The Role of Autoimmunity in Multiple Sclerosis

  • Monika Bradl
  • Hans Lassmann


Multiple Sclerosis Experimental Autoimmune Encephalomyelitis Myelin Basic Protein Myelin Oligodendrocyte Glycoprotein Canine Distemper Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adelmann, M., Wood, J., Benzel, I., Fiori, P., Lassmann, H., Matthieu, J.-M., Gardinier, M.V., Dornmair, K., and Linington, C. (1995). The N-terminal domain of the myelin oligodendrocyte glycoprotein (MOG) induces acute demyelinating experimental autoimmune encephalomyelitis in Lewis rats. J. Neuroimmunol., 63, 17–27.CrossRefPubMedGoogle Scholar
  2. Antel, J.P., Arnason, B.G.W., and Medof, M.E. (1979). Suppressor cell function in multiple sclerosis: Correlation with clinical disease severity. Ann. Neurol., 5, 338–342.CrossRefPubMedGoogle Scholar
  3. Antel, J.P., Reder, A.T., and Noronha, A.B. (1985). Cellular immunity and immune regulation in multiple sclerosis. Semin. Neurol., 5, 117–126.Google Scholar
  4. Archelos, J.J. and Hartung, H.P. (2000). Pathogenetic role of autoantibodies in neurological disease. Trends Neurosci., 23, 317–327.CrossRefPubMedGoogle Scholar
  5. Asakura, K., Miller, D.J., Murray, K., Bansal, R., Pfeiffer, S.E., and Rodriguez, M. (1996). Monoclonal autoantibody SCH94.03, which promotes central nervous system remyelination, recognizes an antigen on the surface of oligodendrocytes. J. Neurosci. Res., 43, 273–281.CrossRefPubMedGoogle Scholar
  6. Ascherio, A. and Munch, M. (2001). Epstein-Barr virus and multiple sclerosis. Epidemiology, 11, 220–224.Google Scholar
  7. Babbe, H., Roers, A., Waisman, A., Lassmann, H., Goebels, N., Hohlfeld, R., Friese, M., Schröder, R., Deckert, M., Schmidt, S., Ravid, R., and Rajewsky, K. (2000). Clonal expansion of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med., 192, 393–404.CrossRefPubMedGoogle Scholar
  8. Berger, T., Rubner, P., Schautzer, F., Egg, R., Ulmer, H., Mayringer, I., Dilitz, E., Deisenhammer, F., and Reindl, M. (2003). Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after the first demyelinating event. N. Engl. J. Med., 349, 139–145.PubMedGoogle Scholar
  9. Berger, T., Weerth, S., Kojima, K., Linington, C., Wekerle, H., and Lassmann, H. (1997). Experimental autoimmune encephalomyelitis: The antigen specificity of T-lymphocytes determines the topography of lesions in the central and peripheral nervous system. Lab. Invest., 7, 355–364.Google Scholar
  10. Bielekova, B., Goodwin, B., Richert, N., Cortese, I., Kondo, T., Afshar, G., Gran, B., Eaton, J., Antel, J., Frank, J.A., McFarland, H.F., and Martin, R. (2000). Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: Results of a phase II clinical trial with an altered peptide ligand. Nat. Med., 6, 1167–1175.PubMedGoogle Scholar
  11. Bjartmar, C., Wujek, J.R., and Trapp, B.D. (2003). Axonal loss in the pathology of MS: Consequences for understanding the progressive phase of the disease. J. Neurol. Sci., 206, 165–171.CrossRefPubMedGoogle Scholar
  12. Bradl, M. and Flügel, A. (2002). The role of T cells in brain pathology. In B. Dietzschold and J.A. Richt (eds) Protective and pathological immune responses in the CNS. Curr. Top. Microbiol. Immunol., 265, 141–162.Google Scholar
  13. Bradl, M. and Hohlfeld, R. (2003). Molecular pathogenesis of neuroinflammation. J. Neurol. Neurosurg. Psychiatry, 74, 1364–1370.CrossRefPubMedGoogle Scholar
  14. Brehm, U., Piddlesden, S.J., Gardinier, M.V., and Linington, C. (1999). Epitope specificity of demyelinating monoclonal autoantibodies directed against the human myelin oligodendrocyte glycoprotein. J. Neuroimmunol., 97, 9–15.CrossRefPubMedGoogle Scholar
  15. Charmley, P., Beal, S.S., Concannon, P., Hood, L., and Gatti, R.A. (1991). Further localization of multiple sclerosis susceptibility gene on chromosome 7q using a new T cell receptor specific beta chain DANN polymorphism. J. Neuroimmunol., 32, 231–240.CrossRefPubMedGoogle Scholar
  16. Croxford, J.L., Olson, J.K., and Miller, S.D. (2002). Epitope spreading and molecular mimicry as triggers of autoimmunity in the Theiler’s virus-induced demyelinating disease model of multiple sclerosis. Autoimmun. Rev., 1, 251–260.CrossRefPubMedGoogle Scholar
  17. De Libero, G. (2004). Immunology. The Robin Hood of antigen presentation. Science, 303, 485–487.PubMedGoogle Scholar
  18. Dethlefs, S., Brahic, M., and Larsson-Sciard, E.L. (1997). An early, abundant cytotoxic T-lymphocyte response against Theiler’s virus is critical for preventing viral persistence. J. Virol., 71, 8875–8878.PubMedGoogle Scholar
  19. Drescher, K.M., Pease, L.R., and Rodriguez, M. (1997). Antiviral immune responses modulate the nature of central nervous system (CNS) disease in a murine model of multiple sclerosis. Immunol. Rev., 159, 177–193.PubMedGoogle Scholar
  20. Filippi, M., Bozzali, M., Rovaris, M., Gonen, O., Kesavadas, C., Ghezzi, A., Martinelli, V., Grossman, R., Scotti, G., Comi, G., and Falini, A. (2003). Evidence for widespread axonal damage at the earliest clinical stage of multiple sclerosis. Brain, 126, 433–437.CrossRefPubMedGoogle Scholar
  21. Franklin, R.J. (2002). Why does remyelination fail in multiple sclerosis? Nat. Rev. Neurosci., 3, 705–714.CrossRefPubMedGoogle Scholar
  22. Gay, F.W., Drye, G.W., Dick, G.W.A., and Esiri, M.M. (1997). The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis: Identification and characterization of the primary demyelinating lesion. Brain, 120, 1461–1483.CrossRefPubMedGoogle Scholar
  23. Gilden, D.H. (2002). Multiple sclerosis exacerbations and infection. Lancet Neurol., 1, 145.PubMedGoogle Scholar
  24. Goebels, N., Hofstetter, H., Schmidt, S., Brunner, C., Wekerle, H., and Hohlfeld, R. (2000). Repertoire dynamics of autoreactive T cells in multiple sclerosis patients and healthy subjects. Epitope spreading versus clonal persistence. Brain, 123, 508–518.CrossRefPubMedGoogle Scholar
  25. Goverman, J., Woods, A., Larson, L., Weiner, L.P., Hood, L., and Zaller, D.M. (1993). Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell, 72, 551–560.CrossRefPubMedGoogle Scholar
  26. Haase, C.G., Guggenmos, J., Brehm, U., Andersson, M., Olsson, T., Reindl, M., Schneidewind, J.M., Zettl, U.K., Heidenreich, F., Berger, T., Wekerle, H., Hohlfeld, R., and Linington, C. (2001). The fine specificity of the myelin oligodendrocyte glycoprotein autoantibody response in patients with multiple sclerosis and normal healthy controls. J. Neuroimmunol., 114, 220–225.CrossRefPubMedGoogle Scholar
  27. Hemmer, B., Fleckenstein, B.T., Vergelli, M., Jung, G., McFarland, H., Martin, R., and Wiesmuller, K.H. (1997). Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J. Exp. Med., 185, 1651–1659.CrossRefPubMedGoogle Scholar
  28. Henderson, R.D., Bain, C.J., and Pender, M.P. (2000). The occurrence of autoimmune diseases in patients with multiple sclerosis and their families. J. Clin. Neurosci., 7, 434–437.PubMedGoogle Scholar
  29. Hohlfeld, R. (1997). Biotechnological agents for the immunotherapy of multiple sclerosis. Principles, problems and perspectives. Brain, 120, 865–916.CrossRefPubMedGoogle Scholar
  30. Hug, A., Korporal, M., Schroder, I., Haas, J., Gratz, K., Storch-Hagenlocher, B., and Wildemann, B. (2003). Thymic export function and T cell homeostasis in patients with relapsing remitting multiple sclerosis. J. Immunol., 171, 432–437.PubMedGoogle Scholar
  31. Hughes, P.J., Kirk, P.F., Dyas, J., Munro, J.A., Welsh, K.I., and Compston, D.A.S. (1988). Factors influencing circulating OKT8 cell phenotypes in patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry, 50, 1156–1159.Google Scholar
  32. Huseby, E.S., Liggitt, D., Brabb, T., Schnabel, B., Ohlen, C., and Goverman, J. (2001). A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J. Exp. Med., 194, 669–676.CrossRefPubMedGoogle Scholar
  33. Illés, Z., Kondo, T., Newcombe, J., Oka, N., Tabira, T., and Yamamura, T. (2000). Differential expression of NK T cells Vγ24JδQ invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. J. Immunol., 164, 4375–4381.PubMedGoogle Scholar
  34. Johnston, J.B., Silva, C., Holden, J., Warren, K.G., Clark, A.W., and Power, C. (2001). Monocyte activation and differentiation augment human endogenous retrovirus expression: Implications for inflammatory brain diseases. Ann. Neurol., 50, 434–442.CrossRefPubMedGoogle Scholar
  35. Jolivet Reynaud, C., Perron, H., Ferrante, P., Becquart, L., Dalbon, P., and Mandrand, B. (1999). Specificities of multiple sclerosis cerebrospinal fluid and serum antibodies against mimotopes. Clin. Immununol., 93, 283–293.Google Scholar
  36. Kalman, B. and Lublin, F.D. (1999). The genetics of multiple sclerosis. A review. Biomed. Pharmacother., 53, 358–370.CrossRefPubMedGoogle Scholar
  37. Kappos, L., Comi, G., Panitch, H., Oger, J., Antel, J., Conlon, P., and Steinman, L. (2000). Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The altered peptide ligand in relapsing MS study group. Nat. Med., 6, 1176–1182.PubMedGoogle Scholar
  38. Kerlero de Rosbo, N., Hoffman, M., Mendel, I., Yust, I., Kaye, J., Bakimer, R., Flechter, S., Abramsky, O., Milo, R., Karni, A., and Ben-Nun, A. (1997). Predominance of the autoimmune response to myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis: Reactivity to the extracellular domain of MOG is directed against three main regions. Eur. Immunol., 27, 3059–3069.Google Scholar
  39. Kerschensteiner, M., Gallmeier, E., Behrens, L., Leal, V.V., Misgeld, T., Klinkert, W.E., Kolbeck, R., Hoppe, E., Oropeza-Wekerle, R.L., Bartke, I., Stadelmann, C., Lassmann, H., Wekerle, H., and Hohlfeld, R. (1999). Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: A neuroprotective role of inflammation? J. Exp. Med., 189, 865–870.CrossRefPubMedGoogle Scholar
  40. Kidd, T., Barkhof, F., McConnell, R., Algra, P.R., Allen, I.V., and Revesz, T. (1999). Cortical lesions in multiple sclerosis. Brain, 122, 17–26.PubMedGoogle Scholar
  41. Klein, L., Klugmann, M., Nave, K.A., Tuohy, V.T., and Kyewski, B. (2000). Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nat. Med., 6, 56–61.PubMedGoogle Scholar
  42. Krogsgaard, M., Wucherpfennig, K.W., Cannella, B., Hansen, B.E., Svejgaard, A., Pyrdol, J., Ditzel, H., Raine, C., Engberg, J., Fugger, L., and Canella, B. (2000). Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2-MBP 85-99 complex. J. Exp. Med., 191, 1395–1412.CrossRefPubMedGoogle Scholar
  43. Lafaille, J.J., Nagashima, K., Katsuki, M., and Tonegawa, S. (1994). High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell, 78, 399–408.CrossRefPubMedGoogle Scholar
  44. Lassmann, H., Brück, W., and Lucchinetti, C. (2001). Heterogeneity of multiple sclerosis pathogenesis: Implications for diagnosis and therapy. Trends Mol. Med., 7, 115–121.CrossRefPubMedGoogle Scholar
  45. Linington, C., Bradl, M., Lassmann, H., Brunner, C., and Vass, K. (1988). Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am. J. Pathol., 130, 443–454.PubMedGoogle Scholar
  46. Lucchinetti, C., Brück, W., Parisi, J., Scheithauer, B., Rodriguez, M., and Lassmann, H. (2000). Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Ann. Neurol., 47, 707–717.CrossRefPubMedGoogle Scholar
  47. Madsen, L.S., Andersson, E.C., Jansson, L., Krogsgaard, M., Andersen, C.B., Engberg, J., Strominger, J.L., Svejgaard, A., Hjorth, J.P., Holmdahl, R., Wucherpfennig, K.W., and Fugger, L. (1999). A humanized model for multiple sclerosis using HLA-DR2 and a human T cell receptor. Nat. Genet., 23, 343–347.PubMedGoogle Scholar
  48. Moalem, G., Gdalyahu, A., Shani, Y., Otten, U., Lazarovici, P., Cohen, I.R., and Schwartz, M. (2000). Production of neurotrophins by activated T cells: Implications for neuroprotective autoimmunity. J. Autoimmun., 15, 331–345.CrossRefPubMedGoogle Scholar
  49. Moalem, G., Leibowitz-Amit, R., Yoles, E., Mor, F., Cohen, I.R., and Schwartz, M. (1999). Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med., 5, 49–55.PubMedGoogle Scholar
  50. Murray, P.D., Pavelko, K.D., Leibowitz, J., Lin, X., and Rodriguez, M. (1998). CD4(+) and CD8(+) T cells make discrete contributions to demyelination and neurologic disease in a viral model of multiple sclerosis. J. Virol., 72, 7320–7329.PubMedGoogle Scholar
  51. Musette, P., Bequet, D., Delarbre, C., Gachelin, G., Kourilsky, P., and Dormont, D. (1996). Expansion of a recurrent Vβ 5.3+ T cell population in newly diagnosed and untreated HLA-DR2 multiple sclerosis patients. Proc. Natl. Acad. Sci. USA, 93, 12461–12466.CrossRefPubMedGoogle Scholar
  52. Nagashima, K., Wege, H., and ter Meulen, V. (1978). Early and late CNS-effects of corona virus infection in rats. Adv. Exp. Med. Biol., 100, 395–409.PubMedGoogle Scholar
  53. Neuhaus, O., Farina, C., Yassouridis, A., Wiendl, H., Then Bergh, F., Dose, T., Wekerle, H., and Hohlfeld, R. (2000). Multiple sclerosis: Comparison of copolymer-1-reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc. Natl. Acad. Sci. USA, 97, 7452–7457.CrossRefPubMedGoogle Scholar
  54. Neumann, H., Medana, I., Bauer, J., and Lassmann, H. (2002). Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trend Neurosci., 25, 313–319.CrossRefPubMedGoogle Scholar
  55. Niehaus, A., Shi, J., Grzenkowski, M., Diers-Fenger, M., Hartung, H.P, Toyka, K., Bruck, W., and Trotter, J. (2000). Patients with active relapsing-remitting multiple sclerosis synthesize antibodies recognizing oligodendrocyte progenitor cell surface protein: Implications for remyelination. Ann. Neurol., 48, 362–371.CrossRefPubMedGoogle Scholar
  56. Noseworthy, J.H., Lucchinetti, C., Rodriguez, M., and Weinshenker, B.G. (2000). Multiple sclerosis. N. Engl. J. Med., 343, 938–952.CrossRefPubMedGoogle Scholar
  57. Oksenberg, J.R., Panzara, M.A., Begovich, A.B., Mitchell, D., Erlich, H.A., Murray, R.S., Shimonkevitz, R., Sherritt, M., Rothbard, J., and Bernard, C.C. (1993). Selection for T-cell receptor V beta-D beta-J beta gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature, 362, 68–70.CrossRefPubMedGoogle Scholar
  58. Olsson, T., Baig, S., Höjeberg, B., and Link, H. (1990a). Anti-myelin basic protein and anti-myelin antibody-producing cells in multiple sclerosis. Ann. Neurol., 27, 132–136.CrossRefPubMedGoogle Scholar
  59. Olsson, T., Zhi, W.W., Höjeberg, B., Kostulas, V., Yu-Ping, J., Anderson, G., Ekre, H.-P., and Link, H. (1990b). Autoreactive T lymphocytes in multiple sclerosis determined by secretion of interferon-γ. J. Clin. Invest., 86, 981–985.PubMedGoogle Scholar
  60. Owens, T., (2003). The enigma of multiple sclerosis: Inflammation and neurodegeneration causes heterogenous dysfunction and damage. Curr. Opin. Neurol., 16, 259–265.CrossRefPubMedGoogle Scholar
  61. Owens, G.P., Kraus, H., Burgoon, M.P., Smith-Jensen, T., Devlin, M.E., and Gilden, D.H. (1998). Restricted use of VH4 germline segments in an acute multiple sclerosis brain. Ann. Neurol., 43, 236–243.CrossRefPubMedGoogle Scholar
  62. Pette, M., Fujita, K., Wilkinson, D., Altmann, D.M., Trowsdale, J., Giegerich, G., Hinkkanen, A., Epplen, J.T., Kappos, L., and Wekerle, H. (1990). Myelin autoreactivity in multiple sclerosis: Recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple sclerosis patients and healthy donors. Proc. Natl. Acad. Sci. USA, 87, 7968–7972.PubMedGoogle Scholar
  63. Perron, H., Garson, J.A., Bedin, F., Beseme, F., Paranhos-Baccala, G., Komurian-Pradel, F., Mallet, F., Tuke, P.W., Voisset, C., Blond, J.L., Lalande, B., Seigneurin, J.M., and Mandrand, B. (1997). Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The collaborative research group on multiple sclerosis. Proc. Natl. Acad. Sci. USA, 94, 7583–7588.CrossRefPubMedGoogle Scholar
  64. Prineas, J.W., Kwon, E.E., Cho, E.S., Sharer, L.R., Barnett, M.H., Oleszak, E.L., Hoffman, B., and Morgan, B.P.(2001). Immunopathology of secondary-progressive multiple sclerosis. Ann. Neurol., 50, 646–657.CrossRefPubMedGoogle Scholar
  65. Putheti, P., Pettersson, A., Soderstrom, M., Link, H., and Yuang, Y.M. (2004). Circulating CD4+CD25+ T regulatory cells are not altered in multiple sclerosis and unaffected by disease-modulating drugs. J. Clin. Immunol., 24, 155–161.CrossRefPubMedGoogle Scholar
  66. Qin, Y., Duquette, P., Zhang, Y., Poole, R., and Antel, J.P. (1998). Clonal expansion and somatic hypermutation of VH genes of B cells from cerebrospinal fluid in multiple sclerosis. J. Clin. Invest., 102, 1045–1050.PubMedGoogle Scholar
  67. Reinherz, E.L., Weiner, H.L., Hauser, S.L., Cohen, J.A., DiStaso, J.A., and Schlossman, S.F. (1980). Loss of suppressor cells in active multiple sclerosis. N. Engl. J. Med., 303, 125–129.PubMedGoogle Scholar
  68. Stadelmann, C., Kerschensteiner, M., Misgeld, T, Brück, W., Hohlfeld, R., and Lassmann, H. (2002). BDNF and gp145trkB in multiple sclerosis brain lesions: Neuroprotective interactions between immune cells and neuronal cells? Brain, 125, 75–85.CrossRefPubMedGoogle Scholar
  69. Summers, B.A. and Appel, M.J. (1994). Aspects of canine distemper virus and measles virus encephalomyelitis. Neuropathol. Appl. Neurobiol., 20, 525–534.PubMedGoogle Scholar
  70. Sun, D., Whitaker, J.N., Huang, Z., Liu, D., Coleclough, C., Wekerle, H., and Raine, C.S. (2001). Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J. Immunol., 166, 7570–7587.Google Scholar
  71. Thorpe, J.W., Kidd, D., Moseley, I.F., Kendall, B.E., Thomspon, A.J., MacManus, D.G., McDonald, W.I., and Miller, D.H. (1996). Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-remitting multiple sclerosis. Neurology, 46, 373–378.PubMedGoogle Scholar
  72. Tremlett, H.L., Evans, J., Wiles, C.M., and Luscombe, D.K. (2002). Asthma and multiple sclerosis: An inverse association in a case-control general practice population. Q. J. Med., 95, 753–756.Google Scholar
  73. Tuohy, V.K., Yu, M., Yin, L., Kawczak, J.A., Johnson, J.A., Mathisen, P.M., Weinstock-Guttman, B., and Kinkel, R.P. (1998). The epitope spreading cascade during experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol. Rev., 164, 93–100.PubMedGoogle Scholar
  74. Utz, U., Biddison, W.E., McFarland, H.F., McFarlin, D.E., Flerlage, M., and Martin, R. (1993). Skewed T-cell receptor repertoire in genetically identical twins correlates with multiple sclerosis. Nature, 364, 243–247.CrossRefPubMedGoogle Scholar
  75. Viglietta, V., Baecher-Allan, C., Weiner, H.L., and Hafler, D.A. (2004). Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med., 199, 971–979.CrossRefPubMedGoogle Scholar
  76. Wekerle, H. (1998). Immunology. In D.A.S. Compston (ed.) Mc Alpine’s Multiple Sclerosis, 3rd edn. Churchill Livingstone, London. pp. 379–407.Google Scholar
  77. Werring, D.J., Brassat, D., Droogan, A.G., Clark, C.A., Symms, M.R., Barker, G.J., MacManus, D.G., Thompson, A.J., and Miller, D.H. (2000). The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: A serial diffusion MRI study. Brain, 123, 1667–1676.CrossRefPubMedGoogle Scholar
  78. Wucherpfennig, K.W. and Strominger, J.L. (1995). Molecular mimicry in T cell-mediated autoimmunity: Viral peptides activate human T cell clones specific for myelin basic protein. Cell, 80, 695–705.CrossRefPubMedGoogle Scholar
  79. Zang, Y.C., Hong, J., Rivera, V.M., Killian, J., and Zhang, J.Z. (2000). Preferential recognition of TCR hypervariable regions by human anti-idiotypic T cells induced by T cell vaccination. J. Immunol., 164, 4011–4017.PubMedGoogle Scholar
  80. Zhang, J.Z., Rivera, V.M., Tejada-Simon, M.V., Yang, D., Hong, J., Li, S., Hang, H., Killian, J., and Zang, Y.C. (2002). T cell vaccination in multiple sclerosis: Results of a preliminary study. J. Neurol., 249, 212–218.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Monika Bradl
    • 1
  • Hans Lassmann
    • 1
  1. 1.Center for Brain Research, Division of NeuroimmunologyMedical University of ViennaWienAustria

Personalised recommendations