The Role of T Cells in Corona-Virus-Induced Demyelination

  • Cornelia C Bergmann
  • Stephen A Stohlman
  • Stanley Perlman


Mice infected with neurotropic strains of coronavirus develop acute encephalomyelitis and eliminate infectious virus. However, control of acute infection is incomplete resulting in persistence of viral RNA in the central nervous system (CNS) associated with ongoing primary demyelination. A high prevalence of virus specific CD8 and CD4 T cells within the CNS correlates with ex vivo cytolytic activity and IFN-γ secretion, which are both required for virus reduction during the acute infection. Although most infected cell types are susceptible to perforin mediated clearance, IFN-γ is required for controlling infection of oligodendrocytes. Furthermore, by enhancing class I expression and inducing class II expression within resident CNS cells IFN-γ optimizes T cell receptor dependent functions. In addition to its direct anti viral activity, these multifactorial effects make IFN-γ more essential than perforin for viral control. CD4 T cells enhance CD8 T cell expansion, survival and effectiveness. Although both CD8 and CD4 T cells are retained within the CNS during persistence, they cannot control viral recrudescence in the absence of humoral immunity. Demyelination can be mediated by either CD8 or CD4 T cells; however, although a variety of effector molecules have been excluded, a dominant common denominator remains elusive. Thus concerted efforts to control infection coincide with a variety of potential mechanisms causing chronic demyelinating disease.

Key words

CNS demyelination IFN-γ perforin T cells mouse hepatitis virus 


  1. 1.
    Stohlman S.A., Bergmann C.C., Perlman S. “Mouse hepatitis virus.” In Persistent Viral Infections. R. Ahmed and I. Chen, eds. New York, NY: John Wiley & Sons Ltd, 1999.Google Scholar
  2. 2.
    Perlman S.R., Lane T.E., and Buchmeier M.J. “Coronaviruses: Hepatitis, hepatitis, and central nervous system disease.” In Effects of Microbes on the Immune System. Vol. I. M.W. Cunningham and R.S. Fujinami, ed. Philadelphia, PA: Lippincott Williams & Wilkins, 1999.Google Scholar
  3. 3.
    Marten N.W., Stohlman S.A., Bergmann C.C. MHV infection of the CNS: Mechanisms of immune mediated control. Viral Immunol. 2001; 14:1.PubMedCrossRefGoogle Scholar
  4. 4.
    Houtman J.J., Fleming J.O. Pathogenesis of mouse hepatitis virus-induced demyelination. J. Neurovirol. 1996; 2:361.PubMedGoogle Scholar
  5. 5.
    Houtman, J.J., Fleming J.O. Dissociation of demyelination and viral clearance in congenitally immunodeficient mice infected with murine coronavirus JHM. J. NeuroVirol. 1996; 2: 101.PubMedGoogle Scholar
  6. 6.
    Wu G.F., Perlman S. Macrophage infiltration, but not apoptosis, is correlated with immune-mediated demyelination following murine infection with a neurotropic coronavirus. J. Virol. 1999; 73:8771.PubMedGoogle Scholar
  7. 7.
    Wu G.F., Dandekar A.A., Pewe L., Perlman S. CD4 and CD8 T cells have redundant but not identical roles in virus-induced demyelination. J. Immunol. 2000; 165:2278.PubMedGoogle Scholar
  8. 8.
    Sutherland R.M., Chua M.-M., Lavi E., Weiss S.R., Paterson Y. CD4+ and CD8+ T cells are not major effectors of mouse hepatitis virus A59-induced demyelinating disease. J. NeuroVirol. 1997; 3:225.PubMedCrossRefGoogle Scholar
  9. 9.
    Ramakrishna C, Stohlman S.A., Atkinson R., Schlomchik M.J., Bergmann C.C. Mechanisms of central nervous system persistence: critical role of antibody and B cells J. Immunol. 2002; 168: 1204.PubMedGoogle Scholar
  10. 10.
    Matthews A.E., Weiss S.R., Shlomchik M.J., Hannum L.G., Gombold J.L. Paterson Y. Antibody is required for clearance of infectious hepatitis virus A59 from the central nervous system, but not the liver. J. Immunol. 2001; 167:5254–5263.PubMedGoogle Scholar
  11. 11.
    Xue S., Sun N., van Rooijen N., Perlman S. Depletion of blood-borne macrophages does not reduce demyelination in mice infected with a neurotropic coronavirus. J. Virol. 1999 73:6327.PubMedGoogle Scholar
  12. 12.
    Bergmann C. C, Ramakrishna C, Kornacki M. Stohlman, S.A. Impaired T cell immunity in B cell deficient mice following central nervous system infection. J. Immunol. 2001; 167:1575.PubMedGoogle Scholar
  13. 13.
    Bergmann C.C., Altman J.D., Hinton D., Stohlman S.A. Inverted imunodominance and impaired cytolytic function of CD8+ T cells during viral persistence in the CNS. J. Immunol. 1999; 163: 3379.PubMedGoogle Scholar
  14. 14.
    Marten N.W., Stohlman S.A., Atkinson R., Hinton D.A., Bergmann C.C. Contributions of CD8+ T cells and viral spread to demyelinating disease. J. Immunol. 2000; 164:4080.PubMedGoogle Scholar
  15. 15.
    Marten N.W., Stohlman S.A., Bergmann C.C. Role of viral persistence in retaining CD8+ Tcells within the CNS. J. Virol. 2000; 74:7903.PubMedCrossRefGoogle Scholar
  16. 16.
    Pewe L., Heard S.B., Bergmann C, Dailey M.O., Perlman S. Selection of T cell escape mutants in mice infected with a neurotropic coronavirus: Quantitative estimate of TCR Diversity using MHC/peptide tetramers. J. Immunol. 1999; 163:6106–6113.PubMedGoogle Scholar
  17. 17.
    Marten N.W., Stohlman S.A., Zhou J., Bergmann C.C. Kinetics of virus specific CD8 T cell expansion and trafficking following central nervous system infection. J. Virol. Submitted Google Scholar
  18. 18.
    Stohlman S.A., Bergmann C, van der Veen R., Hinton D. Mouse hepatitis virus — specific cytotoxic T lymphocytes protect from lethal infection without eliminating virus from oligodendroglia. J. Virol. 1995; 69:684.PubMedGoogle Scholar
  19. 19.
    Lin M.T., Stohlman S.A., Hinton D.R. Mouse hepatitis virus is cleared from the central nervous systems of mice lacking perforin-mediated cytolysis. J. Virol. 1997; 71:383.PubMedGoogle Scholar
  20. 20.
    Parra B., Hinton D.R., Marten N.W., Bergmann C.C, Lin M.T., Yang C.S., Stohlman S.A. IFN-γ is required for viral clearance from central nervous system oligodendroglia. J. Immunol. 1999. 162: 1641.PubMedGoogle Scholar
  21. 21.
    Wodarz D., Christensen J.P., Thomsen A.R. The importance of lytic and nonlytic immune responses in viral infections. Trends in Immunol. 2000; 23:194.CrossRefGoogle Scholar
  22. 22.
    Harty J. T., Tvinnereim A. R., White D.W. CD8+ T cell effector mechanisms in resistance to infection. Ann. Rev. Immunol. 2000; 18:275.CrossRefGoogle Scholar
  23. 23.
    Parra B., Lin M.T., Stohlman S.A., Bergmann C.C, Atkinson R., Hinton D.A. Fas-Fas ligand interactions do not contribute to the pathogenesis of mouse hepatitis virus in the presence of perforin mediated cytolysis. J. Virol. 2000; 74:2447.PubMedCrossRefGoogle Scholar
  24. 24.
    Stohlman S.A., Hinton D.R., Cua D., Dimacali E., Sensintaffar J, Tahara S., Hofman F. Yao Q. Tumor necrosis factor expression during mouse hepatitis virus induced demyelination. J. Virol. 1995; 69:5898.PubMedGoogle Scholar
  25. 25.
    Parra B., Hinton D.R., Lin M.T., Cua D.J., Stohlman S.A. Kinetics of cytokine mRNA expression in the central nervous system following lethal and nonlethal coronavirus-induced acute encephalomyelitis. Virology 1997; 233:260.PubMedCrossRefGoogle Scholar
  26. 26.
    Lin M.T., Hinton D.R., Marten N.W., Bergmann C.C, Stohlman S.A. Antibody prevents virus reactivation within the central nervous system. J. Immunol. 1999; 162:7358.PubMedGoogle Scholar
  27. 27.
    Bergmann C.C, Parra B., Hinton D.R., Chandran R., Morrison M., Stohlman S.A. Perforin mediated effector function within the CNS requires IFN-γ mediated MHC upregulation. J. Immunol. Submitted.Google Scholar
  28. 28.
    Frü, K., Yang Y. Antigen presentation by MHC class I and its regulation by interferon γ. Cur. Opin. Immunol. 1999; 11:76.CrossRefGoogle Scholar
  29. 29.
    Hickey W.F. Basic principles of immunological surveillance of the normal central nervous system. Glia 2001; 36:118.PubMedCrossRefGoogle Scholar
  30. 30.
    Sedgwick J.D., Hickey W.F. “Antigen presentation in the central nervous system.” In Immunology of the Central Nervous System. R. W. Keane and W. F. Hickey, eds. Oxford, UK: University Press, 1997.Google Scholar
  31. 31.
    Slifka M.K., Rodriguez F., Whitton J.L. Rapid on/off cycling of cytokine production by virus-specific CD8+ T cells. Nature 1999; 401:76.PubMedCrossRefGoogle Scholar
  32. 32.
    Glass W.G., Chen B.P., Liu M.T., Lane T.E. Mouse hepatitis virus infection of the central nervous system: chemokine-mediated regulation of host defense and disease. Viral Immunol. 2002; 2:261–272.CrossRefGoogle Scholar
  33. 33.
    Haring J.S., Pewe L.L., Perlman S. High-magnitude, virus-specific CD4 T-cell response in the central nervous system of coronavirus-infected mice. J. Virol. 2001; 75:3043.PubMedCrossRefGoogle Scholar
  34. 34.
    Stohlman S., Bergmann C., Cua D., Lin M., Ho S., Hinton D. CTL effector function within the central nervous system requires CD4+ T cells. J. Immunol. 1998; 160:2896.PubMedGoogle Scholar
  35. 35.
    Marten N.W., Stohlman S.A., Smith Begolka W., Miller S.D., Dimicali M., Stohl S., Goverman J., Bergmann C.C. Selection of CD8+ T cells with highly focused specificity during viral persistence in the central nervous system. J. Immunol. 1999; 162:3905.PubMedGoogle Scholar
  36. 36.
    Hawke S., Stevenson P.G., Freeman S., Bangham C.R.M.. Long-term persistence of activated cytotoxic T lymphocytes after viral infection of the central nervous system. J. Exp. Med. 1998; 187:1575PubMedCrossRefGoogle Scholar
  37. 37.
    Ziegler S.F., Ramsdell R., Alderson M.R. The activation antigen CD69. Stem Cells 1994; 12:456.PubMedCrossRefGoogle Scholar
  38. 38.
    Hogan R.J., Cauley L.S., Ely K.H., Cookenham T., Roberts A.D., Brennan J.W., Monard S., Woodland D.L. Long-term maintenance of virus-specific effector memory CD8 T cells in the lung airways depends on proliferation. 2002; 169: 4976.Google Scholar
  39. 39.
    Masopust, D., V. Yezys, A.L. Marzo, and L. Lefrancois. 2001. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291:2413.PubMedCrossRefGoogle Scholar
  40. 40.
    Tschen, S.-I, C.C. Bergmann, C. Ramakrishna, S. Morales, R. Atkinson and S.A. Stohlman. 2002. Recruitment kinetics and composition of antibody secreting cells within the CNS following viral encephalomyelitis. J. Immunol. 168: 2922.PubMedGoogle Scholar
  41. 41.
    Dorries R. The role of T cell mediated mechanisms in virus infections of the nervous system. Curr. Topics Microbiol. Immunol. 2001; 253:219.Google Scholar
  42. 42.
    Binder G.K., Griffin D.E. Interferon-gamma-mediated site-specific clearance of alphavirus from CNS neurons. Science 2001; 293:303.PubMedCrossRefGoogle Scholar
  43. 43.
    Wu G.F., Pewe L., Perlman S. Coronavirus-induced demyelination occurs in the absence of inducible nitric oxide synthase. J. Virol. 2000; 74:7683.PubMedCrossRefGoogle Scholar
  44. 44.
    Lin M.T., Hinton D.R., Para B., Stohlman S.A., van der Veen R.C. The role of IL-10 in mouse hepatitis virus-induced encephalomyelitis. Virology 1998; 245:270PubMedCrossRefGoogle Scholar
  45. 45.
    Pewe L., Perlman S. Cutting Edge: CD8 T cell-mediated demyelination is IFN-γ dependent in mice infected with a neurotropic coronavirus. J. Immunol. 2002; 168:1547.PubMedGoogle Scholar
  46. 46.
    Pewe L., Haring J., Perlman S. CD4 T-cell-mediated demyelination is increased in the absence of gamma interferon in mice infected with mouse hepatitis virus. J. Virol. 2002; 76:7329.PubMedCrossRefGoogle Scholar
  47. 47.
    Haring J.S., Pewe L.L., Perlman S. Bystander CD8 T cell-mediated demyelination after viral infection of the central nervous system. J. Immunol. 2002; 169:1550.PubMedGoogle Scholar
  48. 48.
    Dandekar, A., Perlman, S. Virus-induced demyelination in nude mice is mediated by γδ cells. Amer. J. Pathol. 2002; 161:1255.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Cornelia C Bergmann
    • 1
  • Stephen A Stohlman
    • 1
  • Stanley Perlman
    • 2
  1. 1.Keck School of Medicine University of Southern CaliforniaLos Angeles
  2. 2.University of IowaIowa City

Personalised recommendations