Is Zinc Essential to Modulate Insulin Sensitivity?

  • Patrice Faure
  • Serge Halimi
  • Sophie Bouvard
  • Olivier Ramon
  • Karipne Lalane
  • Anne Marie Roussel
  • Alain Emile Favier


Insulin Activity Zinc Supplementation Zinc Status Prediabetic State Zinc Depletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Araki, E, Murakimi, T., Shirotani, T., Kanai, F., Shinohara, Y., Shimada, F., Mori, M., Shichiri, M., and Ebina, Y., 1991, A cluster of four Sp1 binding sites required for efficient expression of the human insulin receptor gene. J. Biol. Chem. 6:3944–3948.Google Scholar
  2. Borovansky, J. and Riley, P.A.C., 1989, cytotoxicity of zinc in vitro. Chem Biol Interact 69:279–291.CrossRefGoogle Scholar
  3. Bouvard, S., Faure, P., Roucard, C, Favier, A., Halimi, S. Zinc protects HeLa Wild and HeLa-Tat cultured cell lines from the glucose induced cytotoxicity, Biochem J, In press. Brand, I.A., Heinickel, A., 1991, Key enzymes of carbohydrate metabolism as target of the 11.5 KDA Zn(2+)-binding protein (parathymosin), J Biol Chem, 266:20984–20989.Google Scholar
  4. Brandao-Neto, J., Veira, J.G.H., Shuhawa, T., Russo, E.M.K., Piesco, R.V., and Curi, P.R., 1988, Interrelation ships of zinc with glucose and insulin metabolism in humans, Biol Trace Elem Res, 24:73–81.CrossRefGoogle Scholar
  5. Bray, T.M. and Bettger, W, 1990, The physiological role of zinc as antioxidant. Free Radic. Biol. Med. 8:281–291.CrossRefGoogle Scholar
  6. Chausmer, A.B., 1998, Zinc, insulin and diabetes, J Am College Nutr, 17:109–115.CrossRefGoogle Scholar
  7. Chen, M.D., Liou, S.J., Lin, P.Y., Yang, V.C., Alexander, P.S., and Lin, W.H., 1998, Effects of zinc supplementation on the plasma glucose level and insulin activity in genetically obese (ob/ob) mice, Biol Tr Elem Res, 61:303–311.CrossRefGoogle Scholar
  8. Chen, M.D., Lin, P.Y., Chen, P.S., Cheng, V., and Lin, W.H., 1997, Zinc attenuation of GDP binding to brown adipocytes mitochondria in genetically obese (ob/ob) mice, Biol Tracel Elem Res, 57:139–145.CrossRefGoogle Scholar
  9. Cooper S.J., Leonard, G.A., McSweeney, S.M., Thompson, A.W., Naismith, J.H., Qamar, S., Plater, A., Berry, A., and Hunter, W.N., 1996, The crystal structure of a class II fructose 1–6-biphosphate aldolase shows a nevel binuclear metal-binding active site embedded in a familiar fild. Structure. 4:1303–1315.CrossRefGoogle Scholar
  10. Faure, P., Roussel, A.M., Martini, M., Favier, A., and Halimi, S., 1991, Insulin-sensitivity in zinc depleted rats: Assessment with the euglycemic hyperinsulinic clamp technique. Diab. Metab 17:325–331.Google Scholar
  11. Faure, P., Corticelli, P., Richard, M.J., Arnaud, J., Coudray, C., Halimi, S., Favier, A., and Roussel, A.M., 1993, Lipid peroxidation and trace element status in diabetic ketotic patients: Influence of Insulin therapy. Clinical Chemistry, 5:789–793.CrossRefGoogle Scholar
  12. Faure, P., Lafond, J.L., Rossini, E., Halimi, S., Favier, A., and Blache, D., 1994, Evidence for the role of zinc in insulin protection against free radical attack: molecular and functional aspects. Biochem. Biophys Acta 1209:260–264.PubMedGoogle Scholar
  13. Faure, P., Benhamou, P.Y., Perard, A., Halimi, S., and Roussel, A., 1995a, Lipid peroxidation in insulin dependant diabetic patients with early retinal degenerative lesions: effects of an oral Zn supplementation, Eur J ClinNutr, 49:282–288.Google Scholar
  14. Faure, P., Durand, P., Blache, D., Favier, A., and Roussel, A.M., 1995b, Effects of a long-term zinc deficient diet on rat fatty acid composition, platelet aggregation and arachidonic acid metabolism. Biometal, 8:80–85.CrossRefGoogle Scholar
  15. Faure, P., Bouvard, S., Rossini, E., Favier, A., and Halimi, S., 1999a, High vitamin E amount leads to a modification of zinc and copper tissue distribution in high fructose-fed rats exhibiting an insulin resistance, Trace Elem Electrol, 16:26–32Google Scholar
  16. Faure, P., Rossini, E., Wiernsperger, N., Richard, M.J., Favier, A., and Halimi, S., 1999b, An insulin Sensitizer Improves Both the Free Radical Defense System Potential and Insulin Sensitivity in High-Fructose Fed Rats. Diabetes. 48:353–357.CrossRefGoogle Scholar
  17. Forman, H.J., Liu, R.M., and Shi, M.M., 1996, Glutathione synthesis in oxidative stress. In Biothiols in health and disease. Packer L, Cadenas E, Eds. NY, p 189–210.Google Scholar
  18. Girotti, A.W., Thomas, J.P., and Jordan, J.E., 1985, Inhibitory effect of zinc(II) on free radical lipid peroxidation in erythrocyte membranes. J Free Radic Biol Med, 1:395–401.CrossRefGoogle Scholar
  19. Golik, A., Cohen, N., Ramot, Y., Maor, J., Moses, R., Weissgarten, J., Leonov, Y., and Modai, P., 1993, Type II diabetes mellitus, congestive heart failure and zinc metabolism, Biol Trace Elem Res, 39:171–175.CrossRefGoogle Scholar
  20. Halliwell, B. and Gutteridge, J.M.C, 1986, Oxygen free radical in relation to biology and medicine. Biochem Biophys, 501:501–14.CrossRefGoogle Scholar
  21. Hedges, D., Proft, M., and Eutian, K.D., 1995, Cat 8, a new zinc cluster-encoding gene necessary for derepression of gluconegenic enzymes in the yeast Sacharomices cerevisiae, Moll Cell Biol. 15:1915–1922.CrossRefGoogle Scholar
  22. Hunt, J.V., Dean, R.T., and Wolff, P., 1988, Hydroxyl radical production and autoxidative glycation: glucose oxidations as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J, 256:205–212.CrossRefGoogle Scholar
  23. Ikeda, T., Kimura, K., Morioka, S., and Tamaki, N., 1980, Inhibitory effects of Zn2+ on muscle glycolysis and their reversal by histidine. J Nutr Sci Vitaminol. 26:357–366.CrossRefGoogle Scholar
  24. Marchesini, G., Biuganesi, E., Ronchi, M., Flamia, R., Thomaseth, K., and Pacini, G., 1998, Zinc supplementation improves glucose disposal in patients with cirrhosis, Metabolism, 47:792–798.CrossRefGoogle Scholar
  25. Me Nair, P., Kiilerich, S., Christiansen, C., Christiansen, M., Madsbad, S., and Transbil, I., 1981, Hyperzincuria in insulin treated diabetes mellitus-its relation to glucose homeostasis and insulin administration, Clinica Chimica Acta, 112:343–348.CrossRefGoogle Scholar
  26. Raz, I., Adler, J.H., and Havivi, E., 1988, Altered tissue content of trace metal in diabetic hyperinsulinemic sand rats, Diabetologia, 31:329–333.CrossRefGoogle Scholar
  27. Reaven, G.M., 1988, Banting Lecture: Role of insulin resistance in human disease, Diabetes 37:1595–1607.CrossRefGoogle Scholar
  28. Richard, M.J., Guiraud, P., Leccia, M.T., Beani, J.C., and Favier, A., 1993, Effect of zinc supplementation on resistance of cultured human skin fibroblasts toward oxidant stress. Biol Trace Elem Res, 37:187–199.CrossRefGoogle Scholar
  29. Seehra, J.S., Gore, M.G., Chaudhry, A.G., and Jordan, 1981, PM5-Aminolevulinic acid dehydratase. The role of sulphydryl groups in 5-aminolevulinic acid dehydratase from bovine liver. Eur J Biochem, 114: 263–269.CrossRefGoogle Scholar
  30. Tamlaki, N., Ikeda, T., and Funatsuka, A., 1983, Zinc as activating cation for muscle glycolysis. J Nutr Sci Vitaminol 29:655–662.CrossRefGoogle Scholar
  31. Thornalley, P.J., McLellan, A.C., Lo T.W., Benn, J., and Sonksen, PH., 1996, Negative association between erythrocyte reduced glutathione concentration and diabetic complications. Clin Sci 5:575–582.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Patrice Faure
    • 1
  • Serge Halimi
  • Sophie Bouvard
  • Olivier Ramon
  • Karipne Lalane
  • Anne Marie Roussel
  • Alain Emile Favier
  1. 1.LBSO Laboratoire de Biologie du Stress OxydantHôpital A. MichallonGrenobleFrance

Personalised recommendations