Advertisement

Role of Microglia and Macrophages in Eae

  • Gennadij Raivich
  • Richard Banati
Chapter
  • 1.4k Downloads

Abstract

Microglia and macrophages are related cell types that play an important role in the pathogenesis of MS and EAE. This chapters reviews the role of these cells in the normal brain and their contribution to inflammatory demyelinating disease, including their role in antigen presentation, co-stimulation, and production of cytokines and other inflammatory mediators

Key words

experimental autoimmune encephalomyelitis macrophages microglia inflammation antigen presentation perivascular parenchymal meningeal 

References

  1. Angelov DN, Neiss WF, Streppel M, Walther M, Guntinas-Lichius O, Stennert E (1996) ED2-positive perivascular cells act as neuronophages during delayed neuronal loss in the facial nucleus of the rat. Glia 16:129–39PubMedGoogle Scholar
  2. Bagasra O, Michaels FH, Zheng YM, Bobroski LE, Spitsin SV, Fu ZF, Tawadros R, Koprowski H. 1995 Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc Natl Acad Sci USA 92:12041–5PubMedGoogle Scholar
  3. Balashov KE, Rottman JB, Weiner HL, Hancock WW. 1999 CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1 alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci USA. 96:6873–8PubMedGoogle Scholar
  4. Banati RB, Gehrmann J, Lannes-Vieira J, Wekerle H, Kreutzberg GW. (1995) Inflammatory reaction in experimental autoimmune encephalomyelitis (EAE) is accompanied by a microglial expression of the beta A4-amyloid precursor protein (APP). Glia 14:209–15PubMedGoogle Scholar
  5. Banati RB, Myers R, Kreutzberg GW (1997) PK (‘peripheral benzodiazepine’)-binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. J Neurocytol 26:77–82PubMedGoogle Scholar
  6. Banati RB, Goerres GW, Myers R, Gunn RN, Turkheimer FE, Kreutzberg GW, Brooks DJ, Jones T, Duncan JS (1999) [11C](R)-PK11195 positron emission tomography imaging of activated microglia in vivo in Rasmussen’s encephalitis. Neurology. 53:2199–203PubMedGoogle Scholar
  7. Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, Price G, Wegner F, Giovannoni G, Miller DH, Perkin GD, Smith T, Hewson AK, Bydder G, Kreutzberg GW, Jones T, Cuzner ML, Myers R (2000) The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123:2321–37PubMedGoogle Scholar
  8. Bartnik BL, Juurlink BH, Devon RM. 2000 Macrophages: their myelinotrophic or neurotoxic actions depend upon tissue oxidative stress. Mult Scler. Feb;6(l):37–42PubMedGoogle Scholar
  9. Battistini L, Fischer FR, Raine CS, Brosnan CF. 1996 CDlb is expressed in multiple sclerosis lesions. J Neuroimmunol. 67(2): 145–51.PubMedGoogle Scholar
  10. Bauer J, Berkenbosch F, Van Dam AM, Dijkstra CD. 1993 Demonstration of interleukin-1 beta in Lewis rat brain during experimental allergic encephalomyelitis by immunocytochemistry at the light and ultrastructural level. J Neuroimmunol 48:13–21PubMedGoogle Scholar
  11. Bauer J, Huitinga I, Zhao W, Lassmann H, Hickey WF, Dijkstra CD (1995) The role of macrophages, perivascular cells, and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis. Glia 15:437–46PubMedGoogle Scholar
  12. Becher B, Durell BG, Miga AV, Hickey WF, Noelle RJ. 2001 The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J Exp Med. 193:967–74PubMedGoogle Scholar
  13. Bitsch A, da Costa C, Bunkowski S, Weber F, Rieckmann P, Bruck W 1998 Identification of macrophage populations expressing tumor necrosis factor-alpha mRNA in acute multiple sclerosis. Acta Neuropathol (Berl). 95:373–7PubMedGoogle Scholar
  14. Bitsch A, Kuhlmann T, Da Costa C, Bunkowski S, Polak T, Bruck W (2000) Tumour necrosis factor alpha mRNA expression in early multiple sclerosis lesions: correlation with demyelinating activity and oligodendrocyte pathology. Glia. 29:366–75PubMedGoogle Scholar
  15. Bo L, Peterson JW, Mork S, Hoffman PA, Gallatin WM, Ransohoff RM, Trapp BD (1996) Distribution of immunoglobulin superfamily members ICAM-1,-2,-3, and the beta 2 integrin LFA-1 in multiple sclerosis lesions. J Neuropathol Exp Neurol. 55:1060–72.PubMedGoogle Scholar
  16. Bonetti B, Pohl J, Gao YL, Raine CS 1997 Cell death during autoimmune demyelination: effector but not target cells are eliminated by apoptosis. J Immunol. 159:5733–41PubMedGoogle Scholar
  17. Boyle EA, McGeer PL. Cellular immune response in multiple sclerosis plaques. Am J Pathol 1990 Sep 137:575–84PubMedGoogle Scholar
  18. Brenner T, Brocke S, Szafer F, Sobel RA, Parkinson JF, Perez DH, Steinman L. 1997 Inhibition of nitric oxide synthase for treatment of experimental autoimmune encephalomyelitis. J Immunol. 158:2940–6PubMedGoogle Scholar
  19. Brocker T, Riedinger M, Karjalainen K (1997) Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J Exp.Med. 185 541–550.PubMedGoogle Scholar
  20. Brockhaus J, Moller T, Kettenmann H (1996) Phagocytozing ameboid microglial cells studied in a mouse corpus callosum slice preparation. Glia 16:81–90PubMedGoogle Scholar
  21. Bruck W, Porada P, Poser S, Rieckmann P, Hanefeld F, Kretzschmar HA, Lassmann H. 1995 Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann Neurol. 38:788–96PubMedGoogle Scholar
  22. Bruck W, Porada P, Poser S, Rieckmann P, Hanefeld F, Kretzschmar HA, Lassmann H. 1995 Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann Neurol. 38(5):788–96PubMedGoogle Scholar
  23. Brune B, Ullrich V (1987) Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol Pharmacol. 32:497–504PubMedGoogle Scholar
  24. Bushong EA, Martone ME, Jones YZ, Ellisman MH. 2002 Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–92PubMedGoogle Scholar
  25. Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, Banati RB (2001) In-vivo measurement of activated microglia in dementia. Lancet. 358:461–7PubMedGoogle Scholar
  26. Chang TT, Jabs C, Sobel RA, Kuchroo VK, Sharpe AH. 1999 Studies in B7-deficient mice reveal a critical role for B7 costimulation in both induction and effector phases of experimental autoimmune encephalomyelitis. J Exp Med. 190:733–40PubMedGoogle Scholar
  27. Cipriani B, Chen L, Hiromatsu K, Knowles H, Raine CS, Battistini L, Porcelli SA, Brosnan CF. 2003 Upregulation of group 1 CD1 antigen presenting molecules in guinea pigs with experimental autoimmune encephalomyelitis: an immunohistochemical study. Brain Pathol. Jan; 13(1): 1–9.PubMedGoogle Scholar
  28. Columba-Cabezas S, Serafini B, Ambrosini E, Aloisi F. 2003 Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol 13:38–51PubMedGoogle Scholar
  29. Columba-Cabezas S, Serafini B, Ambrosini E, Sanchez M, Penna G, Adorini L, Aloisi F. 2002 Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: implications for disease regulation. J Neuroimmunol. Sep;130(l–2):10–21.PubMedGoogle Scholar
  30. Cossmann PH, Eggli PS, Christ B, Kurz H (1997) Mesoderm-derived cells proliferate in the embryonic central nervous system: confocal microscopy and three-dimensional visualization. Histochem Cell Biol. 107:205–13.PubMedGoogle Scholar
  31. Cross AH, Misko TP, Lin RF, Hickey WF, Trotter JL, Tilton RG. 1994 Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice. J Clin Invest. 93:2684–90.PubMedGoogle Scholar
  32. Dangond F, Windhagen A, Groves CJ, Hafler DA 1997 Constitutive expression of costimulatory molecules by human microglia and its relevance to CNS autoimmunity. J Neuroimmunol. Jun;76(l–2): 132–8PubMedGoogle Scholar
  33. De Groot CJ, Ruuls SR, Theeuwes JW, Dijkstra CD, Van der Valk P 1997 Immunocytochemical characterization of the expression of inducible and constitutive isoforms of nitric oxide synthase in demyelinating multiple sclerosis lesions. J Neuropathol Exp Neurol. 56:10–20PubMedGoogle Scholar
  34. De Simone R, Giampaolo A, Giometto B, Gallo P, Levi G, Peschle C, Aloisi F. The costimulatory molecule B7 is expressed on human microglia in culture and in multiple sclerosis acute lesions. J Neuropathol Exp Neurol. 1995 Mar;54(2):175–87PubMedGoogle Scholar
  35. Deininger MH, Zhao Y, Schluesener HJ. 1999 CP-10, a chemotactic peptide, is expressed in lesions of experimental autoimmune encephalomyelitis, neuritis, uveitis and in C6 gliomas. J Neuroimmunol. 93(1–2): 156–63PubMedGoogle Scholar
  36. Emerson MR, LeVine SM 2000 Heme oxygenase-1 and NADPH cytochrome P450 reductase expression in experimental allergic encephalomyelitis: an expanded view of the stress response. J Neurochem. 75:2555–62PubMedGoogle Scholar
  37. Espejo C, Carrasco J, Hidalgo J, Penkowa M, Garcia A, Saez-Torres I, Martinez-Caceres EM. 2001 Differential expression of metallothioneins in the CNS of mice with experimental autoimmune encephalomyelitis. Neuroscience. 105:1055–65PubMedGoogle Scholar
  38. Fischer HG, Reichmann G. 2001 Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol. 166:2717–26PubMedGoogle Scholar
  39. Fleury SG, Croteau G, Sekaly RP (1991) CD4 and CD8 recognition of class II and class I molecules of the major histocompatibility complex. Semin Immunol 3:177–85PubMedGoogle Scholar
  40. Flugel A, Bradl M, Kreutzberg GW, Graeber MB. 2001 Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J Neurosci Res. Oct l;66(l):74–82.PubMedGoogle Scholar
  41. Ford AL, Foulcher E, Lemckert FA, Sedgwick JD 1996 Microglia induce CD4 T lymphocyte final effector function and death. J Exp Med. 184(5): 1737–45.PubMedGoogle Scholar
  42. Ford AL, Goodsall AL, Hickey WF, Sedgwick JD. 1995 Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J Immunol May 1 154(9):4309–21PubMedGoogle Scholar
  43. Gerritse K, Laman JD, Noelle RJ, Aruffo A, Ledbetter JA, Boersma WJ, Claassen E 1996 CD40-CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci U S A. Mar 19;93(6):2499–504PubMedGoogle Scholar
  44. Geurts JJ, Wolswijk G, Bo L, Van Der Valk P, Polman CH, Troost D, Aronica E. 2003 Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain. Jun 4 [Epub ahead of print].Google Scholar
  45. Girvin AM, Dal Canto MC, Miller SD (2002) CD40/CD40L interaction is essential for the induction of EAE in the absence of CD28-mediated co-stimulation. J Autoimmun. 18(2):83–94PubMedGoogle Scholar
  46. Gran B, Zhang GX, Yu S, Li J, Chen XH, Ventura ES, Kamoun M, Rostami A. 2002 IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol. 169(12):7104–10PubMedGoogle Scholar
  47. Hayes GM, Woodroofe MN, Cuzner ML 1987 Microglia are the major cell type expressing MHC class II in human white matter. J Neurol Sci. 80:25–37PubMedGoogle Scholar
  48. Hickey WF, Kimura H. 1988 Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science. 239:290–2PubMedGoogle Scholar
  49. Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM (2001) Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med. 193:713–26PubMedGoogle Scholar
  50. Huitinga I, Ruuls SR, Jung S, Van Rooijen N, Hartung HP, Dijkstra CD. 1995 Macrophages in T cell line-mediated, demyelinating, and chronic relapsing experimental autoimmune encephalomyelitis in Lewis rats. Clin Exp Immunol 100:344–51PubMedGoogle Scholar
  51. De Simone R, Giampaolo A, Giometto B, Gallo P, Levi G, Peschle C, Aloisi F. The costimulatory molecule B7 is expressed on human microglia in culture and in multiple sclerosis acute lesions. J Neuropathol Exp Neurol. 1995 Mar;54(2):175–87PubMedGoogle Scholar
  52. Deininger MH, Zhao Y, Schluesener HJ. 1999 CP-10, a chemotactic peptide, is expressed in lesions of experimental autoimmune encephalomyelitis, neuritis, uveitis and in C6 gliomas. J Neuroimmunol. 93(1–2): 156–63PubMedGoogle Scholar
  53. Emerson MR, LeVine SM 2000 Heme oxygenase-1 and NADPH cytochrome P450 reductase expression in experimental allergic encephalomyelitis: an expanded view of the stress response. J Neurochem. 75:2555–62PubMedGoogle Scholar
  54. Espejo C, Carrasco J, Hidalgo J, Penkowa M, Garcia A, Saez-Torres I, Martinez-Caceres EM. 2001 Differential expression of metallothioneins in the CNS of mice with experimental autoimmune encephalomyelitis. Neuroscience. 105:1055–65PubMedGoogle Scholar
  55. Fischer HG, Reichmann G. 2001 Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol. 166:2717–26PubMedGoogle Scholar
  56. Fleury SG, Croteau G, Sekaly RP (1991) CD4 and CD8 recognition of class II and class I molecules of the major histocompatibility complex. Semin Immunol 3:177–85PubMedGoogle Scholar
  57. Flugel A, Bradl M, Kreutzberg GW, Graeber MB. 2001 Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J Neurosci Res. Oct 1;66(1):74–82.PubMedGoogle Scholar
  58. Ford AL, Foulcher E, Lemckert FA, Sedgwick JD 1996 Microglia induce CD4 T lymphocyte final effector function and death. J Exp Med. 184(5): 1737–45.PubMedGoogle Scholar
  59. Ford AL, Goodsall AL, Hickey WF, Sedgwick JD. 1995 Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J Immunol May 1 154(9):4309–21PubMedGoogle Scholar
  60. Gerritse K, Laman JD, Noelle RJ, Aruffo A, Ledbetter JA, Boersma WJ, Claassen E 1996 CD40-CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci U S A. Mar 19;93(6):2499–504PubMedGoogle Scholar
  61. Geurts JJ, Wolswijk G, Bo L, Van Der Valk P, Polman CH, Troost D, Aronica E. 2003 Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain. Jun 4 [Epub ahead of print].Google Scholar
  62. Girvin AM, Dal Canto MC, Miller SD (2002) CD40/CD40L interaction is essential for the induction of EAE in the absence of CD28-mediated co-stimulation. J Autoimmun. 18(2):83–94PubMedGoogle Scholar
  63. Gran B, Zhang GX, Yu S, Li J, Chen XH, Ventura ES, Kamoun M, Rostami A. 2002 IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol. 169(12):7104–10PubMedGoogle Scholar
  64. Hayes GM, Woodroofe MN, Cuzner ML 1987 Microglia are the major cell type expressing MHC class II in human white matter. J Neurol Sci. 80:25–37PubMedGoogle Scholar
  65. Hickey WF, Kimura H. 1988 Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science. 239:290–2PubMedGoogle Scholar
  66. Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM (2001) Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med. 193:713–26PubMedGoogle Scholar
  67. Huitinga I, Ruuls SR, Jung S, Van Rooijen N, Hartung HP, Dijkstra CD. 1995 Macrophages in T cell line-mediated, demyelinating, and chronic relapsing experimental autoimmune encephalomyelitis in Lewis rats. Clin Exp Immunol 100:344–51PubMedGoogle Scholar
  68. Hulkower K, Brosnan CF, Aquino DA, Cammer W, Kulshrestha S, Guida MP, Rapoport DA, Berman JW. 1993 Expression of CSF-1, c-fms, and MCP-1 in the central nervous system of rats with experimental allergic encephalomyelitis. J Immunol. 150:2525–33.PubMedGoogle Scholar
  69. Jacobs CA, Baker PE, Roux ER, Picha KS, Toivola B, Waugh S, Kennedy MK. 1991 Experimental autoimmune encephalomyelitis is exacerbated by IL-1 alpha and suppressed by soluble IL-1 receptor. J Immunol. 146:2983–9.PubMedGoogle Scholar
  70. Jahng AW, Maricic I, Pedersen B, Burdin N, Naidenko O, Kronenberg M, Koezuka Y, Kumar V. 2001 Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J Exp Med. 194:1789–99PubMedGoogle Scholar
  71. Jander S, Pohl J, D’Urso D, Gillen C, Stoll G. 1998 Time course and cellular localization of interleukin-10 mRNA and protein expression in autoimmune inflammation of the rat central nervous system. Am J Pathol. 152:975–82PubMedGoogle Scholar
  72. Jee Y, Yoon WK, Okura Y, Tanuma N, Matsumoto Y. 2002 Upregulation of monocyte chemotactic protein-1 and CC chemokine receptor 2 in the central nervous system is closely associated with relapse of autoimmune encephalomyelitis in Lewis rats. J Neuroimmunol. Jul;128(1–2):49–57PubMedGoogle Scholar
  73. Jiang Y, Salafranca MN, Adhikari S, Xia Y, Feng L, Sonntag MK, deFiebre CM, Pennell NA, Streit WJ, Harrison JK. 1998 Chemokine receptor expression in cultured glia and rat experimental allergic encephalomyelitis. J Neuroimmunol. 86:1–12PubMedGoogle Scholar
  74. Jones RE, Mass M, Bourdette DN. 1999 Myelin basic protein-specific T lymphocytes induce chronic relapsing experimental autoimmune encephalomyelitis in lymphocyte-deficient (SCID) mice. J Neuroimmunol. Jan 1;93(1–2):92–101PubMedGoogle Scholar
  75. Juedes AE, Hjelmstrom P, Bergman CM, Neild AL, Ruddle NH. 2000 Kinetics and cellular origin of cytokines in the central nervous system: insight into mechanisms of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. J Immunol. 164:419–26PubMedGoogle Scholar
  76. Juedes AE, Ruddle NH. 2001 Resident and infiltrating central nervous system APCs regulate the emergence and resolution of experimental autoimmune encephalomyelitis. J Immunol. Apr 15;166(8):5168–75.PubMedGoogle Scholar
  77. Karpus WJ, Lukacs NW, McRae BL, Strieter RM, Kunkel SL, Miller SD. 1995 An important role for the chemokine macrophage inflammatory protein-1 alpha in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J Immunol. 155:5003–10PubMedGoogle Scholar
  78. Kean RB, Spitsin SV, Mikheeva T, Scott GS, Hooper DC 2000 The peroxynitrite scavenger uric acid prevents inflammatory cell invasion into the central nervous system in experimental allergic encephalomyelitis through maintenance of blood-central nervous system barrier integrity. J Immunol. 165:6511–8.PubMedGoogle Scholar
  79. Kiefer R, Schweitzer T, Jung S, Toyka KV, Hartung HP. 1998 Sequential expression of transforming growth factor-betal by T-cells, macrophages, and microglia in rat spinal cord during autoimmune inflammation. J Neuropathol Exp Neurol 57:385–95.PubMedGoogle Scholar
  80. Klyushnenkova EN, Vanguri P 1997 Ia expression and antigen presentation by glia: strain and cell type-specific differences among rat astrocytes and microglia. J Neuroimmunol. 79(2): 190–201PubMedGoogle Scholar
  81. Konno H, Yamamoto T, Iwasaki Y, Saitoh T, Suzuki H, Terunuma H. 1989 Ia-expressing microglial cells in experimental allergic encephalomyelitis in rats. Acta Neuropathol (Berl) 77(5):472–9PubMedGoogle Scholar
  82. Korner H, Lemckert FA, Chaudhri G, Etteldorf S, Sedgwick JD. 1997 Tumor necrosis factor blockade in actively induced experimental autoimmune encephalomyelitis prevents clinical disease despite activated T cell infiltration to the central nervous system. Eur J Immunol. 27:1973–81PubMedGoogle Scholar
  83. Kosel S, Egensperger R, Bise K, Arbogast S, Mehraein P, Graeber MB (1997) Long-lasting perivascular accumulation of major histocompatibility complex class II-positive lipophages in the spinal cord of stroke patients: possible relevance for the immune privilege of the brain. Acta Neuropathol (Berl). 94:532–8PubMedGoogle Scholar
  84. Kuchroo VK, Das MP, Brown JA, Ranger AM, Zamvil SS, Sobel RA, Weiner HL, Nabavi N, Glimcher LH. 1995 B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell. 80:707–18PubMedGoogle Scholar
  85. Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Brack W. 2002 Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain. 125:2202–12PubMedGoogle Scholar
  86. Kurz H, Christ B (1998) Embryonic CNS macrophages and microglia do not stem from circulating, but from extravascular precursors. Glia 22:98–102PubMedGoogle Scholar
  87. Laman JD, van Meurs M, Schellekens MM, de Boer M, Melchers B, Massacesi L, Lassmann H, Claassen E, Hart BA. 1998 Expression of accessory molecules and cytokines in acute EAE in marmoset monkeys (Callithrix jacchus). J Neuroimmunol. Jun 1;86(1):30–45PubMedGoogle Scholar
  88. Larsson M, Fonteneau JF, Bhardwaj N (2001) Dendritic cells resurrect antigens from dead cells. Trends Immunol 22:141–8PubMedGoogle Scholar
  89. Leonard JP, Waldburger KE, Goldman SJ. 1995 Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med. 181:381–6PubMedGoogle Scholar
  90. LeVine SM. 1997 Iron deposits in multiple sclerosis and Alzheimer’s disease brains. Brain Res. Jun 20;760(1–2):298–303PubMedGoogle Scholar
  91. Li H, Cuzner ML, Newcombe J 1996 Microglia-derived macrophages in early multiple sclerosis plaques. Neuropathol Appl Neurobiol. 22(3):207–15PubMedGoogle Scholar
  92. Lider O, Miller A, Miron S, Hershkoviz R, Weiner HL, Zhang XM, Heber-Katz E (1991) Nonencephalitogenic CD4-CD8-V alpha 2V beta 8.2+ anti-myelin basic protein rat T lymphocytes inhibit disease induction. J Immunol. 1991 Aug 15;147(4): 1208–13.PubMedGoogle Scholar
  93. Linehan SA, Martinez-Pomares L, Stahl PD, Gordon S (1999) Mannose receptor and its putative ligands in normal murine lymphoid and nonlymphoid organs: In situ expression of mannose receptor by selected macrophages, endothelial cells, perivascular microglia, and mesangial cells, but not dendritic cells. J Exp Med 189:1961–72PubMedGoogle Scholar
  94. Liu J, Marino MW, Wong G, Grail D, Dunn A, Bettadapura J, Slavin AJ, Old L, Bernard CC. 1998 TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nat Med. 4:78–83PubMedGoogle Scholar
  95. Liu Y, Zhu B, Luo L, Li P, Paty DW, Cynader MS. 2001 Heme oxygenase-1 plays an important protective role in experimental autoimmune encephalomyelitis. Neuroreport. 12:1841–5PubMedGoogle Scholar
  96. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. 2000 Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 47:707–17PubMedGoogle Scholar
  97. Marusic S, Miyashiro JS, Douhan J 3rd, Konz RF, Xuan D, Pelker JW, Ling V, Leonard JP, Jacobs KA. 2002 Local delivery of granulocyte macrophage colony-stimulating factor by retrovirally transduced antigen-specific T cells leads to severe, chronic experimental autoimmune encephalomyelitis in mice. Neurosci Lett. 332:185–9.PubMedGoogle Scholar
  98. Matejuk A, Dwyer J, Ito A, Bruender Z, Vandenbark AA, Offner H. 2002 Effects of cytokine deficiency on chemokine expression in CNS of mice with EAE. J Neurosci Res. 67(5):680–8PubMedGoogle Scholar
  99. Matsumoto Y, Ohmori K, Fujiwara M. 1992 Microglial and astroglial reactions to inflammatory lesions of experimental autoimmune encephalomyelitis in the rat central nervous system. J Neuroimmunol Mar 37(l-2):23–33Google Scholar
  100. McCombe PA, de Jersey J, Pender MP. 1994 Inflammatory cells, microglia and MHC class II antigen-positive cells in the spinal cord of Lewis rats with acute and chronic relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 51(2): 153–67PubMedGoogle Scholar
  101. McCombe PA, Fordyce BW, de Jersey J, Yoong G, Pender MP. 1992 Expression of CD45RC and Ia antigen in the spinal cord in acute experimental allergic encephalomyelitis: an immunocytochemical and flow cytometric study. J Neurol Sci Dec 113(2): 177–86Google Scholar
  102. McGeer PL, Itagaki S, McGeer EG. 1988 Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol (Berl).; 76(6):550–7Google Scholar
  103. McQualter JL, Darwiche R, Ewing C, Onuki M, Kay TW, Hamilton JA, Reid HH, Bernard CC. 2001 Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J Exp Med. 194:873–82PubMedGoogle Scholar
  104. Miceli MC, Parnes JR (1991) The roles of CD4 and CD8 in T cell activation. Semin Immunol 3:133–41PubMedGoogle Scholar
  105. Mitrovic B, Parkinson J, Merrill JE 1996 An in Vitro Model of Oligodendrocyte Destruction by Nitric Oxide and Its Relevance to Multiple Sclerosis. Methods 10:501–13PubMedGoogle Scholar
  106. Miyagishi R, Kikuchi S, Takayama C, Inoue Y, Tashiro K. 1997 Identification of cell types producing RANTES, MIP-1 alpha and MIP-1 beta in rat experimental autoimmune encephalomyelitis by in situ hybridization. J Neuroimmunol. 77:17–26PubMedGoogle Scholar
  107. Miyamoto K, Miyake S, Yamamura T. 2001 A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature. 413:531–4PubMedGoogle Scholar
  108. Muller-Ladner U, Jones JL, Wetsel RA, Gay S, Raine CS, Barnum SR 1996 Enhanced expression of chemotactic receptors in multiple sclerosis lesions. J Neurol Sci. Dec;144(1–2):135–41PubMedGoogle Scholar
  109. Murphy CA, Hoek RM, Wiekowski MT, Lira SA, Sedgwick JD. 2002. Interactions between hematopoiectically derived TNF and central nervous system-resident glial chemokines underlie initiation of autoimmune inflammation in the brain. J. Immunol 169:7054–62PubMedGoogle Scholar
  110. Nagra RM, Becher B, Tourtellotte WW, Antel JP, Gold D, Paladino T, Smith RA, Nelson JR, Reynolds WF. 1997 Immunohistochemical and genetic evidence of myeloperoxidase involvement in multiple sclerosis. J Neuroimmunol. 78:97–107PubMedGoogle Scholar
  111. Navascues J, Moujahid A, Almendros A, Marin-Teva JL, Cuadros MA (1995) Origin of microglia in the quail retina: central-to-peripheral and vitreal-to-scleral migration of microglial precursors during development. J Comp Neurol. 354:209–28.PubMedGoogle Scholar
  112. Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science Mar 25;263(5154): 1768–71Google Scholar
  113. Nguyen KB, McCombe PA, Pender MP. 1994 Macrophage apoptosis in the central nervous system in experimental autoimmune encephalomyelitis. J Autoimmun 7(2): 145–52PubMedGoogle Scholar
  114. O’Brien NC, Charlton B, Cowden WB, Willenborg DO. 2001 Inhibition of nitric oxide synthase initiates relapsing remitting experimental autoimmune encephalomyelitis in rats, yet nitric oxide appears to be essential for clinical expression of disease. J Immunol. 167:5904–12PubMedGoogle Scholar
  115. Ohmori K, Hong Y, Fujiwara M, Matsumoto Y. 1992 In situ demonstration of proliferating cells in the rat central nervous system during experimental autoimmune encephalomyelitis. Evidence suggesting that most infiltrating T cells do not proliferate in the target organ. Lab Invest Jan 66(l):54–62Google Scholar
  116. Okuda Y, Sakoda S, Fujimura H, Yanagihara T. 1998 Aminoguanidine, a selective inhibitor of the inducible nitric oxide synthase, has different effects on experimental allergic encephalomyelitis in the induction and progression phase.: J Neuroimmunol. 81:201–10PubMedGoogle Scholar
  117. Oleszak EL, Katsetos CD, Kuzmak J, Varadhachary A. 1997 Inducible nitric oxide synthase in Theiler’s murine encephalomyelitis virus infection. J Virol. 71:3228–35PubMedGoogle Scholar
  118. Ouallet J, Baumann N, Marie Y, Villarroya H. 1999 Fas system up-regulation in experimental autoimmune encephalomyelitis. J Neurol Sci. 170:96–104.PubMedGoogle Scholar
  119. Owens T, Tran E, Hassan-Zahraee M, Krakowski M (1998) Immune cell entry to the CNS—a focus for immunoregulation of EAE. Res Immunol 149:781–9PubMedGoogle Scholar
  120. Pagenstecher A, Lassmann S, Carson MJ, Kincaid CL, Stalder AK, Campbell IL. 2000 Astrocyte-targeted expression of IL-12 induces active cellular immune responses in the central nervous system and modulates experimental allergic encephalomyelitis. J Immunol. 164(9):4481–92.PubMedGoogle Scholar
  121. Pan Y, Lloyd C, Zhou H, Dolich S, Deeds J, Gonzalo JA, Vath J, Gosselin M, Ma J, Dussault B, Woolf E, Alperin G, Culpepper J, Gutierrez-Ramos JC, Gearing D 1997 Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 387:611–7PubMedGoogle Scholar
  122. Penkowa M, Espejo C, Martinez-Caceres EM, Poulsen CB, Montalban X, Hidalgo J. 2001 Altered inflammatory response and increased neurodegeneration in metallothionein I+II deficient mice during experimental autoimmune encephalomyelitis. J Neuroimmunol. 119:248–60PubMedGoogle Scholar
  123. Polfliet MM, van de Veerdonk F, Dopp EA, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD, van den Berg TK 2002 The role of perivascular and meningeal macrophages in experimental allergic encephalomyelitis. J Neuroimmunol 122:1–8PubMedGoogle Scholar
  124. Priller J, Flugel A, Wehner T, Boentert M, Haas CA, Prinz M, Fernandez-Klett F, Prass K, Bechmann I, de Boer BA, Frotscher M, Kreutzberg GW, Persons DA, Dirnagl U. (2001) Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 7:1356–61PubMedGoogle Scholar
  125. Qi X, Guy J, Nick H, Valentine J, Rao N. 1997 Increase of manganese superoxide dismutase, but not of Cu/Zn-SOD, in experimental optic neuritis. Invest Ophthalmol Vis Sci. 38:1203–12PubMedGoogle Scholar
  126. Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW. 1999. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Rev 30:77–105PubMedGoogle Scholar
  127. Reimann J, Bohm W, Schirmbeck R (1994) Alternative processing pathways for MHC class I-restricted epitope presentation to CD8+ cytotoxic T lymphocytes. Biol Chem Hoppe Seyler 375:731–6PubMedGoogle Scholar
  128. Renno T, Krakowski M, Piccirillo C, Lin JY, Owens T. 1995 TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J Immunol Jan 15 154(2):944–53Google Scholar
  129. Rinner WA, Bauer J, Schmidts M, Lassmann H, Hickey WF. 1995 Resident microglia and hematogenous macrophages as phagocytes in adoptively transferred experimental autoimmune encephalomyelitis: an investigation using rat radiation bone marrow chimeras. Glia 14:257–66PubMedGoogle Scholar
  130. Rott O, Fleischer B, Cash E (1994) Interleukin-10 prevents experimental allergic encephalomyelitis in rats. Eur J Immunol. 24:1434–40PubMedGoogle Scholar
  131. Rottman JB, Slavin AJ, Silva R, Weiner HL, Gerard CG, Hancock WW. 2000 Leukocyte recruitment during onset of experimental allergic encephalomyelitis is CCR1 dependent. Eur J Immunol. 30:2372–7PubMedGoogle Scholar
  132. Ruuls SR, Bauer J, Sontrop K, Huitinga I, ’t Hart BA, Dijkstra CD. 1995 Reactive oxygen species are involved in the pathogenesis of experimental allergic encephalomyelitis in Lewis rats. J Neuroimmunol 56:207–17PubMedGoogle Scholar
  133. Ruuls SR, Van Der Linden S, Sontrop K, Huitinga I, Dijkstra CD 1996 Aggravation of experimental allergic encephalomyelitis (EAE) by administration of nitric oxide (NO) synthase inhibitors. Clin Exp Immunol. 103:467–74PubMedGoogle Scholar
  134. Schiffenbauer J, Streit WJ, Butfiloski E, LaBow M, Edwards C 3rd, Moldawer LL. 2000 The induction of EAE is only partially dependent on TNF receptor signaling but requires the IL-1 type I receptor. Clin Immunol. 95:117–23PubMedGoogle Scholar
  135. Schluesener HJ, Seid K, Kretzschmar J, Meyermann R 1996 Leukocyte chemotactic factor, a natural ligand to CD4, is expressed by lymphocytes and microglial cells of the MS plaque. J Neurosci Res 44(6):606–11PubMedGoogle Scholar
  136. Schluesener HJ, Seid K, Zhao Y, Meyermann R. 1997 Localization of endothelial-monocyte-activating polypeptide II (EMAP II), a novel pro inflammatory cytokine, to lesions of experimental autoimmune encephalomyelitis, neuritis and uveitis: expression by monocytes and activated microglial cells. Glia. Aug;20(4):365–72Google Scholar
  137. Schluesener HJ, Seid K. 2000 Heme oxygenase-1 in lesions of rat experimental autoimmune encephalomyelitis and neuritis. J Neuroimmunol. 110:114–20PubMedGoogle Scholar
  138. Schonrock LM, Kuhlmann T, Adler S, Bitsch A, Bruck W. 1998 Identification of glial cell proliferation in early multiple sclerosis lesions. Neuropathol Appl Neurobiol. 24(4):320–30PubMedGoogle Scholar
  139. Sedgwick JD, Schwender S, Gregersen R, Dorries R, ter Meulen V 1993 Resident macrophages (ramified microglia) of the adult brown Norway rat central nervous system are constitutively major histocompatibility complex class II positive. J Exp Med. 177(4):1145–52.PubMedGoogle Scholar
  140. Selmaj K, Raine CS, Cross AH. 1991 Anti-tumor necrosis factor therapy abrogates autoimmune demyelination. Ann Neurol. 30:694–700PubMedGoogle Scholar
  141. Simpson J, Rezaie P, Newcombe J, Cuzner ML, Male D, Woodroofe MN. 2000 Expression of the beta-chemokine receptors CCR2, CCR3 and CCR5 in multiple sclerosis central nervous system tissue. J Neuroimmunol. 108(1–2): 192–200PubMedGoogle Scholar
  142. Smith T, Schmied M, Hewson AK, Lassmann H, Cuzner ML 1996 Apoptosis of T cells and macrophages in the central nervous system of intact and adrenalectomized Lewis rats during experimental allergic encephalomyelitis. J Autoimmun. Apr; 9(2):167–74PubMedGoogle Scholar
  143. Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM. 1999 Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest. 103:807–15PubMedGoogle Scholar
  144. Stalder AK, Carson MJ, Pagenstecher A, Asensio VC, Kincaid C, Benedict M, Powell HC, Masliah E, Campbell IL. 1998 Late-onset chronic inflammatory encephalopathy in immune-competent and severe combined immune-deficient (SCID) mice with astrocyte-targeted expression of tumor necrosis factor. Am J Pathol 153:767–83PubMedGoogle Scholar
  145. Stephenson DT, Schober DA, Smalstig EB, Mincy RE, Gehlert DR, Clemens JA (1995) Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. J Neurosci. 15:5263–74.PubMedGoogle Scholar
  146. Stevens DB, Gould KE, Swanborg RH. 1994 Transforming growth factor-beta 1 inhibits tumor necrosis factor-alpha/lymphotoxin production and adoptive transfer of disease by effector cells of autoimmune encephalomyelitis. J Neuroimmunol. 51:77–83PubMedGoogle Scholar
  147. Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol. 58:233–47PubMedGoogle Scholar
  148. Storch MK, Fischer-Colbrie R, Smith T, Rinner WA, Hickey WF, Cuzner ML, Winkler H, Lassmann H 1996 Co-localization of secretoneurin immunoreactivity and macrophage infiltration in the lesions of experimental autoimmune encephalomyelitis. Neuroscience. Apr;71(3):885–93PubMedGoogle Scholar
  149. Streit WJ, Graeber MB, Kreutzberg GW (1989) Expression of Ia antigen on perivascular and microglial cells after sublethal and lethal motor neuron injury. Exp Neurol 105:115–26PubMedGoogle Scholar
  150. Subramanian S, Bourdette DN, Corless C, Vandenbark AA, Offner H, Jones RE. 2001 T lymphocytes promote the development of bone marrow-derived APC in the central nervous system. J Immunol. 166(l):370–6PubMedGoogle Scholar
  151. Sugita M, Moody DB, Jackman RM, Grant EP, Rosat JP, Behar SM, Peters PJ, Porcelli SA, Brenner MB. 1998 CDl—a new paradigm for antigen presentation and T cell activation. Clin Immunol Immunopathol. 87:8–14PubMedGoogle Scholar
  152. Sun D, Whitaker JN, Huang Z, Liu D, Coleclough C, Wekerle H, Raine CS. Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J Immunol. 2001 Jun 15; 166(12):7579–87PubMedGoogle Scholar
  153. Suter T, Malipiero U, Otten L, Ludewig B, Muelethaler-Mottet A, Mach B, Reith W, Fontana A. 2000 Dendritic cells and differential usage of the MHC class II transactivator promoters in the central nervous system in experimental autoimmune encephalitis. Eur J Immunol 30(3):794–802PubMedGoogle Scholar
  154. Suzuki M, Raisman G (1992) The glial framework of central white matter tracts: segmented rows of contiguous interfascicular oligodendrocytes and solitary astrocytes give rise to a continuous meshwork of transverse and longitudinal processes in the adult rat fimbria. Glia 6:222–35PubMedGoogle Scholar
  155. Takahashi JL, Giuliani F, Power C, Imai Y, Yong VW. 2003 Interleukin-l beta promotes oligodendrocyte death through glutamate excitotoxicity. Ann Neurol. 53:588–95PubMedGoogle Scholar
  156. Taupin V, Renno T, Bourbonniere L, Peterson AC, Rodriguez M, Owens T 1997 Increased severity of experimental autoimmune encephalomyelitis, chronic macrophage/microglial reactivity, and demyelination in transgenic mice producing tumor necrosis factor-alpha in the central nervous system. Eur J Immunol. 27:905–13PubMedGoogle Scholar
  157. Tran EH, Hardin-Pouzet H, Verge G, Owens T. 1997 Astrocytes and microglia express inducible nitric oxide synthase in mice with experimental allergic encephalomyelitis. J Neuroimmunol. 74:121–9PubMedGoogle Scholar
  158. Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T. 1998 Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol 161:3767–75PubMedGoogle Scholar
  159. Trebst C, Sorensen TL, Kivisakk P, Cathcart MK, Hesselgesser J, Horuk R, Sellebjerg F, Lassmann H, Ransohoff RM. 2001 CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am J Pathol 159:1701–10PubMedGoogle Scholar
  160. Trebst C, Staugaitis SM, Kivisakk P, Mahad D, Cathcart MK, Tucky B, Wei T, Rani MR, Horuk R, Aldape KD, Pardo CA, Lucchinetti CF, Lassmann H, Ransohoff RM. 2003 CC chemokine receptor 8 in the central nervous system is associated with phagocytic macrophages. Am J Pathol. 162:427–38PubMedGoogle Scholar
  161. Van Dam AM, Bauer J, Man-A-Hing WK, Marquette C, Tilders FJ, Berkenbosch F: 1995 Appearance of inducible nitric oxide synthase in the rat central nervous system after rabies virus infection and during experimental allergic encephalomyelitis but not after peripheral administration of endotoxin. J Neurosci Res. Feb l;40(2):251–60PubMedGoogle Scholar
  162. Waldburger KE, Hastings RC, Schaub RG, Goldman SJ, Leonard JP 1996 Adoptive transfer of experimental allergic encephalomyelitis after in vitro treatment with recombinant murine interleukin-12. Preferential expansion of interferon-gamma-producing cells and increased expression of macrophage-associated inducible nitric oxide synthase as immunomodulatory mechanisms. Am J Pathol. Feb; 148(2):375–82PubMedGoogle Scholar
  163. Walther M, Popratiloff A, Lachnit N, Hofmann N, Streppel M, Guntinas-Lichius O, Neiss WF, Angelov DN. (2001) Exogenous antigen containing perivascular phagocytes induce a non-encephalitogenic extravasation of primed lymphocytes. J Neuroimmunol 117:30–42PubMedGoogle Scholar
  164. Weinberg AD, Wegmann KW, Funatake C, Whitham RH. 1999 Blocking OX-40/OX-40 ligand interaction in vitro and in vivo leads to decreased T cell function and amelioration of experimental allergic encephalomyelitis. J Immunol 162(3):1818–26PubMedGoogle Scholar
  165. Werner K, Bitsch A, Bunkowski S, Hemmerlein B, Bruck W. 2002 The relative number of macrophages/microglia expressing macrophage colony-stimulating factor and its receptor decreases in multiple sclerosis lesions. Glia 40:121–9PubMedGoogle Scholar
  166. Willenborg DO, Fordham SA, Staykova MA, Ramshaw IA, Cowden WB. 1999 IFN-gamma is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: a possible role for nitric oxide. J Immunol. 163:5278–86PubMedGoogle Scholar
  167. Williams K, Ulvestad E, Antel JP. B7/BB-1 antigen expression on adult human microglia studied in vitro and in situ. Eur J Immunol. 1994 Dec;24(12):3031–7PubMedGoogle Scholar
  168. Xue S, Sun N, Van Rooijen N, Perlman S. 1999 Depletion of blood-borne macrophages does not reduce demyelination in mice infected with a neurotropic coronavirus. J Virol 73:6327–34PubMedGoogle Scholar
  169. Zhu B, Luo L, Chen Y, Paty DW, Cynader MS. 2002 Intrathecal Fas ligand infusion strengthens immunoprivilege of central nervous system and suppresses experimental autoimmune encephalomyelitis. J Immunol. 169:1561–9PubMedGoogle Scholar
  170. Zinkernagel RM, Doherty PC (1997) The discovery of MHC restriction. Immunol Today 18:14–7PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Gennadij Raivich
    • 1
    • 2
  • Richard Banati
    • 1
    • 2
  1. 1.Perinatal Brain Repair Centre, Dept Obstetrics and Gynaecology, Dept AnatomyUniversity College LondonUK
  2. 2.Molecular Neuropsychiatry Laboratory, Department of Neuropathology, Charing Cross HospitalImperial College School of MedicineLondonUK

Personalised recommendations