Defining Drug Interactions with the Viral Membrane Protein Vpu from HIV-1

  • V. Lemaitre
  • C. G. Kim
  • D. Fischer
  • Y. H. Lam
  • A. Watts
  • W. B. Fischer
Part of the Protein Reviews book series (PRON, volume 1)


The replication of HIV-1 is strongly enhanced by a small membrane protein called virus protein U (Vpu). Vpu achieves its task by (a) interacting with CD4, the HIV-1 receptor, and (b) by amplifying particle release at the site of the plasma membrane. While the first role is due to interactions of the cytoplasmic site of Vpu with CD4, the second role may be due to ion channel activity caused by the self-assembly of the protein. Recently, a blocker has been proposed which abolishes channel activity. In this chapter, the mechanism of blocking is described using computational methods, including a brief overview of other viral ion channel blockers.


Human Immunodeficiency Virus Type Molecular Dynamics Simulation Guanidinium Group Root Mean Square Fluctuation Steer Molecular Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, P.R. (1977). Voltage jump analysis of procaine action at frog end-plate. J. Physiol. (London) 268, 291–318.Google Scholar
  2. Alvarez de la Rosa, D., Canessa, C.M., Fyfe, G.K., and Zhang, P. (2000). Structure and regulation of amiloridesensitive sodium channels. Annu. Rev. Physiol. 62, 573–594.PubMedCrossRefGoogle Scholar
  3. Amadei, A., Linssen, A.B., and Berendsen, H.J.C. (1993). Essential dynamics of proteins. Protein Struct. Func. Genet. 17, 412–425.CrossRefGoogle Scholar
  4. Barreca, M.L., Lee, K.W., Chimirri, A., and Briggs, J.M. (2003). Molecular dynamics studies of the wild-type and double mutant HIV-1 integrase complexed with the 5CITEP inhibitor: Mechanism for inhibition and drug resistance. J. Biophys. 84, 1450–1463.Google Scholar
  5. Baumeister, W.P., Ruigrok, R.W. and Cusack, S. (1991). The 2.2Å resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. EMBO J. 11, 49–56.Google Scholar
  6. Beckstein, O. and Sansom, M.S.P. (2003). Liquid-vapor oscillations of water in hydrophobic nanopores. Proc. Natl. Acad. Sci. USA 100, 7063–7068.PubMedCrossRefGoogle Scholar
  7. Beierlein, F., Lanig, H., Schuerer, G., Horn, A.H.C., and Clark, T. (2003). Quantum mechanical/molecular mechanical (QM/MM) docking: An evaluation for know test systems. Mol. Phys. 101, 2469–2480.CrossRefGoogle Scholar
  8. Benos, D.J. (1982). Amiloride: A molecular probe of sodium transport in tissues and cells. Am. J. Physiol. 242, C131–C145.PubMedGoogle Scholar
  9. Berneche, S. and Roux, B. (2001). Energetics of ion conductance through the K+ channel. Nature 414, 73–77.PubMedCrossRefGoogle Scholar
  10. Blundell, T.L., Jhoti, H., and Abell, C. (2002). High-throughput crystallography for lead discovery in drug design. Nat. Rev. Drug Discov. 1, 45–54.PubMedCrossRefGoogle Scholar
  11. Böckmann, R. and Grubmüller, H. (2002). Nanosecond molecular dynamics simulation of primary mechanical steps in F1-ATP synthase. Nat. Struct. Biol. 9, 198–202.PubMedGoogle Scholar
  12. Boobyer, D.N.A., Goodford, P.J., McWhinnie, P.M., and Wade, R.C. (1989). New hydrogen-bond potentials for use in determining energetically favourable binding sites on molecules of known structure. J. Med. Chem. 32, 1083–1094.CrossRefGoogle Scholar
  13. Bour, S. and Strebel, K. (2003). The HIV-1Vpu protein: A multifunctional enhancer of viral particle release. Microb. Infect. 5, 1029–1039.CrossRefGoogle Scholar
  14. Carlson, H.A. and McCammon, J.A. (2000). Accommodating protein flexibility in computational drug design. Mol. Pharm. 57, 213–218.Google Scholar
  15. Chiu, S.W., Subramaniam, S., and Jakobsson, E. (1999). Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. I. Structure of the molecular complex. J. Biophys. 76, 1929–1938.Google Scholar
  16. Colman, P.M., Varghese, J.N., and Laver, W.G. (1983). Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303, 41–44.PubMedCrossRefGoogle Scholar
  17. Condra, J.H., Schleif, W.A., Blahy, O.M., Gabryelski, L.J., Graham, D.J., Quintero, J.C. et al. (1995). In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature 374, 569–571.PubMedCrossRefGoogle Scholar
  18. Cordes, F.S., Tustian, A., Sansom, M.S.P., Watts, A., and Fischer, W.B. (2002). Bundles consisting of extended transmembrane segments of Vpu from HIV-1: Computer simulations and conductance measurements. Biochemistry 41, 7359–7365.PubMedCrossRefGoogle Scholar
  19. Cragoe, E.J., Jr., Woltersdorf, O.W., Jr., Bicking, J.B., Kwong, S.F., and Jones, J.H. (1967). Pyrazine diuretics. II. N-amidino-3-amino-5-substituted 6-halopyrazinecarboxamides. J. Med. Chem. 10, 66–75.PubMedCrossRefGoogle Scholar
  20. Davies, W.L., Grunert, R.R., Haff, R.F., McGahen, J.W., Neumayer, E.M., Paulshock, M. et al. (1964). Antiviral activity of 1-adamantanamine (amantadine). Science 144, 862–863.PubMedCrossRefGoogle Scholar
  21. De Clercq, E. (2002). Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov. 1, 13–25.PubMedCrossRefGoogle Scholar
  22. de Groot, B.L. and Grubmüller, H. (2001). Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF. Science 294, 2353–2357.PubMedCrossRefGoogle Scholar
  23. de Groot, B.L., Tieleman, D.P., Pohl, P., and Grubmüller, H. (2002). Water permeation through gramicidin A: Desformylation and the double helix: A molecular dynamics study. J. Biophys. 82, 2934–2942.Google Scholar
  24. Duff, K.C. and Ashley, R.H. (1992). The transmembrane domain of influenza A M2 protein forms amantadine-sensitive proton channels in planar lipid bilayers. Virology 190, 485–489.PubMedCrossRefGoogle Scholar
  25. Duff, K.C., Gilchrist, P.J., Saxena, A.M., and Bradshaw, J.P. (1993). The location of amantadine hydrochloride and free base within phospholipid multilayers: A neutron and X-ray diffraction study. Biochim. Biophys. Acta 1145, 149–156.PubMedCrossRefGoogle Scholar
  26. Ewart, G.D., Mills, K., Cox, G.B., and Gage, P.W. (2002). Amiloride derivatives block ion channel activity and enhancement of virus-like particle budding caused by HIV-1 protein Vpu. Eur. J. Biophys. 31, 26–35.CrossRefGoogle Scholar
  27. Ewart, G.D., Sutherland, T., Gage, P.W., and Cox, G.B. (1996). The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels. J. Virol. 70, 7108–7115.PubMedGoogle Scholar
  28. Federau, T., Schubert, U., Floßdorf, J., Henklein, P., Schomburg, D., and Wray, V. (1996). Solution structure of the cytoplasmic domain of the human immunodeficiency virus type 1 encoded virus protein U (Vpu). Int. J. Pept. Protein Res. 47, 297–310.PubMedCrossRefGoogle Scholar
  29. Fischer, W.B. (2003). Vpu from HIV-1 on an atomic scale: Experiments and computer simulations. FEBS Lett. 552, 39–46.PubMedCrossRefGoogle Scholar
  30. Fischer, W.B., Pitkeathly, M., and Sansom, M.S. (2001). Amantadine blocks channel activity of the transmembrane segment of the NB protein from influenza B. Eur. J. Biophys. 30, 416–420.CrossRefGoogle Scholar
  31. Fischer, W.B. and Sansom, M.S. (2002). Viral ion channels: Structure and function. Biochim. Biophys. Acta 1561, 27–45.PubMedCrossRefGoogle Scholar
  32. Fyfe, G.K. and Canessa, C.M. (1998). Subunit composition determines the single channel kinetics of the epithelial sodium channel. J. Gen. Physiol. 112, 423–432.PubMedCrossRefGoogle Scholar
  33. Galzi, J.L., Revah, F., Bessis, A., and Changeux, J.P. (1991). Functional architecture of the nicotinic acetylcholine receptor: From electric organ to brain. Annu Rev Pharmacol. Toxicol. 31, 37–72.PubMedCrossRefGoogle Scholar
  34. Garcia, A.E. (1992). Large-amplitude nonlinear motions in proteins. Phys. Rev. Lett. 68, 2696–2699.PubMedCrossRefGoogle Scholar
  35. Garty, H. and Palmer, L.G. (1997). Epithelial sodium channels: Function, structure, and regulation. Physiol. Rev. 77, 359–396.PubMedGoogle Scholar
  36. Glick, M., Robinson, D.D., Grant, G.H., and Richards, W.G. (2002). Identification of ligand binding sites on proteins using a multi-scale approach. J. Am. Chem. Soc. 124, 2337–2344.PubMedCrossRefGoogle Scholar
  37. Goodford, P.J. (1985). A computational procedure for determining energetically favourable binding sites on biologically important macromolecules. J. Med. Chem. 28, 849–857.PubMedCrossRefGoogle Scholar
  38. Grice, A.L., Kerr, I.D., and Sansom, M.S.P. (1997). Ion channels formed by HIV-1 Vpu: A modelling and simulation study. FEBS Lett. 405, 299–304.PubMedCrossRefGoogle Scholar
  39. Griffin, S.D.C., Beales, L.P., Clarke, D.S., Worsfold, O., Evans S.D., Jäger J. et al. (2003). The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, amantadine. FEBS Lett. 535, 34–38.PubMedCrossRefGoogle Scholar
  40. Grinstein, S., Rotin, D., and Mason, M.J. (1989). Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim. Biophys. Acta 988, 73–97.PubMedGoogle Scholar
  41. Grottesi, A. and Sansom, M.S.P. (2003). Molecular dynamics simulations of a K+ channel blocker: Tc1 toxin from Tityus cambridgei. FEBS Lett. 535, 29–33.PubMedCrossRefGoogle Scholar
  42. Henklein, P., Kinder, R., Schubert, U., and Bechinger, B. (2000). Membrane interactions and alignment of structures within the HIV-1 Vpu cytoplasmic domain: Effect of phosphorylation of serines 52 and 56. FEBS Lett. 482, 220–224.PubMedCrossRefGoogle Scholar
  43. Hodge, C.N., Straatsma, T.P., McCammon, J.A., and Wlodawer, A. (1997). Rational design of HIV protease inhibitors. In S. Chiu, R.M. Burnett, and R.L. Garcea, (eds), Structural Biology of Viruses, Oxford University Press, Oxford, pp. 451–473.Google Scholar
  44. Hoffmann, C.E. (1973). Amantadine. HCl and related compounds. In W.A. Carter (ed.), Selective Inhibitors of Viral Functions, CRC Press, Cleveland, OH, pp 199–211.Google Scholar
  45. Hsu, K., Seharaseyon, J., Dong, P., Bour, S., Marbon E. (2004). Mutual functional destruction of HIV-1 Vpu and host TASK-1 channel. Mol.cell 14, 259–267.PubMedCrossRefGoogle Scholar
  46. Im, W. and Roux, B. (2002). Ions and counterions in a biological channel: A molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. J. Mol. Biol. 319, 1177–1197.PubMedCrossRefGoogle Scholar
  47. Ismailov, I.I., Kieber-Emmos, T., Lin, C., Berdiev, B.K., Shlyonsky, V.G., Patton, H.K. et al. (1997). Identification of an amiloride binding domain within the alpha-subunit of the epithelial Na+ channel. J. Biol. Chem. 272(34), 21075–21083.PubMedCrossRefGoogle Scholar
  48. Isralewitz, B., Gao, M., and Schulten, K. (2001). Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol. 11, 224–230.PubMedCrossRefGoogle Scholar
  49. Kieber-Emmos, T., Lin, C., Prammer, K.V., Villalobos, A., Kosari, F., and Kleyman, T.R. (1995). Defining topological similarities among ion transport proteins with anti-amiloride antibodies. Kidney Int. 48, 956–964.CrossRefGoogle Scholar
  50. Kleyman, T.R. and Cragoe, E.J., Jr. (1988). Amiloride and its analogs as tools in the study of ion transport. J. Membr. Biol. 105, 1–21.PubMedCrossRefGoogle Scholar
  51. Kleyman, T.R. and Cragoe, E.J., Jr. (1990). Cation transport probes: amiloride series. Meth. Enzymol. 191, 739–755.PubMedCrossRefGoogle Scholar
  52. Kochendörfer, G.G., Salom, D., Lear, J.D., Wilk-Orescan, R., Kent, S.B.H., and DeGrado, W.F. (1999). Total chemical synthesis of the integral membrane protein influenza A virus M2: Role of its C-terminal domain in tetramer assembly. Biochemistry 38, 11905–11913.CrossRefGoogle Scholar
  53. Kochendörfer, G.G., Jones, D. H., Lee, S., Oblatt-Montal, M., Opella, S.J., Montal, M. (2004). Functional characterization and NMR spectroscopy on full-length Vpu from HIV-1 prepared by total chemical synthesis. J. Am. Chem. Soc 126, 2439–2446.CrossRefGoogle Scholar
  54. Kolocouris, N., Kolocouris, A., Foscolos, G.B., Fytas, G., Neyts J., Padalko, E. et al. (1996). Synthesis and antiviral activity evaluation of some new aminoadamantane derivatives. 2. J. Med. Chem. 39, 3307–3318.PubMedCrossRefGoogle Scholar
  55. Kosztin, D., Izrailev, S., and Schulten, K. (1999). Unbinding of retinoic acid from its receptor studied by steered molecular dynamics. Biophys. J. 76(1 Pt 1), 188–197.PubMedGoogle Scholar
  56. Kua, J., Zhang, Y., and McCammon, J.A. (2002). Studying enzyme binding specificity in acetylcholinesterase using a combined molecular dynamics and multiple docking approach. J. Am. Chem. Soc. 124, 8260–8267.PubMedCrossRefGoogle Scholar
  57. Kukol, A. and Arkin, I.T. (1999). Vpu transmembrane peptide structure obtained by site-specific fourier transform infrared dichroism and global molecular dynamics searching. Biophys. J. 77, 1594–1601.PubMedCrossRefGoogle Scholar
  58. Lam, P.Y.S., Jadhav, P.K., Eyermann, C. J., Hodge, C.N., Ru, Y., Bacheler, L.T. et al. (1994). Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 263, 380–384.PubMedCrossRefGoogle Scholar
  59. Lamb, R.A. and Pinto, L.H. (1997). Do Vpu and Vpr of human immunodeficiency virus type 1 and NB of influenza B virus have ion channel activities in the viral life cycles? Virology 229, 1–11.PubMedCrossRefGoogle Scholar
  60. Lemaitre, V., Ali, R., Kim, C.G., Watts, A., Fischer, W.B. (2004). Interaction of amiloride and one of its derivation with Vpu from HIV-1: a molecular dynamics simulation. FEBS Lett. 563, 75–81.PubMedCrossRefGoogle Scholar
  61. Leonard, R.J., Labarca, C.G., Charnet, P., Davidson, N., and Lester, H.A. (1988). Evidence that the M2 membranespanning region lines the ion channel pore of the nicotinic receptor. Science 242, 1578–1581.PubMedCrossRefGoogle Scholar
  62. Li, J.H., Cragoe, E.J., Jr., and Lindemann, B. (1987). Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels: II. Side-chain modifications. J. Membr. Biol. 95, 171–185.PubMedCrossRefGoogle Scholar
  63. Lopez, C.F., Montal, M., Blasie, J.K., Klein, M.L., and Moore, P.B. (2002). Molecular dynamics investigation of membrane-bound bundles of the channel-forming transmembrane domain of viral protein U from the human immunodeficiency virus HIV-1. Biophys. J. 83, 1259–1267.PubMedGoogle Scholar
  64. Lu, H., Isralewitz, B., Krammer, A., Vogel, V., and Schulten, K. (1998). Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75, 662–671.PubMedGoogle Scholar
  65. Lüdemann, S.K., Lounnas, V., and Wade, R.C. (2000). How do substrates enter and products exit the buried active site of cytochrome P450? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J. Mol. Biol. 303, 797–811.PubMedCrossRefGoogle Scholar
  66. Ma, C., Marassi, F.M., Jones, D.H., Straus, S.K., Bour, S., Strebel, K. et al. (2002). Expression, purification, and activities of full-length and truncated versions of the integral membrane protein Vpu from HIV-1. Protein Sci. 11, 546–557.PubMedCrossRefGoogle Scholar
  67. Maldarelli, F., Chen, M.Y., Willey, R.L., and Strebel, K. (1993). Human immunodeficiency virus type 1 Vpu protein is an oligomeric type I integral membrane protein. J. Virol. 67, 5056–5061.PubMedGoogle Scholar
  68. Mangoni, M., Roccatano, D., and Di Nola, A. (1999). Docking of flexible ligands to flexible receptors in solution by molecular dynamics simulation. Protein Struct, Func. Genet. 35, 153–162.CrossRefGoogle Scholar
  69. Marassi, F.M., Ma, C., Gratkowski, H., Straus, S.K., Strebel, K., Oblatt-Montal, M. et al. (1999). Correlation of the structural and functional domains in the membrane protein Vpu from HIV-1. Proc. Natl. Acad. Sci. USA 96, 14336–14341.PubMedCrossRefGoogle Scholar
  70. Miller, R.H. and Sarver, N. (1997). HIV accessory proteins as therapeutic targets. Nat. Med. 3, 389–394.PubMedCrossRefGoogle Scholar
  71. Montal, M. (2003). Structure-function correlates of Vpu, a membrane protein of HIV-1. FEBS Lett. 552, 47–53.PubMedCrossRefGoogle Scholar
  72. Morris, G.M., Goodsell, D.S., Huey, R., Hart, W.E., Halliday, S., Belew, R. et al. (1998). Automated docking using a Lamarckian genetic algorithm and and empirical binding free energy function. J. Comp. Chem. 19, 1639–1662.CrossRefGoogle Scholar
  73. Neher, E. and Steinbach, J.H. (1978). Local anesthetics transiently block current through single acetylcholinereceptor channels. J. Physiol. 277, 153–176.PubMedGoogle Scholar
  74. Park, S.H., Mrse, A.A. Nevzorov, A.A., Mesleh, M.F., Oblatt-Montal, M., Montal, M. et al. (2003). Three-dimensional structure of the channel-forming transmembrane domain of virus protein “u” (Vpu) from HIV-1. J. Mol. Biol. 333, 409–424.PubMedCrossRefGoogle Scholar
  75. Pautsch, A. and Schulz, G.E. (2000). High-resolution structure of the OmpA membrane domain. J. Mol. Biol. 298, 273–282.PubMedCrossRefGoogle Scholar
  76. Pavlovic, D., Neville, D.C.A., Argaud, O., Blumberg, B., Dwek, R.A., Fischer, W.B. et al. (2003). The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc. Natl. Acad. Sci. USA 100, 6104–6108.PubMedCrossRefGoogle Scholar
  77. Pebay-Peyroula, E., Rummerl, G., Rosenbusch, J.P., and Landau, E.M. (1997). X-ray structure of bacteriorhodopsin at 2.5 Angstroms from microcrystals grown in lipid cubic phases. Science 277, 1676–1681.PubMedCrossRefGoogle Scholar
  78. Pinto, L.H., Holsinger, L.J., and Lamb, R.A. (1992). Influenza virus M2 protein has ion channel activity. Cell 69, 517–528.PubMedCrossRefGoogle Scholar
  79. Premkumar, A., Wilson, L., Ewart, G.D., and Gage, P.W. (2004). Cation-selective ion channels formed by p7 of hepatitis C virus are blocked by hexamethylene amiloride. FEBS Lett. 557, 99–103.PubMedCrossRefGoogle Scholar
  80. Root, M.J., Kay, M.S., and Kim, P.S. (2001). Protein design of an HIV-1 entry inhibitor. Science 291, 884–888.PubMedCrossRefGoogle Scholar
  81. Roux, B. and Karplus, M. (1991). Ion transport in a model gramicidin channel: Structure and thermodynamics. Biophys. J. 59, 961–981.PubMedGoogle Scholar
  82. Sansom, M.S., Tieleman, D.P., Forrest, L.R., and Berendsen, H.J. (1998). Molecular dynamics simulations of membranes with embedded proteins and peptides: Porin, alamethicin and influenza virus M2. Biochem. Soc. Trans. 26, 438–443.PubMedGoogle Scholar
  83. Sass, H., Buldt, G., Gessenich, R., Hehn, D., Neff, D., Schlesinger, J. et al. (2000). Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature 40, 649–653.Google Scholar
  84. Schellenberg, G.D., Anderson, L., Cragoe, E.J., Jr., and Swanson, P.D. (1985). Inhibition of synaptosomal membrane Na+-Ca2+ exchange transport by amiloride and amiloride analogues. Mol. Pharmacol. 27, 537–543.PubMedGoogle Scholar
  85. Schild, L., Schneeberger, E., Gautschi, I., and Firsov, D. (1997). Identification of amino acid residues in the alpha, beta, and gamma subunits of the epithelial sodium channel (ENaC) involved in amiloride block and ion permeation. J. Gen. Physiol. 109, 15–26.PubMedCrossRefGoogle Scholar
  86. Schubert, U., Ferrer-Montiel, A.V., Oblatt-Montal, M., Henklein, P., Strebel K., and Montal, M. (1996). Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Lett. 398, 12–18.PubMedCrossRefGoogle Scholar
  87. Shen, L., Shen J., Luo, X., Cheng, F., Xu Y., Chen, K. et al. (2003). Steered molecular dynamics simulation on the binding of NNRTI to HIV-1 RT. Biophys. J. 84, 3547–3563.PubMedGoogle Scholar
  88. Shoichet, B.K., Leach, A.R., and Kuntz, I.D. (1999). Ligand solvation in molecular docking. Protein. Struct. Func. Genet. 34, 4–16.CrossRefGoogle Scholar
  89. Shrivastava, I.H. and Sansom, M.S.P. (2000). Simulations of ion permeation through a potassium channel: Molecular dynamics of KcsA in a phospholipid bilayer. Biophys. J. 78, 557–570.PubMedGoogle Scholar
  90. Smith, A.J. and Smith, R.N. (1973). Kinetics and bioavailability of two formulations of amiloride in man. Br. J. Pharmacol. 48, 646–649.PubMedGoogle Scholar
  91. Sramala, I., Lemaitre, V., Faraldo-Gomez, J.D., Vincent, S., Watts, A., and Fischer, W.B. (2003). Molecular dynamics simulations on the first two helices of Vpu from HIV-1. Biophys. J. 84, 3276–3284.PubMedGoogle Scholar
  92. Sun, F. (2003). Molecular dynamics simulation of human immunodeficiency virus protein U (Vpu) in lipid/water Langmuir monolayer. J. Mol. Mod. (Online) 9, 114–123.CrossRefGoogle Scholar
  93. Sunstrom, N.A., Prekumar, L.S., Prekumar, A., Ewart, G., Cox, G.B., and Gage, P.W. (1996). Ion channels formed by NB, an influenza B virus protein. J. Membr. Biol. 150, 127–132.PubMedCrossRefGoogle Scholar
  94. Tang, P. and Xu, Y. (2002). Large-scale molecular dynamics simulations of general anesthetic effects on the ion channel in the fully hydrated membrane: The implication of molecular mechanisms of general anesthesia. Proc. Natl. Acad. Sci. USA 99, 16035–16040.PubMedCrossRefGoogle Scholar
  95. Tieleman, D.P., Marrink, S.J., and Berendsen, H.J. (1997). A computer perspective of membranes: Molecular dynamics studies of lipid bilayer systems. Biochim. Biophys. Acta 1331, 235–270.PubMedGoogle Scholar
  96. Tikhonov, D.B. and Zhorov, B.S. (1998). Kinked-helices model of the nicotinic acetylcholine receptor ion channel and its complexes with blockers: Simulation by Monte Carlo minimization method. Biophys. J. 74, 242–255.PubMedGoogle Scholar
  97. van Aalten, D.M.F., Amadei, A., Linssen, A.B., Eijsink, V., Vriend, G., and Berendsen, H.J.C. (1995). The essential dynamics of thermolysin: Confirmation of the hinge-bending motions and comparison of simulations in vacuum and water. Proteins 22, 45–54.PubMedCrossRefGoogle Scholar
  98. van Aalten, D.M.F., Bywater, R., Findlay, J.B., Hendlich, M., Hooft, R.W., and Vriend, G. (1996). PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J. Comp. Aid. Mol. Des. 10, 255–262.CrossRefGoogle Scholar
  99. Varghese, J.N., Laver, W.G., and Colman, P.M. (1983). Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Nature 303, 35–40.PubMedCrossRefGoogle Scholar
  100. von Itzstein, M., Wu, W.-Y., Kok, G.B., Pegg, M.S., Dyason, J.C., Jin, B. et al. (1993). Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363, 418–423.CrossRefGoogle Scholar
  101. Wade, R.C., Clark, K.J., and Goodford, P.J. (1993). Further developments of hydrogen bond formations for use in determining energetically favourable binding sites on molecules of known structure. 1. Ligand probe groups with the ability to form two hydrogen bonds. J. Med. Chem. 36, 140–146.PubMedCrossRefGoogle Scholar
  102. Waldmann, R., Champigny, G., and Lazdunski, M. (1995). Functional degenerin-containing chimeras identify residues essential for amiloride-sensitive Na+ channel function. J. Biol. Chem. 270, 11735–11737.PubMedCrossRefGoogle Scholar
  103. Wang, C., Takeuchi, K., Pinto, L.H., and Lamb, R.A. (1993). Ion channel activity of influenza A virus M2 protein: Characterization of the amantadine block. J. Virol. 67, 5585–5594.PubMedGoogle Scholar
  104. Wang, J., Kollman, P.A., and Kuntz, I.D. (1999). Flexible ligand docking: a multistep strategy approach. Protein Struct. Func. Genet. 36, 1–19.CrossRefGoogle Scholar
  105. Wang, J., Morin, P., Wang, W., and Kollman, P.A. (2001). Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J. Am. Chem. Soc. 123, 5221–5230.PubMedCrossRefGoogle Scholar
  106. Willbold, D., Hoffmann, S., and Rösch, P. (1997). Secondary structure and tertiary fold of the human immunodeficiency virus protein U (Vpu) cytoplasmatic domain in solution. Eur. J. Biochem. 245, 581–588.PubMedCrossRefGoogle Scholar
  107. Wlodawer, A. and Erickson, J.W. (1993). Structure-based inhibitors of HIV-1 protease. Annu. Rev. Biochem. 62, 543–585.PubMedCrossRefGoogle Scholar
  108. Wong, C.F., Zheng, C., Shen J., McCammon, J.A., and Wolynes, P.G. (1993). Cytochrome c: a molecular proving ground for computer simulations. J. Phys. Chem. 97, 3100–3110.CrossRefGoogle Scholar
  109. Woolley, G.A. and Wallace, B.A. (1992). Model ion channels: Gramicidin and alamethicin. J. Membr. Biol. 129, 109–136.PubMedGoogle Scholar
  110. Wray, V., Federau, T., Henklein, P., Klabunde, S., Kunert, O., Schomburg, D. et al. (1995). Solution structure of the hydrophilic region of HIV-1 encoded virus protein U (Vpu) by CD and 1H NMR-spectroscopy. Int. J. Pept. Protein Res. 45, 35–43.PubMedCrossRefGoogle Scholar
  111. Wray, V., Kinder, R., Federau, T., Henklein, P., Bechinger, B., and Schubert, U. (1999). Solution structure and orientation of the transmembrane anchor domain of the HIV-1-encoded virus protein U by high resolution and solid-state NMR spectroscopy. Biochemistry 38, 5272–5282.PubMedCrossRefGoogle Scholar
  112. Yang, C., Jas, G.S., and Kuczera, K. (2001). Structure and dynamics of calcium-activated calmodulin in solution. J. Biomol. Struct. Dyn. 19, 247–271.PubMedGoogle Scholar
  113. Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z. et al. (2003). The crystal structure of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc. Natl. Acad. Sci. USA 100, 13190–13195.PubMedCrossRefGoogle Scholar
  114. Zheng, S., Strzalka, J., Jones, D.H., Opella, S.J., and Blasie, J.K. (2003). Comparative structural studies of Vpu peptides in phospholipid monolayers by X-ray scattering. Biophys. J. 84, 2393–2415.PubMedGoogle Scholar
  115. Zhu, F., Tajkhorshid, E., and Schulten, K. (2002). Pressure-induced water transport in membrane channels studied by molecular dynamics. Biophys. J. 83, 154–160.PubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2005

Authors and Affiliations

  • V. Lemaitre
    • 1
    • 2
  • C. G. Kim
    • 1
  • D. Fischer
    • 1
  • Y. H. Lam
    • 1
  • A. Watts
    • 1
  • W. B. Fischer
    • 1
    • 3
  1. 1.Biomembrane Structure Unit, Department of BiochemistryOxford UniversityOxfordUK
  2. 2.BioAnalytical Science DepartmentNestec S.A.Lausanne 26Switzerland
  3. 3.Bionanotechnology Interdisciplinary Research Consortium, Clarendon Laboratory, Department of PhysicsOxford UniversityOxfordUK

Personalised recommendations