Advertisement

Determination of Distances Based on T1 and Tm Effects

  • Sandra S. Eaton
  • Gareth R. Eaton
Chapter
Part of the Biological Magnetic Resonance book series (BIMR, volume 19)

Abstract

The distance between a rapidly-relaxing paramagnetic center and a slowly-relaxing center can be determined from the effect of the rapidly-relaxing center on the spin-lattice relaxation and on the spin echo dephasing of the slowly-relaxing center. The principles underlying these measurements are discussed and examples are given for high-spin and low-spin Fe(III).

Keywords

Relaxation Rate Spin Label Axial Ligand Interspin Distance Dipolar Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A. (1961). The Principles of Nuclear Magnetism, Oxford University Press, Oxford, p. 289, 311.Google Scholar
  2. Bertini, I. and Luchinat, C. (1996). Relaxation in NMR of Paramagnetic Substances, Coord. Chem. Rev. 150, 77–110.Google Scholar
  3. Bloembergen, N. (1949). On the Interaction of Nuclear Spins in a Crystalline Lattice. Physica 15, 386–426.CrossRefGoogle Scholar
  4. Bloembergen, N., Purcell, E. M., and Pound, R. V. (1948). Relaxation Effects in Nuclear Magnetic Resonance Absorption. Phys. Rev. 73, 679–712.CrossRefGoogle Scholar
  5. Bloembergen, N., Shapiro, S., Pershan, P. S., Artman, J. O. (1959). Cross-Relaxation in Spin Systems. Phys. Rev. 114, 445–459.CrossRefGoogle Scholar
  6. Brown, I. M. (1979). Electron Spin-Echo Studies of Relaxation Processes in Molecular Solids, in Time Domain Electron Spin Resonance, Ed. by L. Kevan and R. N. Schwartz, Wiley, N. Y., ch. 6, 195–229.Google Scholar
  7. Brudvig, G. W., Blair, D. F., and Chan, S. I. (1984). Electron Spin Relaxation of CuA and Cytochrome a in Cytochrome c Oxidase, J. Biol. Chem. 259, 11001–11009.PubMedGoogle Scholar
  8. Budker, V., Du, J.-L., Seiter, M., Eaton, G. R., and Eaton, S. S. (1995). Electron-Electron Spin-Spin Interaction in Spin-Labeled Methemoglobin, Biophys. J. 68, 2531–2542.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Damoder, R., More, K. M., Eaton, G. R., and Eaton, S. S. (1983). Metal-Nitroxyl Interactions. 30. Single-Crystal EPR Spectra of Two Spin-Labeled Copper Porphyrins, J. Amer. Chem. Soc. 105, 2147–2154.CrossRefGoogle Scholar
  10. Doctor, K. S., Gaffney, B. J., Alvarez, G., and Silverstone, H. J. (1993). EPR spectroscopy of interdoublet transitions in high-spin iron: application to transferrin oxalate, J. Phys. Chem. 97, 3028–3033.CrossRefGoogle Scholar
  11. Drago, R. S. (1977). Physical Methods in Chemistry, Saunders, Philadelphia, p. 252.Google Scholar
  12. Du., J.-L., Eaton, G. R., and Eaton, S. S. (1994). Effect of Molecular Motion on Electron Spin Phase Memory Times for Copper(II) Complexes in Doped Solids, Appl. Magn. Reson. 6, 373–378.CrossRefGoogle Scholar
  13. Du, J.-L., Eaton, G. R., and Eaton, S. S. (1995). Temperature, Orientation, and Solvent Dependence of Electron Spin-Lattice Relaxation Rates for Nitroxyl Radicals in Glassy Solvents and Doped Solids, J. Magn. Reson. A 115, 213–221.CrossRefGoogle Scholar
  14. Dzuba, S. A., Raitsimring, A. M., and Tsvetkov, Yu. D. (1979). The distance distribution of radical-paramagnetic ion pairs studied by the electron spin echo method. Spatial irregularities of radical diffusion in glassy alcohols, Chem. Phys. 44, 357–365.CrossRefGoogle Scholar
  15. Dzuba, S. A., Raitsimring, A. M., and Tsvetkov, Yu. D. (1980). Electron Spin-Echo Studies of Phase Relaxation Kinetics in Systems Containing two Types of Spins, J. Magn. Reson. 40, 83–89.Google Scholar
  16. Dzuba, S. A., Salikhov, K. M., Tsvetkov, Yu. D. (1981). Slow rotation (i ? 10’5 s) of methyl groups in radicals studied by pulsed ESR spectroscopy, Chem. Phys. Lett. 79, 568–572.CrossRefGoogle Scholar
  17. Eaton, S. S. and Eaton, G. R. (1988). Interaction of Spin Labels with Transition Metals. Part 2., Coord. Chem. Rev. 83, 29–72.CrossRefGoogle Scholar
  18. Eaton, S. S., More, K. M., Sawant, B. M., Boymel, P. M., and Eaton, G. R. (1983). MetalNitroxyl Interactions. 29. EPR Studies of Spin-Labeled Copper Complexes in Frozen Solution, J. Magn. Reson. 52, 435–449.Google Scholar
  19. Fiamingo, F. G., Brill, A. S., Hampton, D. A., and Thorkildsen (1989). Energy distribution at the high-spin ferric sites in myoglobin crystals, Biophys. J. 55, 67–77.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Fielding, L., More, K. M., Eaton, G. R., and Eaton, S. S. (1986). Metal-Nitroxyl Interactions. 51. Collapse of Iron-Nitroxyl Electron-Electron Spin-Spin Splitting Due to an Increase in the Electron Spin Relaxation Rate for High-Spin Iron (III) When Temperature is Increased, J. Am. Chem. Soc. 108, 8194–8196.CrossRefGoogle Scholar
  21. Gamble, W. L., Miyagawa, I., Hartman, R. L. (1968). E. S. R. study of stereospecific proton transfer in irradiated crystals of L-alanine, Phys. Rev. Lett. 20, 415–418.CrossRefGoogle Scholar
  22. Goodman, G. and Leigh, J. S., Jr., (1985). Distance Between the Visible Copper and Cytochrome a in Bovine Heart Cytochrome Oxidase, Biochemistry 24, 2310–2317.PubMedCrossRefGoogle Scholar
  23. Hilczer, W., Goslar, J., Gramza, M., Hoffmann, S. K., Blicharski, W., Osyczka, A., Turyna, B., and Froncisz, W. (1995). A resonance enhancement of the phase relaxation in the electron spin echo of nitroxide covalently attached to cytochrome c, Chem. Phys. Lett. 247, 601–606.CrossRefGoogle Scholar
  24. Hirsh, D. J. and Brudvig, G. W. (1993). Long-Range Electron-Spin-Spin Interactions in the Bacterial Photosynthetic Reaction Center, J. Phys. Chem. 97, 13216–13222.CrossRefGoogle Scholar
  25. Hirsh, D. J., Beck, W. F., Innes, J. B., and Brudvig, G. W. (1992). Using saturation recovery EPR to measure distance in proteins: Application to photosystem II, Biochemistry 31, 523–541.CrossRefGoogle Scholar
  26. Hyde, J. S. and Rao, K. V. S. (1978) Dipolar-induced Electron Spin-Lattice Relaxation in Unordered Solids, J. Magn. Reson. 29, 509–516.Google Scholar
  27. Kispert, L. D., Bowman, M. K., Norris, J. R., and Brown, M. S. (1982). Electron spin echo studies of the internal motion of radicals in crystals: phase memory vs. correlation time, J. Chem. Phys. 76, 26–30.CrossRefGoogle Scholar
  28. Klug, C. S., Eaton, S. S., Eaton, G. R., and Feix, J. B. (1998). Ligand-Induced Conformational Change in the Ferric Enterobactin Receptor FepA as Studied by Site-Directed Spin Labeling and Time-Domain ESR, Biochemistry 37, 9016–9023.PubMedCrossRefGoogle Scholar
  29. Koenig, S. H. (1982). A classical description of the relaxation of interacting pairs of unlike spins: extension to Tip, T2, and Tlff including contact interactions, J. Magn. Reson. 47, 441–453.Google Scholar
  30. Koulougliotis, D., Ines, J. B., and Brudvig, G. W. (1994). Location of chlorophyllz in photosystem II, Biochemistry 33, 11814–11822.PubMedCrossRefGoogle Scholar
  31. Koulougliotis, D., Tang, X.-S., Diner, B. A., and Brudvig, G. W. (1995). Spectroscopic evidence for the symmetric location of tyrosines D and Z in Photosystem II, Biochemistry 34, 2850–2856.PubMedCrossRefGoogle Scholar
  32. Kulikov, A. V. and Likhtenshtein, G. I. (1977). The use of spin relaxation phenomena in the investigation of the structure of model and biological systems by the method of spin labels, Adv. Mol. Relax. and Interaction Proc. 10, 47–69.CrossRefGoogle Scholar
  33. Leigh, J. S., Jr., (1970). ESR Rigid-Limit Line Shape in a System of Two Interacting Spins, J. Chem. Phys. 52, 2608–2612.CrossRefGoogle Scholar
  34. Makinen, M. W., and Wells, G. B. (1987). Application of EPR Saturation Methods to Paramagnetic Metal Ions in Proteins, Metal Ions in Biological Systems 22, 129–206.Google Scholar
  35. Nakagawa, K., Candelaria, M. B., Wilson, W. W. C., Eaton, S. S., and Eaton, G. R. (1992). Electron-Spin Relaxation Times of Chromium(V), J. Magn. Reson. 98, 81–91.Google Scholar
  36. Ohnishi, T., LoBrutto, R., Salerno, J. C., Bruckner, R. C., and Frey, T. G. (1982). Spatial Relationship between Cytochrome a and a 3, J. Biol. Chem. 257, 14821–14825.PubMedGoogle Scholar
  37. Poole, C. P., Jr., and Farach, H. (1971). Relaxation in Magnetic Resonance, Academic Press, New York, pp. 70–71, 196–200.Google Scholar
  38. Raitsimring, A. M. and Salikhov, K. M. (1985). Electron spin echo method as used to analyze the spatial distribution of paramagnetic centers, Bull. Magn. Reson 7, 184–217.Google Scholar
  39. Rakowsky, M. H., More, K. M., Kulikov, A. V., Eaton, G. R., and Eaton, S. S. (1995). Time-Domain Electron Paramagnetic Resonance as a Probe of Electron-Electron Spin-Spin Interaction in Spin-Labeled Low-Spin Iron Porphyrins. J. Amer. Chem. Soc. 117, 2049–2057.CrossRefGoogle Scholar
  40. Rakowsky, M. H., Eaton, G. R., and Eaton, S. S. (1997). Comparison of the effect of high-spin and low-spin Fe(III) on nitroxyl T1 in a spin-labeled porphyrin, Modern Applications of EPR/ESR from Biophysics to Materials Science, C. Z. Rudowicz, K. N. Yu, and H. Hiraoka, Springer, 19–24.Google Scholar
  41. Rakowsky, M. H., Zecevic, A., Eaton, G. R., and Eaton, S. S. (1998). Determination of High-Spin Iron(III)-Nitroxyl Distances in Spin-Labeled Porphyrins by Time-Domain EPR, J. Magn. Reson. 131, 97–110.PubMedCrossRefGoogle Scholar
  42. Rubenstein, M., Baram, A. and Luz, Z. (1971). Electronic and nuclear relaxation in solutions of transition metal ions with spin S = 3/2 and 5/2, Mol. Phys. 20, 67–80.CrossRefGoogle Scholar
  43. Salikhov, K. M. and Tsvetkov, Yu. D. (1979). Electron Spin-Echo Studies of Spin-Spin Interactions in Solids, in Time Domain Electron Spin Resonance, Ed. by L. Kevan and R. N. Schwartz, Wiley, N. Y., ch. 7, 232–277.Google Scholar
  44. Scholes, C. P., Janakiraman, R., Taylor, H., and King, T. E. (1984). Temperature dependence of the electron spin-lattice relaxation rate from pulsed epr of CuA and heure a in cytochrome c oxidase, Biophys. J. 45, 1027–1030.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Seiter, M., Budker, V., Du, J.-L., Eaton, G. R., and Eaton, S. S. (1998). Interspin distances determined by time domain EPR of spin-labeled high-spin methemoglobin, Inorg. Chim. Acta 273, 354–356.CrossRefGoogle Scholar
  46. Tsvetkov, Yu. D. and Dzuba, S. A. (1990). Pulsed ESR and molecular motions, Appl. Magn. Reson. 1, 179–194.CrossRefGoogle Scholar
  47. Voss, J., Salwinski, L., Kaback, H. R., and Hubbell, W. L. (1995a). A method for distance determination in proteins using a designed metal ion binding site and site-directed spin labeling: evaluation with T4 lysozyme, Proc. Natl. Acad. Sci U.S. 92, 12295–12299.CrossRefGoogle Scholar
  48. Voss, J., Hubbell, W. L., and Kaback, H. R. (19956). Distance determination in proteins using designed metal ion binding sites and site-directed spin labeling: Application to lactose permease of Escherichia coli, Proc. Natl. Acad. Sci. U.S. 92, 12300–12303.Google Scholar
  49. Voss, J., Hubbell, W. L., and Kaback, R. (1998). Helix packing in the lactose permease determined by metal-nitroxide interaction, Biochemistry 37, 211–216.PubMedCrossRefGoogle Scholar
  50. Wolf, E. L. (1966). Diffusion effects in the inhomogeneously broadened case: high temperature saturation of the F-center electron spin resonance, Phys. Rev. 14, 555–569.CrossRefGoogle Scholar
  51. Zhidomirov, G. M. and Salikhov, K. M. (1969). Contribution to the theory of spectral diffusion in magnetically diluted solids, Soy. Phys. JETP 29, 1037–1040.Google Scholar
  52. Zhou, Y., Bowler, B. E., Eaton, G. R. and Eaton, S. S. (2000a). Electron spin-lattice relaxation rates for high-spin Fe(III) in glass solvents at temperatures between 6 and 298 K, J. Magn. Reson., accepted for publication.Google Scholar
  53. Zhou, Y., Bowler, B. E., Lynch, K., Eaton, S. S., and Eaton, G. R. (2000b). Interspin distances in spin-labeled metmyoglobin variants determined by saturation recovery EPR, Biophys. J., submitted for publication.Google Scholar

Copyright information

© Kluwer Academic / Plenum Publishers, New York 2002

Authors and Affiliations

  • Sandra S. Eaton
    • 1
  • Gareth R. Eaton
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of DenverDenverUSA

Personalised recommendations