Advertisement

Coronavirus Receptors

  • Fumihiro Taguchi
Chapter

Abstract

The major receptor for murine coronavirus, mouse hepatitis virus (MHV), is identified as a protein, cell-adhesion molecule 1 in the carcinoembryonic antigen family (CEACAM1), which is classified in the immunoglobulin superfamily. There are four CEACAM1 isoforms, with either four or two ectodomains, resulting from an alternative splicing mechanism. CEACAM1 is expressed on the epithelium and in endothelial cells of a variety of tissues and hemopoietic cells, and functions as a homophilic and heterophilic adhesion molecule. It is used as a receptor for some bacteria as well. The N terminal domain participates in mediating homophilic adhesion. This domain is also responsible for binding to the MHV spike (S) protein; the CC’ face protruding in this domain interacts with an N terminal region of the S protein composed of 330 amino acids (called S1N330). The binding of CEACAM1 with MHV S protein induces S protein conformational changes and converts fusion-negative S protein to a fusion-positive form. The allelic forms of CEACAM1 found among mouse strains are thought to be an important determinant for mouse susceptibility to MHV.

Key words

CEACAM1 cell adhesion molecule carcinoembryonic antigen mouse hepatitis virus 

5. References

  1. 1).
    Holmes, K. Coronavirus receptors in “The coronaviridae” ed. by Siddell S. pp55–71 1995 Plenum press.Google Scholar
  2. 2).
    Boyle J.F., Weismiller DC, Holmes KV. Genetic resistance to mouse hepatitis virus correlates with absence of virus-binding activity on target tissues. J. Virol. 1987; 61: 185–89.PubMedGoogle Scholar
  3. 3).
    Williams R., Jiang GS, Snyder SW, Frana MF, Holmes KV. Purification of the 110-kilodalton glycoprotein receptor for mouse hepatitis virus (MHV)-A59 from mouse liver and identification of a nonfunctional, homologous protein in MHV-resistant SJL/J mice. J Virol. 1990; 64: 3817–23PubMedGoogle Scholar
  4. 4).
    Williams RK, Jiang GS, Holmes KV. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci U S A. 1991; 88: 5533–36.PubMedCrossRefGoogle Scholar
  5. 5).
    Dveksler GS, Pensiero MN, Cardellichio CB, Williams RK, Jiang GS, Holmes KV. et al. Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV. J Virol. 1991; 65: 6881–91.PubMedGoogle Scholar
  6. 6).
    Dveksler GS, Dieffenbach CW, Cardellichio CB, McCuaig K, Pensiero MN, Jiang GS. et al. Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus-A59. J Virol. 1993; 67: 1–8.PubMedGoogle Scholar
  7. 7).
    Yokomori K Lai MM. The receptor for mouse hepatitis virus in the resistant mouse strain SJL is functional: implications for the requirement of a second factor for viral infection. J Virol. 1992;66: 6931–38.PubMedGoogle Scholar
  8. 8).
    Nedellec P, Dveksler GS, Daniels E, Turbide C, Chow B, Basile AA, et al. Bgp2, a new member of the carcinoembryonic antigen-related gene family, encodes an alternative receptor for mouse hepatitis viruses. J Virol. 1994; 68: 4525–37.PubMedGoogle Scholar
  9. 9).
    Chen DS, Asanaka M, Yokomori K, Wang F, Hwang SB, Li HP, et al.. A pregnancy-specific glycoprotein is expressed in the brain and serves as a receptor for mouse hepatitis virus. Proc Natl Acad Sci U S A. 1995; 92; 12095–99.PubMedCrossRefGoogle Scholar
  10. 10).
    Chen DS, Asanaka M, Chen FS, Shively JE, Lai MM. Human carcinoembryonic antigen and biliary glycoprotein can serve as mouse hepatitis virus receptors. J Virol. 1997; 71: 1688–91.PubMedGoogle Scholar
  11. 11).
    Beauchemin N, Draber P, Dvekssler G, Gold P, Gray-Owen, S, Grunert F. et al. Redefined nomenclature for members of the carcinoembryo-nic antigen family. Exp Cell Res. 1999; 252: 243–49.PubMedCrossRefGoogle Scholar
  12. 12).
    Ohtsuka., Taguchi F. Mouse susceptibility to mouse hepatitis virus infection is linked to viral receptor genotype. J Virol. 1997; 71: 8860–63.PubMedGoogle Scholar
  13. 13).
    Ohtsuka N, Tsuchiya K, Honda E, Taguchi F. A study on mouse hepatitis virus receptor genotype in the wild mouse. Adv. Exp. Med. Bio. 2001; 494: 237–40Google Scholar
  14. 14).
    Rao PV, Kumari S, Gallagher TM. Identification of a contiguous 6-residue determinant in the MHV receptor that controls the level of virion binding to cells. Virology. 1997; 229: 336–48.PubMedCrossRefGoogle Scholar
  15. 15).
    Ohtsuka N, Yamada YK, Taguchi F. Difference in virus-binding activity of two distinct receptor proteins for mouse hepatitis virus. J Gen Virol. 1996; 77: 1683–92.PubMedCrossRefGoogle Scholar
  16. 16).
    Zelus BD, Wessner DR, Williams RK, Pensiero MN, Phibbs FT, de Souza M, et al. Purified, soluble recombinant mouse hepatitis virus receptor, Bgpl(b), and Bgp2 murine coronavirus receptors differ in mouse hepatitis virus binding and neutralizing activities. J Virol. 1998; 72: 7237–44.PubMedGoogle Scholar
  17. 17).
    Blau D., Turbide C, Tremblay M, Olson M, Letourneau S, Michaliszyn E, et al. Targeted disruption of the Ceacaml (MHVR) gene leads to reduced susceptibility of mice to mouse hepatitis virus infection. J Virol. 2001; 75: 8173–86.PubMedCrossRefGoogle Scholar
  18. 18).
    Dveksler GS, Pensiero MN, Dieffenbach CW, Cardellichio CB, Basile AA, Elia P.E, et al. Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor. Proc Natl Acad Sci U S A. 1993; 90: 1716–20.PubMedCrossRefGoogle Scholar
  19. 19).
    Dveksler GS, Basile AA, Cardellichio CB, Holmes KV. Mouse hepatitis virus receptor activities of an MHVR/mph chimera and MHVR mutants lacking N-linked glycosylation of the N-terminal domain. J. Virol. 1995; 69: 543–46PubMedGoogle Scholar
  20. 20).
    Miura H, Taguchi F. (unpublished observation)Google Scholar
  21. 21).
    Wessner DR, Shick PC, Lu JH, Cardellichio CB, Gagneten SE, Beauchemin N, et al. Mutational analysis of the virus and monoclonal antibody binding sites in MHVR, the cellular receptor of the murine coronavirus mouse hepatitis virus strain A59. J Virol. 1998; 72: 1941–48.PubMedGoogle Scholar
  22. 22).
    Watt SM, Teixeira AM, Zou GQ, Doyonnas R, Zhang Y, Grunert F, et al. Homophilic adhesion of human CEACAM1 involves N-terminal domain interactions: structural analysis of the binding site. Blood. 2002; 98: 1469–79CrossRefGoogle Scholar
  23. 23).
    Tan K, Zelus BD, Meijers R, Liu J, Berfelson J, Duke N. et al. Crystal structure of murine sCEACAM1a [1,4]: a coronavirus receptor in the CEA family. EMBO J. 2002; 21: 2076–86PubMedCrossRefGoogle Scholar
  24. 24).
    Obrink B. CEA adhesion molecules: multifunctional proteins with signal-regulatory properties. Curr Opin Cell Biol. 1997; 9: 616–26.PubMedCrossRefGoogle Scholar
  25. 25).
    Daniels., Letourneau S, Turbide C, Kuprina N., Rudinskaya T., Yazova AC, et al. Biliary glycoprotein 1 expression during embryogenesis: correlation with events of epithelial differentiation, mesenchymal-epithelial interactions, absorption, and myogenesis. Dev Dyn. 1996; 206: 272–90.PubMedCrossRefGoogle Scholar
  26. 26).
    Godfraind C, Langreth SG, Cardellichio CB, Knobler R, Coutelier JP, Dubois-Dalcq M, et al. Tissue and cellular distribution of an adhesion molecule in the carcinoembryonicantigen family that serves as a receptor for mouse hepatitis virus. Lab Invest. 1995; 73: 615–27PubMedGoogle Scholar
  27. 27).
    Smith A, Cardellichio CB, Winograd DF, de Souza MS, Barthold SW, Holmes KV. Monoclonal antibody to the receptor for murine coronavirus MHV-A59 inhibits viral replication in vivo. J Infect. Dis. 1991;163: 879–82PubMedGoogle Scholar
  28. 28).
    Yokomori K, Lai MM. Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. J Virol. 1992; 66: 6194–99.PubMedGoogle Scholar
  29. 29).
    Skubitz KM, Campbell KD, Skubitz APN, CD66a, CD66b, CD66c and CD66d each independently stimulate neutrophils. J. Leukoc. Biol. 1996; 60: 106–17PubMedGoogle Scholar
  30. 30).
    Morale V, Christ A, Watt SM, Kim HS Johnson KW, Utku N. et al. Regulation of human intestinal intraepithelial lymphocyte cytolytic function by billiary glycoprotein (CD66a). J. Immunol. 1999; 163: 1363–70Google Scholar
  31. 31).
    Ergun S, Kilik N, Ziegeler G, Hansen A, Nollau P, Gotze J, et al. CEA-related cell adhesion molecule 1: a potent angiogenic factor and a major effector of vascular endothelial growth factor. Mol Cell. 2000; 5: 311–20.PubMedCrossRefGoogle Scholar
  32. 32).
    Stocks SC, Kerr MA, Haslett C, Dransfield I. CD66-dependent neutrophil activation: a possible mechanism for vascular selectin-mediated regulation of neutrophil adhesion. J. Leukoc. Biol 1995; 58: 40–8PubMedGoogle Scholar
  33. 33).
    Virji M, Watt S., Barker., Makepeace K, Doyonnas R. The N-domain of the human CD66a adhesion molecule is a target for Opa proteins of Neisseria meningitidis and Neisseria gonorrhoeae. Mol Microbiol. 1996; 22: 929–39.PubMedCrossRefGoogle Scholar
  34. 34).
    Virji M, Evans D, Griffith J, Hill D., Serino L, Hadfield A. et al. Carcinoembryonic antigens are targeted by diverse strains of typable and non-typable Haemophilus influenzae. Mol. Microbiol. 2000;36: 784–95PubMedCrossRefGoogle Scholar
  35. 35).
    Sturman LS, Ricard CS, Holmes KV. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: Activation of cell fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J. Virol. 1985; 56: 904–11PubMedGoogle Scholar
  36. 36).
    De Groot RJ, W. Luytjes MC, Horzinek BAM, Van der Zeijst S, Spaan WJM, Lenstra JA. Evidence for a coiled-coil structure in the spike of coronaviruses. J. Mol. Biol. 1987;196: 963–66PubMedCrossRefGoogle Scholar
  37. 37).
    Lewicki D, Gallagher T Quaternary structure of coronavirus spikes in complex with CEACAM cellular receptors. J. Boil. Chem. 2002; 277:19727–34CrossRefGoogle Scholar
  38. 38).
    Kubo H, Yamada YK, Taguchi F. Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J Virol. 1994; 68: 5403–10.PubMedGoogle Scholar
  39. 39).
    Suzuki H, Taguchi F. Analysis of the receptor-binding site of murine coronavirus spike protein. J Virol. 1996; 70: 2632–36.PubMedGoogle Scholar
  40. 40).
    Saeki K, Ohtsuka N, Taguchi F. Identification of spike protein residues of murine coronavirus responsible for receptor-binding activity by use of soluble receptor-resistant mutants. J Virol. 1987; 71: 9024–31.Google Scholar
  41. 41).
    Matsuyama S, Taguchi F. Communication between S1N330 and a region in S2 of murine coronavirus spike protein is important for virus entry into cells expressing CEACAM1b receptor. Virology 2002; 295: 160–71PubMedCrossRefGoogle Scholar
  42. 42).
    Taguchi F, Matsuyama S. Soluble receptor potentiates receptor-independent infection by murine coronavirus. J. Virol. 2002; 76: 950–58PubMedGoogle Scholar
  43. 43).
    Matsuyama S, Taguchi F. Receptor-induced conformational changes of murine coronavirus spike protein. J. Virol. 2002;76: in press.Google Scholar
  44. 44).
    Damico R, Bates P. Soluble receptor-induced retraviral infection of receptor-deficient cells. J. Virol. 2000; 74: 6469–75.PubMedCrossRefGoogle Scholar
  45. 45).
    Chen DC, Kim PS. HIV entry and its inhibition. Cell, 1998;29: 681–84CrossRefGoogle Scholar
  46. 46).
    Stohlman SA, Frelinger JA. Resistance to fatal central nervous system disease by mouse hepatitis virus, strain JHM. 1. Genetic analysis. Immunogenet. 1978; 6: 277–81CrossRefGoogle Scholar
  47. 47).
    Smith MS, Click RE, Plagemann GW. Control of mouse hepatitis virus replication in macrophages by a recessive gene on chromosome 7. J. Immunol. 1984; 134: 428–32Google Scholar
  48. 48).
    Mouse genome databaseGoogle Scholar
  49. 49).
    Knobler RL, Haspel MV, Oldstone MAB. Mouse hepatitis virus type 4 (JHM strain)-induced fatal central nervous system disease. 1. Genetic control and the murine neuron as the susceptible site of disease. J. Exp. Med. 1981; 153: 832–43PubMedCrossRefGoogle Scholar
  50. 50).
    Taguchi F. (unpublished observation)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Fumihiro Taguchi
    • 1
  1. 1.National Institute of NeuroscienceNCNPKodaira, TokyoJapan

Personalised recommendations