Diagnosis and Source of Sepsis: The Utility of Clinical Findings

  • Kenneth Cruz
  • R. Phillip Dellinger


In conclusion, the best diagnostic tool for sepsis remains suspicion. Other than fever, many of the other commonplace signs of sepsis have a broad differential; therefore, the clinician’s intuition, history, and physical examination provide important clues to the diagnosis of sepsis. In addition, laboratory evaluation provides clues that may be hidden from the physical examination. Accurate early diagnosis and institution of empiric medical therapy is critical. Vital signs are important clues and must be combined with history, physical examination, and laboratory values to guide the clinician in the diagnosis and early treatment of sepsis.


Septic Shock Severe Sepsis Acute Lung Injury Disseminate Intravascular Coagulation Systemic Vascular Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Harris RL, Musher DM, Bloom K, et al. Manifestations of sepsis. Arch Intern Med 1987; 147:1895–1906PubMedCrossRefGoogle Scholar
  2. 2.
    Parker MM, Parillo JE. Septic shock: hemodynamics and pathogenesis. Arch Intern Med 1987; 147:1895–1906Google Scholar
  3. 3.
    Tandberg D, Sklar D. Effect of tachypnea on the estimation of body temperature by an oral thermometer. N Engl J Med 1983; 308:945–6PubMedCrossRefGoogle Scholar
  4. 4.
    Dinarello CA, Cannon JG, Wolff SM, et al. Tumor necrosis factor is an endogenous pyrogen and induces the production of interleukin-1. J Exp Med 1986; 163:1433–1446PubMedCrossRefGoogle Scholar
  5. 5.
    Dinarello CA, Wolff SM. Pathogenesis of fever in man. N Engl J Med 1978; 298:607–612PubMedGoogle Scholar
  6. 6.
    Kluger MJ, Ringler DH, Anuer MR. Fever and survival. Science 1975; 188:166–168PubMedGoogle Scholar
  7. 7.
    Vaughn LK, Veale WL, Cooper KE. Antipyresis: Its effect on mortality rate of bacterially infected rabbits (abstract). Fed Proc 1980; 39:1077Google Scholar
  8. 8.
    LeGall J, Lemeshow S, Leleu G, et al. Customized probability models for early severe sepsis in adult intensive care patients. JAMA 1995; 273:644–650PubMedGoogle Scholar
  9. 9.
    Bryant RE, Hood AF, et al. Factors affecting mortality of gram negative rod bacteremia. Arch Intern Med 1971; 127:120–128PubMedCrossRefGoogle Scholar
  10. 10.
    Clemmer TP, Fisher CJ, Bone RC, et al. Hypothermia in the sepsis syndrome and clinical outcome. Crit Care Med 1992; 20:1395–1401PubMedGoogle Scholar
  11. 11.
    Simmons DH, et al. Hyperventilation and respiratory alkalosis as signs of gram negative bacteremia. JAMA 1960; 174:2196–2199Google Scholar
  12. 12.
    Astiz, ME, Rackow EC. Septic Shock. Lancet 1998;351:1501–5PubMedCrossRefGoogle Scholar
  13. 13.
    Kaehny WD. Respiratory acid-base disorders. Med Clin North Am 1983; 67:915–928PubMedGoogle Scholar
  14. 14.
    Parker MM, et al. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heartrate as an early predictor of prognosis. Crit Care Med 1987; 15:923–9PubMedGoogle Scholar
  15. 15.
    Parrillo JE. Shock syndromes related to sepsis. In: RL Cecil, L. Goldman, JC Bennett (eds) Cecil Textbook of Medicine. WB Saunders, Philadelphia, 1970, pp. 496–501Google Scholar
  16. 16.
    Parrillo JE. Pathogenetic mechanisms of septic shock. N Engl J Med 1993; 328:1471–77PubMedCrossRefGoogle Scholar
  17. 17.
    Abraham E, Shoemaker WC, Bland RD, et al. Sequential cardiorespiratory patterns in septic shock. Crit Care Med 1983; 11:799–803PubMedGoogle Scholar
  18. 18.
    Eidelman LE, Putterman D, Putterman C, et al. The spectrum of septic encephalopathy: definitions, etiologies, and mortalities. JAMA 1996; 275:470–473PubMedCrossRefGoogle Scholar
  19. 19.
    Sprung CL, Peduzzi PN, Shatney CH, et al. Impact of encephalopathy on mortality in sepsis syndrome. Crit Care Med 1990; 18: 801–806PubMedGoogle Scholar
  20. 20.
    Freund HR, et al. Amino acid derangements in patients with sepsis: Treatment with branched chain amino acid rich infusions. Ann Surg 1978; 188:423PubMedGoogle Scholar
  21. 21.
    Papadopoulos MC, Davies DC, Moss RF. Pathophysiology of septic encephalopathy: a review. Crit Care Med 2000; 28:3019–3024PubMedGoogle Scholar
  22. 22.
    Vincent JL, Dufaye P, Barre J, et al. Serial lactate determinations during circulatory shock. Crit Care Med 1983; 11:449–451PubMedGoogle Scholar
  23. 23.
    Levy B, Sadoune LO, Gelot AM, et al. Evolution of lactate/pyruvate and arterial ketone body ratios in the early course of catecholamine-treated septic shock. Crit Care Med 2000; 28 114–119PubMedGoogle Scholar
  24. 24.
    Essen F, Lutfi T, Cakar N, et al. Comparison of gastric intramucosal pH measurements with oxygen supply, oxygen consumption, and arterial lactate in patients with severe sepsis. Adv Exp Med & Biology 1996; 388:521–531Google Scholar
  25. 25.
    Ince C, Sinaasappel M. Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 1999; 27:1369–1377PubMedGoogle Scholar
  26. 26.
    Vary TC, Siegel JH, et al. Effect of sepsis on activity of pyruvate dehydrogenase complex in skeletal muscle and liver. Am J Physiol 1986; 250:E634–640PubMedGoogle Scholar
  27. 27.
    James HJ, Luchette FA, McCarter FD, et al. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 1999; 354:505–508PubMedGoogle Scholar
  28. 28.
    Gore DC, Jahoor F, Hibbert JM, et al. Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Ann Surg 1996; 224:97–102PubMedCrossRefGoogle Scholar
  29. 29.
    Clowes GH. Pulmonary abnormalities in sepsis. Surg Clin North Am 1974; 54:993–1011PubMedGoogle Scholar
  30. 30.
    Rayner BL, Willcox PA, Pascoe MD. Acute renal failure in community-acquired bacteraemia. Nephron 1990; 54:32–35PubMedCrossRefGoogle Scholar
  31. 31.
    Coratelli P, Passavanti G, Giannattasio M, et al. Acute renal failure after septic shock. Adv Exp Med Bio 1987; 212:233–243Google Scholar
  32. 32.
    Beaufils M, Morel-Maroger L, Sraer JD, et al. Acute renal failure of glomerular origin during visceral abscesses. N Engl J Med 1976; 295:185–9PubMedCrossRefGoogle Scholar
  33. 33.
    Liolios A, Oropello JM, Benjamin E. Gastrointestinal complications in the intensive care unit. Clin Chest Med 1999; 20:329–345PubMedCrossRefGoogle Scholar
  34. 34.
    Ledgerwood A. Hepatobiliary complications of sepsis. Heart Lung 1976; 5:621–623PubMedGoogle Scholar
  35. 35.
    Zimmerman HJ, Thomas LD. The liver in pneumococcal pneumonia: Observations in 94 cases of liver function and jaundice in pneumonia. J Lab Clin Med 1950; 35:556–567PubMedGoogle Scholar
  36. 36.
    Zimmerman HJ, Fang M, et al. Jaundice due to bacterial infection. Gastroenterology 1979; 77:362–374Google Scholar
  37. 37.
    Banks JG, Foulis AK, Ledingham IM, et al. Liver function in septic shock. J Clin Pathol 1982; 35:1249–52PubMedGoogle Scholar
  38. 38.
    Batge B, Filejski W, Kurowski V. Clostridial sepsis with massive intravascular hemolysis: rapid diagnosis and successful treatment Intensive Care Med 1992; 18:488–490PubMedGoogle Scholar
  39. 39.
    Kingston ME, Mackey D. Skin clues in the diagnosis of life-threatening infections. Rev Infect Dis 1986; 8:1–11PubMedGoogle Scholar
  40. 40.
    Bodey GP, Luna M. Skin lesions associated with disseminated candidiasis. JAMA 1997; 229: 1466–1468Google Scholar
  41. 41.
    Tofte RW, Williams DN. Clinical and Laboratory manifestations of toxic shock syndrome. Ann Intern Med 1982; 96:843–7PubMedGoogle Scholar
  42. 42.
    Lang CH, Dobrescu C. Sepsis-induced increases in glucose uptake by macrophage-rich tissues persist during hypoglycemia. Metabolism 1991; 40:585–593PubMedCrossRefGoogle Scholar
  43. 43.
    Fikins JP, Figlewicz DP. Increased insulin responsiveness in endotoxicosis. Circ Shock 1979; 6:1–6Google Scholar
  44. 44.
    Weissman C. The metabolic response to stress: an overview and update. Anesthesiology 1990; 73:308–327PubMedGoogle Scholar
  45. 45.
    Barton R, Cerra FB. The hypermetabolism multiple organ failure syndrome. Chest 1989; 96:1153–1160PubMedGoogle Scholar
  46. 46.
    Poskitt TR, Poskitt PK. Thrombocytopenia of sepsis: the role of circulating IgG-containing immune complexes. Arch Intern Med 1985; 145:891–894PubMedCrossRefGoogle Scholar
  47. 47.
    Kelton JG, Neame PB, Gauldie J, et al. Elevated platelet-associated IgG in the thrombocytopenia of septicemia. N Engl J Med 1979; 300:760–764PubMedCrossRefGoogle Scholar
  48. 48.
    Neane PB, Kelton JG, Walker IR, et al. Thrombocytopenia in septicemia: the role of disseminated intravascular coagulation. Blood 1980; 56:88–92Google Scholar
  49. 49.
    Krieger BP. Sepsis and Multiorgan Failure: Sepsis in the Geriatric Age Group. Williams and Wilkins, Baltimore 1997Google Scholar
  50. 50.
    Cunha B. Infectious Diseases in the Elderly. PSG Publishing Company, Littleton, 1988Google Scholar
  51. 51.
    Bonadio WA, Hennes H, Smith D, et al. Reliability of observation variable in distinguishing infectious outcome of febrile young infants. Pediatr Infect Dis J 1993; 12:111–14PubMedGoogle Scholar
  52. 52.
    Dellinger RP. Current therapies for sepsis. Infect Dis Clin North Am 1999; 13:495–509PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Kenneth Cruz
  • R. Phillip Dellinger

There are no affiliations available

Personalised recommendations