Lett 543:154–158Google Scholar
  128. 128.
    Tanida, I., Tanida-Miyake, E., Komatsu, M., Ueno, T. & Kominami, E. Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hAPG5p. J Biol Chem Feb. 1, 2000; Manscript M200385200 (2002).Google Scholar
  129. 129.
    Thumm, M. & Kadowaki, T. The loss of Drosophila APG4/AUT2 function modifies the phenotypes of cut and Notch signaling pathway pathway mutants. Mol Genet Genomics 266:657–663Google Scholar
  130. 130.
    Hemelaar, J., Lelyveld, V. S., Kessler, B. M. & Ploegh, H. L. A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. J Biol Chem 278:51841–51850Google Scholar
  131. 131.
    Mizushima, N. et al. Dissection of autophagosome formation using Apg5deficient mouse embryonic stem cells. J Cell Biol 152:657–667Google Scholar
  132. 132.
    Mizushima, N., Sugita, H., Yoshimori, T. & Ohsumi, Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J. Biol. Chem. 273:33889–33892Google Scholar
  133. 133.
    Kametaka, S., Matsuura, A., Wada, Y. & Ohsumi, Y. Structural and functional analyses of APG5, a gene involved in autophagy in yeast. Gene 178:139–143Google Scholar
  134. 134.
    Tanida, I., Tanida-Miyake, E., Ueno, T. & Kominami, E. The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem 276:1701–1706Google Scholar
  135. 135.
    Yuan, W., Stromhaug, P. E. & Dunn, W. A., Jr. Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein. Mol. Biol. Cell 10:1353–1366Google Scholar
  136. 136.
    Mizushima, N., Yoshimori, T. & Ohsumi, Y. Mouse Apg10 as an Apg12conjugating enzyme: analysis by the conugation-mediated yeast two-hybrid method. FEBS Lett 532:450–454Google Scholar
  137. 137.
    Shintani, T. et al. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J 18:5234–5241Google Scholar
  138. 138.
    Tanida, I. et al. Murine Apg12p has a substrate preference for murine Apg7p over three Apg8p homologs. Biochem Biophys Res Comm 292:256–262Google Scholar
  139. 139.
    Mizushima, N., Noda, T. & Ohsumi, Y. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J 18:3888–3896Google Scholar
  140. 140.
    Guan, J. et al. Cvt18/Gas12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia Pastoris. Mol Biol Cell 12:3821–3838Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Montrell Seay
    • 1
  • Savithramma Dinesh-Kumar
    • 1
  • Beth Levine
    • 2
  1. 1.Department of Molecular, Cellular, and Developmental BiologyYale UniversityNew HavenUSA
  2. 2.Department of MedicineUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations