Double-Quantum ESR and Distance Measurements

  • Petr. P. Borbat
  • Jack. H. Freed
Part of the Biological Magnetic Resonance book series (BIMR, volume 19)


“Allowed” double quantum ccherences (DQC) can now be routinely generated in disordered and oriented solids containing nitroxide biradicals and random distributions of stable radicals. The Pake doublets obtained from DQC pathways can be effectively used to determine a broad range of distances in the former case whereas decay constants yield concentrations in the latter. The DQC signals are strong and often comparable to standard single quantum signals. They are free of any large undesirable signals, so the DQ experiment is easy to perform. Their strong intensity permits the study of low concentrations of spins in samples typical of those ordinarily met in the case of doubly-labeled macromolecules such as proteins and polypeptides. The upper range of distances for systems labeled with nitroxides is estimated to be ca. 80 Å. In the limit of non-selective pulses the interpretation of DQC signals becomes independent of complicating geometric features which affect other ESR distance methods. The method is compared to other existing pulse distance measurement techniques and future improvements are also discussed.


Electron Spin Resonance Spectrum Electron Spin Echo Envelope Modulation Pulse Electron Spin Resonance Coherence Pathway Selective Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abragam, A. (1961) The principles of nuclear magnetism. (Oxford Univ. Press, NY ), Ch. 4.Google Scholar
  2. Astashkin, A.V., Hara, H. and Kawamori A. (1997) The pulsed electron-electron double resonance and “2+1” electron spin echo study of the oriented oxygen-evolving and Mndepleted preparations of photosystem II. J. Chem. Phys., 108, 3805–3812.CrossRefGoogle Scholar
  3. Bloom, A.L. (1955) Nuclear induction in inhomogeneous fields. Phys. Rev. 98, 1105–1112.CrossRefGoogle Scholar
  4. Baum, J., Munowitz, M., Garroway. A.N. and Pines, A. (1985) Multiple-quantum dynamics in solid state NMR. J. Chem. Phys. 83, 2015–2025.CrossRefGoogle Scholar
  5. Bax, A., de Jong, P.G., Mehlkopf, A.F. and Smidt, J. (1980) Separation of the different orders of NMR multiple-quantum transitions by the use of pulsed field gradients. Chem. Phys. Leu., 69, 567–570.CrossRefGoogle Scholar
  6. Borbat, P.P., Berdnikov, V.M., Milov, A.D. and Tsvetkov, Yu.D. (1977) Spatial distribution and diffusion of hydrogen atoms formed on photolysis of Fe(II) in frozen sulfuric acid water solutions. Sov. Phys. Solid State, 19, 628–663.Google Scholar
  7. Borbat, P.P. Crepeau, R.H. and Freed, J.H. (1997) Multifrequency two-dimensional Fourier transform ESR: X/Ku-band spectrometer. J. Magn. Reson., 127, 155–167.PubMedCrossRefGoogle Scholar
  8. Borbat, P.P. and Freed, J.H. (1999) Multiple-quantum ESR and distance measurements. Chem. Phys. Lett., 313, 145–154.CrossRefGoogle Scholar
  9. Borbat, P.P. and Freed J.H. (1999a) Progress in multiple-quantum ESR Spectroscopy: powerful tool for distance measurements, at “41st Rocky Mountain Conference on Analytical Chemistry”, Aug. 1–5, Denver, Colorado.Google Scholar
  10. Borbat, P.P. and Freed, J.H. (2000) Double and single quantum coherence ESR for distance measurements: effects of microwave B1 and frequency, (To be published).Google Scholar
  11. Budker, V., Du, J.-L., Seiter, M., Eaton, G.,R., Eaton, S.S. (1995) Electron-electron spin-spin interaction in spin-labeled low-spin methemoglobin, Biophys. J., 68, 2531–2542.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cavanagh, J., Fairbrother, W.J., Palmer III, A.G., Skelton, N.J. (1996) Protein NMR Spectroscopy. Academic Press, San Diego.Google Scholar
  13. Chandrasekhar, S. (1943) Stochastic problems in physics and astronomy. Revs Modern. Phys. 15, 165–191CrossRefGoogle Scholar
  14. Corio, P.L. (1966) Structure of high-resolution NMR spectra. Academic Press, NY.Google Scholar
  15. Crepeau, R.H., Dulcic, A., Gorcester, J., Saarinen, T. and Freed, J.H. (1989) Composite pulses in time-domain ESR. J. Magn. Reson., 84, 184–190.Google Scholar
  16. Dikanov, S.A., Tsvetkov, Yu.D. (1992) Electron spin echo envelope modulation (ESEEM) spectroscopy. CRC Press, 21.Google Scholar
  17. Dzuba, S.A., Bosh, M.K., Hoff, A.J. (1996) Electron spin-echo detection of quantum beats and double-quantum coherence in spin-correlated radical pairs of protonated photosynthetic reaction centers. Chem. Phys. Leu., 248, 427–433.CrossRefGoogle Scholar
  18. Dzuba, S.A. and Kawamori, A. (1996) Selective hole burning in EPR: spectral diffusion and dipolar broadening. Concepts in Magnetic Resonance 8, 49–61.CrossRefGoogle Scholar
  19. Eaton, S.S. and Eaton, G.R. (1993) Irradiated fused-quartz standard sample for time-domain EPR. J. Magn. Reson. A. 102, 354–356.CrossRefGoogle Scholar
  20. Emshwiller, M., Hahn, E.I., Kaplan, D. (1960) Pulsed nuclear resonance spectroscopy. Phys. Rev., 118, 414–424.CrossRefGoogle Scholar
  21. Ernst, R.R., Bodenhausen, G., Wokaun, A. (1987) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon Press, Oxford.Google Scholar
  22. Ewert, U, Crepeau, R.H., Lee, S., Dunnam C.R., Xu, D. and Freed, J.H. (1991) Fourier transform electron spin resonance imaging. Chem. Phys. Lett., 184, 25–33.CrossRefGoogle Scholar
  23. Farhbakhsh, Z.T., Huang, Q.-L., Ding, L.-L., Altenbach, C., Steinhoff, H.J., Horwitz, J. and Hubbell, W.L. (1995) Interaction of a-crystallin with spin-labeled peptides. Biochemistry, 34, 509–516.CrossRefGoogle Scholar
  24. Farkas, Z.D., Spalek, G. and Wilson P.B. (1989) RF pulse compression experiment at SLAC, Proceedings of the 1989 IEEE particle accelerator conference. Chicago, March 20–23, vol. 1, 132–134.Google Scholar
  25. Fauth, J.-M., Schweiger, A., Braunschweiler, L., Forrer, J. and Ernst, R.R. (1986) Elimination of unwanted echoes and reduction of dead time in three-pulse electron spin-echo spectroscopy. J. Magn. Reson., 66, 74–85.Google Scholar
  26. Feldman, E.B., Lacelle, S. (1996) Configurational averaging of dipolar interactions in magnetically dilute spin networks. J. Chem. Phys. 104, 2000–2009.CrossRefGoogle Scholar
  27. Gemperle, C., Aebli, G., Schweiger, A., and Ernst, R. R., (1990) Phase cycling in pulse EPR. J. Magn. Reson., 88, 241–256.Google Scholar
  28. Gorcester, J. and Freed, J.H. (1988) Two-dimensional Fourier transform ESR correlation spectroscopy. J. Chem. Phys., 88, 4678–4693.CrossRefGoogle Scholar
  29. Hanson, P., Anderson, D.J., Martinez, G., Millhauser, G., Formaggio, F., Crisma, M., Toniolo, C. and Vita, C. (1999) Electron spin resonance and structural analysis of water soluble, alanine-rich peptides incorporating TOAC. Mol. Phys., 95, 957–966.Google Scholar
  30. Hanson, P., Millhauser, G., Formaggio, F., Crisma, M., Toniolo, C. (1996) ESR characterization of hexameric, helical peptides using double TOAC spin-labeling. J. Am. Chem. Soc., 118, 7618–7625.CrossRefGoogle Scholar
  31. Hara, H., and Kawamori, A. (1997) A selective hole burning method applied to determine distances between paramagnetic species in Photosystems. Appl. Magn. Reson., 13, 241–257.CrossRefGoogle Scholar
  32. Höfer, P., Grupp, A., Nebenfuhr, H. and Mehring, M. (1986) Hyperfine sublevel correlation (HYSCORE) spectroscopy: A 2D ESR investigation of the squaric acid radical. Chem. Phys. Lett., 132, 279–282.CrossRefGoogle Scholar
  33. Hoult, D.I. and Richards (1975) Critical factors in the design of sensitive high resolution nuclear magnetic resonance spectrometers. Proc. Roy. Soc., (Load), 344, 311–340.CrossRefGoogle Scholar
  34. Hustedt, E.J., Smirnov, A.I., Laub, C.F., Beth, A.H. (1997). Molecular distances from dipolar coupled spin-labels: the global analysis of multifrequency continuous wave electron paramagnetic resonance data. Biophys. J. 72, 1861–1877.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Hustedt, E.J. and Beth, A.H. (1999) Nitroxide spin-spin interactions: applications to protein structure and dynamics. Annu. Rev. Biophys. Biomed. Struct., 28, 129–153.CrossRefGoogle Scholar
  36. Ichikawa, T., Wakasugi, S.Ichi and Yoshida, H. (1985) Structure of spurs in y-irradiated alcohol matrices by electron spin-echo method. J. Phys. Chem., 89, 3583–3586.CrossRefGoogle Scholar
  37. Jeschke, G., Bauer C., Pannier M., Leporini D. and Spiess, H.W. (2000) Pulse high-field EPR on nitroxide spin probes in polymers, at “High frequency electron paramagnetic resonance: technology and applications”, Amsterdam, April 12–14.Google Scholar
  38. Kurshev, V.V., Astashkin, A.V., and Raitsimring, A.M (1988) Modulation Effects in 2+1 Electron spin echo pulse sequence. J. Struct. Chem., 29, 62–68.CrossRefGoogle Scholar
  39. Kurshev, V.V., Raitsimring, A.M. and Tsvetkov, Yu.D. (1989) Selection of dipolar interaction by the “2+1” pulse train ESE. J. Magn. Reson., 81, 441–454.Google Scholar
  40. Larsen R.G. and Singel, D.J. (1993) Double electron-electron resonance spin-echo modulation. Spectroscopic measurement of electron spin pair separation in orientationally disordered solids. J. Chem. Phys., 98, 5134–5146.CrossRefGoogle Scholar
  41. Lee, S., Patyal, B.R. and Freed, J.H. (1993) A two-dimensional Fourier transform electron spin resonance (ESR) study of nuclear modulation and spin relaxation in irradiated malonic acid. J. Chem. Phys., 98, 3665–3689.CrossRefGoogle Scholar
  42. Lee, S., Budil, D.E. and Freed, J.H. (1994) Theory of two-dimensional electron spin-resonance for ordered and viscous fluids. J. Chem. Phys., 101, 5529–5558.CrossRefGoogle Scholar
  43. Levitt, M.H. (1979) Composite pulses. Progr. NMR. Spectr., 18, 61–122.CrossRefGoogle Scholar
  44. Lindgren, M., Eaton, G.R., Eaton, S.S., Johnsson, B-H, Hamarström, P., Svensson, M. and Carlsson, U. (1997) Electron spin echo decay as a probe of aminoxyl environment in spinlabeled mutants of human carbonic anhydrase II. J. Chem. Soc., Perkin Trans. 2, 2549–2554.Google Scholar
  45. Maryasov, A.G., Tsvetkov, Yu.D., Raap, J. (1998) Weakly-coupled radical pairs in solids: ELDOR in ESE structure studies. Appl. Magn. Reson., 14, 101.CrossRefGoogle Scholar
  46. Meirovitch, E., Igner, D., Igner, E., Moro, G. and J.H. Freed, J.H. (1982) Electron-spin relaxation and ordering in smectic and supercooled nematic liquid crystals. J. Chem. Phys., 77, 3915–3937.CrossRefGoogle Scholar
  47. Milov, A.D., Salikhov, K.M. and Tsvetkov, Yu.D. (1973) Phase relaxation of hydrogen atoms stabilized in an amorphous matrix. Sov. Phys. Solid State. 15, 802–806.Google Scholar
  48. Milov, A.D., Salikhov, K.M., Shirov, M.D. (1981) Application of the double resonance method to electron spin echo in a study of the spatial distribution of paramagnetic centers in solids. Sov. Phys. Solid State, 23, 565–569.Google Scholar
  49. Milov, A.D., Maryasov, A.G. and Tsvetkov, Yu.D. (1998) Pulsed electron double resonance (PELDOR) and its applications in free-radical research. Appl. Magn. Reson., 15, 107–143.CrossRefGoogle Scholar
  50. Milov, A.D., Maryasov, A.G., Tsvetkov, Yu.D., Raap, J. (1999) Pulsed ELDOR in spinlabeled polypeptides. Chem. Phys. Lett., 303, 135–143.CrossRefGoogle Scholar
  51. Milov, A.D., Ponomarev, A.B. and Tsvetkov, Yu.D. (1985) Modulation beats of double electron-electron resonance in spin echo for biradical systems. J. Chem. Struct., 25, 710–713.CrossRefGoogle Scholar
  52. Ohba, Y., Satoh, R., Kikuchi, T., Yamauchi. S. and Iwazumi. M. (1993) A new technique for accurate measurement and adjustment of the phase of the microwave pulse in pulsed EPR spectroscopy. J. Magn. Reson., A103, 282–287.CrossRefGoogle Scholar
  53. Pake, G.E. (1948) Nuclear resonance absorption in hydrated crystals: fine structure of the proton line. J.Chem.Phys., 16, 327–336.CrossRefGoogle Scholar
  54. Pannier, M., Veit, S., Godt, A., Jeshke, G. and Spiess, H.W. (2000) Dead time free measurement of dipole-dipole interactions between electron spins. J. Magn. Reson., 142, 331–340.PubMedCrossRefGoogle Scholar
  55. Pfannebecker, V., Klos, H., Hubrich, M., Volkmer, T., Heuer, A., Wiesner, U. and Spiess, H.W. (1996) Determination of end-to-end distances in oligomers by pulsed EPR. J. Phys. Chem., 100, 13428–13432.CrossRefGoogle Scholar
  56. Rabenstein, M.D. and Shin, Y.-K. (1995) Determination of the distance between two spin labels attached to a macromolecule. Proc. Natl. Acad. Sci., USA, 92, 8239–8243.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Rabenstein, M.D., Shin, Y.-K. (1996), HIV-1 gp41 tertiary structure studied by EPR spectroscopy. Biochemistry, 35, 13922–13928.PubMedCrossRefGoogle Scholar
  58. Raitsimring, A.M. and Salikhov, K.M. (1985) Electron spin echo method as used to analyze the spatial distribution of paramagnetic centers Bulletin of Magn. Reson., 7, 184–217.Google Scholar
  59. Raitsimring, A., Crepeau, R.H. and Freed, J.H. (1995) Nuclear modulation effects in “2+1” electron spin-echo correlation spectroscopy. J. Chem. Phys., 102, 8746–8762.CrossRefGoogle Scholar
  60. Rakowsky, M.H., Zecevic, A., Eaton, G.R. and Eaton, S.S. (1998) Determination of high — spin iron(11)-nitroxyl distances in spin-labeled porphyrins by time-domain EPR. J. Magn. Reson., 11, 97–110.CrossRefGoogle Scholar
  61. Salikhov, K.M., Semenov, A.G. and Tsvetkov, Yu.D. (1976) Electron spin echo and its applications. Nauka, Novosibirsk, (in Russian).Google Scholar
  62. Salikhov, K.M., Schneider, D.J., Saxena, S., Freed, J.H. (1996) A theoretical approach to the analysis of arbitrary pulses in magnetic resonance. Chem. Phys. Lett., 262, 17–26.CrossRefGoogle Scholar
  63. Saxena, S., Freed, J.H. (1996) Double quantum two-dimensional Fourier transform spin resonance: distance measurements. Chem. Phys. Lett., 251, 102–110.CrossRefGoogle Scholar
  64. Saxena, S., Freed, J.H. (1997a) Theory of double quantum two-dimensional electron spin resonance with applications to distance measurements. J. Chem. Phys., 107, 1317–1340.CrossRefGoogle Scholar
  65. Saxena, S. and Freed, J.H. (1997b) Two-dimensional electron spin resonance and slow motions. J. Phys. Chem., A101, 7998–8008.CrossRefGoogle Scholar
  66. Schweiger, A. (1990) New trends in pulsed spin-resonance methodology. In Modern Pulsed and Continuous-wave Electron Spin Resonance, ( Kevan, L., Bowman, M.K., eds), pp 43–118, Wiley, NY.Google Scholar
  67. Shriver, J. (1992) Product operators and coherence transfer in multiple-pulse NMR experiments. Concepts in Magn. Reson., 4, 1–33.CrossRefGoogle Scholar
  68. Slichter, C.P. (1990) Principles of magnetic resonance, 3rd enl. and updated edn., Springer-Verlag, Berlin-Heidelberg-New-York.CrossRefGoogle Scholar
  69. Sorensen, O.W., Eich, G.W., Levitt, M.H., Bodenhausen, G. and Ernst, R.R. (1983) Product operator formalism for the description of NMR pulse experiments. Progr. NMR Spectr., 16, 163–192.CrossRefGoogle Scholar
  70. Suzuki, M. (1985) Decomposition formulas of exponential operators and Lie exponentials with some applications to quantum mechanics and statistical physics. J. Math. Phys., 26, 601–612.CrossRefGoogle Scholar
  71. Tang, J., Norris, J.R. (1995) Multiple-quantum EPR coherence in a spin-correlated radical pair system. Chem. Phys. Lett., 233, 192–200.CrossRefGoogle Scholar
  72. Thorgeirsson, T.E., Xiao, W., Brown, L.S., Needleman, R., Lanyi, J.K. and Shin, Y.-K. (1997) Transient channel-opening in bacteriorhodopsin: an EPR study. J. Mol. Biol., 273, 951–957.PubMedCrossRefGoogle Scholar
  73. Yudanov, V.F., Salikhov, K.M., Zhidomirov, G.M. and Tsvetkov, Yu.D. (1969) Modulation effects in the electron spin echo of biradical systems. Theor. and Experim. Chem., 5, 663–668.Google Scholar
  74. Zecevic, A., Eaton, G.R., Eaton, S.S. and Lindgren, M. (1998) Dephasing of electron spin echoes for nitroxyl radicals in glassy solvents by non-methyl protons. Mol. Phys., 95, 1225–1263.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic / Plenum Publishers, New York 2002

Authors and Affiliations

  • Petr. P. Borbat
    • 1
  • Jack. H. Freed
    • 1
  1. 1.Baker Laboratory of Chemistry and Chemical BiologyCornell UniversityIthacaUSA

Personalised recommendations