Depth of Immersion of Paramagnetic Centers in Biological Systems

  • Gertz I. Likhtenshtein
Part of the Biological Magnetic Resonance book series (BIMR, volume 19)


The theory of static and dynamic dipole-dipole and exchange spin-spin interactions between radicals and paramagnetic ions is surveyed. Methods of determination of depth of immersion and localization of a paramagnetic center, and the investigation of electrostatic potential around biologically important molecules are described in detail. Advantages and limitations of different methods are discussed. Applications of the methods to paramagnetic centers of enzymes (cytochrome P-450, the primary donor of the photosynthetic reaction center, and flavin-dependent alcohol oxidase) and to nitroxide spin probes in biological and model membranes are reviewed.


Paramagnetic Center Spin Exchange Flavin Adenine Dinucleotide Spin Probe Saturation Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abragam, A. and Bleaney, B. (1970) Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford.Google Scholar
  2. Alakhverdiev, C. I., Kulikov, A.V., Klimov, V. V., Bogatyrenko, V. R., and Likhtenstein G. I. (1989) Determination of the depth of immersion of P680, pheophitin and secondary donor in photosystem 2 in pea subchloroplasts. Biofizika, 34, 434–439.Google Scholar
  3. Alexandrov, I. V. (1975) Theory of Magnetic Relaxation, Nauka, Moscow.Google Scholar
  4. Alfilov, E. I., Vosnyak, V. M., and Kazanzev, A. P. (1980) Effect of magnetic field on fluorescence of Rhodopseudomonas spheroidas. Biofizika 25, 498–505.Google Scholar
  5. Anni, H., Vanderkooi, J. M., Sharp, K. A., Yonetani,T., Hopkins, S. C., Herenyi, L. and Fidy, J. (1994) Electric field and conformational effects of cytochrome c and solvent on cytochrome c peroxidase studied by high resolution fluorescence spectroscopy. Biochemistry 33, 3475–3486.PubMedCrossRefGoogle Scholar
  6. Aquist, J., Luecke, H., Quiocho, F. A. and Warshel, A. (1991) Dipoles localized at helix termini of proteins stabilize charges. Proc. Natl. Acad. Sci. USA 88, 2026–2030.CrossRefGoogle Scholar
  7. Averbakh, A.Z., Pekel, N.D., Seredenko V.I., Kulikov, A.V. and Gvozdev, R.I., (1995)Flavin-dependent alcohol oxidase from the yeast Pichiapinus. Biochem. J 310,601–604.Google Scholar
  8. Bashford, D., and Karplus, M. (1990) pKes of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 29, 10219–10225.PubMedCrossRefGoogle Scholar
  9. Berdnikov B. M., Doktorov, A. B. and Makarshin, L. L. (1980) Dipole-dipole broadening of free radicals ESR spectra in the presence of paramagnetic ions. Theor. Eksp. Chem. (Kiev) 16, 765–771.Google Scholar
  10. Blum, H., Leigh, J. S., Salerno, J. C. and Ohnishl, T (1978) The orientation of bovin adrenal cortex cytochrome P-450 in submitochondrial particle multilayers. Arch. Biochem. Biophys 187, 153–157.PubMedCrossRefGoogle Scholar
  11. Bogatyrenko, V. R., Sabo, Ya., Chamorovskii, S K., Zakharova, N.I., Kononenko, A. A. and Kulikov A. V. (1991) Study of localization of bacteriochlorophyl dimer and cytochrome c in reaction centers from Chromatium minutissium by ESR. Biofizika 36, 289–290.Google Scholar
  12. Borah, B., and Bryant, R. G. (1981) Nuclear magnetic resonance relaxation dispersion in an aqueous nitroxide system. J. Chem. Phys 75, 3297–3300.CrossRefGoogle Scholar
  13. Bowman, M. K. and Norris, J. R. (1982) Cross relaxation of free radicals in partially ordered solids. J. Phys. Chem 86, 3385–3390.CrossRefGoogle Scholar
  14. Case, G. D. and Leigh, J. S., Jr. (1976) Intramitochondrial position of cytochrome haem groups determined by dipolar interaction with paramagnetic cations. Biochem. J. 160, 769–783PubMedCentralPubMedGoogle Scholar
  15. Cherepanova, E.S., Kulikov, A.V. and Likhtenstein, G.I. (1990) Localization of paramagnetic centers relative to aqueous and lipid phases by ESR. Biol. Membr. (Moscow) 77, 51–56.Google Scholar
  16. Debye, P. (1942) Reaction rates in ionic solutions. Trans.Electrochem. Soc 82, 265–272.CrossRefGoogle Scholar
  17. Depmeier, B. J., Driessen, A. J., Hehre, W. J., Johnson, J., Peng, A. C., Lou, L. and Yu, J. (1996) MacSpartan version 1.0.2 Wavefunction, Irvine, CA.Google Scholar
  18. Derzhansci, A., Georgieva, A., Kotev, K. and Atanasov, B. P. (1970) Heam hydration and displacement in the pre-denaturational conformational transition of the myoglobin molecule. Biochim. Biophys. Acta 214, 83–93.CrossRefGoogle Scholar
  19. Druzhinin, S. Yu., Fogel, V. R., Syrtsova, L. A., Likhtenstein, G. I. and Kotelnikov, A. I. (1986) Study on the cofactor center localization in nitrogenase by triplet labeling method. Biofisika 31, 16–21.Google Scholar
  20. Dwek, R. A. (1977) NMR in Biology, Academic Press, New York.Google Scholar
  21. Eastman, M. P., Bruno, G. V. and Freed, J. H. (1970) Studies of Heisenberg spin exchange. II Effect of radical charge and size. J. Chem. Phys 52, 2511–2522.CrossRefGoogle Scholar
  22. Eaton, G. R and Eaton, S. S. (1989) Resolved electron-electron spin-spin splittings in ESR spectra. Biol. Magn. Reson 8, 339–397.CrossRefGoogle Scholar
  23. Feher, G. (1992) Three-dimensional structure of the reaction center by X-diffraction from single crystals, Is. J. Chem 32, 375–378.CrossRefGoogle Scholar
  24. Gilson, M. K. (1993) Multiple-site titration and molecular modeling: two rapid methods for computing energies and forces for ionizable groups in proteins. Proteins 15, 266–282.PubMedCrossRefGoogle Scholar
  25. Gray, H. B., and Ellis, W. R. Jr (1994) Electron Transfer. In: Bioinorganic Chemistry. ( Bertini, I., Gray, G.B., Lippard S.J., and Valentine J.S. eds.) University Science Books, Mill Valley, California, 315–364.Google Scholar
  26. Grebenshchikov, Yu. B., Ponomarev, G. V., Evstigneeva, R. P. and Likhtenshtein, G. I. (1972) Spin relaxation of a nitroxide radical upon interaction with porphyrin complexes of VO(II), Fe(III), NI(II), Cu(II) and hemoglobin. Biofizika 17, 910–913.PubMedGoogle Scholar
  27. Hecht, J. L., Honig, B., Shin, Y. and Hubbell, W. L. (1995) Electrostatic potential near the surface of DNA: comparing theory and experiment. J. Phys. Chem 99, 7782–7786.CrossRefGoogle Scholar
  28. Honig, B. and Nicholls, A. (1995) Classical electrostatics in biology and chemistry. Science 268, 1144–1149.PubMedCrossRefGoogle Scholar
  29. Hyde, J. S. and Subczinski, W. K. (1989) Spin-label oximetry, Biol. Magn. Reson 8, 399–426.CrossRefGoogle Scholar
  30. Hyde, J. S., Swartz, H. M. and Antholine, W. E. (1976) The spin probe-spin label methods. In: Spin Labeling. Theory and Application.Vol. 2. ( Berliner L. ed.) Academic Press, New York, pp. 72–113.Google Scholar
  31. Hwang, L. P. and Freed, J. H. (1975) Dynamics effect of pair correlation function on spinrelaxation by translational diffusion in liquids.,J. Chem. Phys. 63, 4017–4025.CrossRefGoogle Scholar
  32. Kokorin, A. I., Zamaraev, K. I., Grigoryan, G. L., Ivanov, V. P., and Rozantsev, E. G. (1972) Distance estimation between nitroxyl radicals. Biofizika 17, 34–41.PubMedGoogle Scholar
  33. Kotel’nikov, A. I., Likhtenshtein, G. I. and Gvozdev, R. I. (1975) The use of phenomenon of saturation of the ESR signals for study of relief of a macromolecule in the vicinity of paramagnetic center. Studia Biophys. 49, 215–221.Google Scholar
  34. Kotel’nikov, A.I., Fogel, V.R., Likhtenshtein, G.I., Postnikova, G.B., and Slyapnikova, E.A. (1981) The use of the exchange deactivation of triplet excited states for the investigation of the structure and electronic conductivity of proteins. Mol. Biol. (Moscow) 15, 281–289.Google Scholar
  35. Kulikov, A.V. (1976) Determination of distance between the nitroxide label and a paramagnetic center in spin-labeled proteins from the parameters of the saturation curve of the ESR spectrum of the label at 77K. Mol. Biol. (Moscow) 10, 109–116.Google Scholar
  36. Kulikov, A. V. and Likhtenstein, G. I. (1974) Application of saturation curves for evaluating distances in biological objects by the method of double spin-labels. Biofizika 19, 420–424.PubMedGoogle Scholar
  37. Kulikov, A. I. and Likhtenshtein, G. I. (1977) The use of spin-relaxation phenomena in the investigation of the structure of model and biological systems by method of spin labels. Adv. Molecul. Relax. Proc 10, 47–78.CrossRefGoogle Scholar
  38. Kulikov, A. I., Likhtenshtein, G. I., Rozantzev, E. G., Suskina, and Shapiro, A. V. (1972) Nitroxide bi-and polyradicals as standard models for distance estimation between the nitroxide moities. Biofizika, 17, 42–49.PubMedGoogle Scholar
  39. Kulikov A. V., Bogatyrenko, V. R., Melnikov, A. V., Syrtzova, L. A. and Likhtenshtein, G. I. (1979) Determination of distance between cation radical of bacteriochlorophyl dimer and anion of quinone in photosynthetic reaction center from R. rubrum. Biofizika 24, 178–185.Google Scholar
  40. Kulikov, A. V., Cherepanova, E. S, and Bogatyrenko V. R. (1981) Determination of the closest distance between a radical and a paramagnetic ion. Theor. Exper. Chem 17, 618–626.CrossRefGoogle Scholar
  41. Kulikov, A. I., Yudanova, E. I. and Likhtenshtein, G. I. (1983a) Investigation of the spin-exchange of nitroxide radicals using the continuous ESR spectrum saturation technique. J. Phys. Chem. (Moscow) 56, 2982–2987.Google Scholar
  42. Kulikov, A. V., Bogatyrenko, V. R., Likhtenstein, G. I., Allakhverdiev, S. I., Klimov, V. V., Shuvalov, V. A., Krasnovskii, A. A. (1983b) Magnetic interaction of Mn with anion radical of pheophytin and cation radical of chlorophyll in reaction centers of photosystem 2, Biofizika 28, 357–363.PubMedGoogle Scholar
  43. Kulikov, A.V., Cherepanova, E.S., Bogatyrenko. V.R., Nasonova, T.A,. Fisher, V.R. and Yakubov, H.M. (1987) Determination of the depth of immersion of radicals into biological matrices by ESR. Bull. Acad. Sci. USSR, Div. Biol. Sci. N 5, 7762–7769.Google Scholar
  44. Kulikov, A. V., Cherepanova, E. S., Likhtenshtein, G. I., Uvarov, V. Yu. and Archakov, A. I. (1989) ESR Study of localization of cytochrome P450 in microsomes relative to aqueous and lipid phases. Biologich. Membrany 6, 1085–1094.Google Scholar
  45. Levitch, V. G., Dogonadze, R. R., German, E., Kuznetsov, A. N., and Kharakats, Yu. I. (1970) Theory of homogeneous reaction involving proton transfer. Electrochem. Acta 15, 353–368.CrossRefGoogle Scholar
  46. Likhtenshtein, G. I. (1968) Determination of the topography of proteins group using specific paramagnetic labels. Mol. Biol. (Moscow) 2, 234–240.Google Scholar
  47. Likhtenstein, G. I. (1976) Spin Labeling Methods in Molecular Biology, pp. 66–88, John Wiley & Son, New York.Google Scholar
  48. Likhtenstein, G. I. (1988a) Chemical Physics of Redox Metalloenzymes Catalysis. pp. 45–60, Springer Verlag, Heidelberg.CrossRefGoogle Scholar
  49. Likhtenshtein, G.I. (1988b) Structure and molecular dynamics of metalloenzymes studied by physical label methods. J. Molec. CataL 47, 128–129.Google Scholar
  50. Likhtenshtein, G.I. (1990) Nitroxide in the solution of some problems of chemical biophysics. Pure Appl. Chem 62, 281–288.Google Scholar
  51. Likhtenstein, G. I. (1993) Biophysical Labeling Methods in Molecular Biology, pp. 46–79, Cambridge University Press, New York, Cambridge.CrossRefGoogle Scholar
  52. Likhtenstein, G. I. (1995) Role of orbital overlap and local dynamics in long-distance electron transfer in photosynthetic centres and model systems. J. Photochem. Photobiol. A: Chemistry 96, 79–92.CrossRefGoogle Scholar
  53. Likhtenshtein, G. I., and Bobodzhanov, P. Kh. (1968) Investigation of the structure and local conformational changes of proteins and enzymes using double paramagnetic labels. Biofuika 13, 757–764.Google Scholar
  54. Likhtenstein, G. I., Grebentchikov, Yu. B., Bobodzhanov, P. Kh. and Kokhanov, Yu. V. (1970) Study on the proteins microstructure by method of spin-label paramagnetic probe. Mol. Biol. (Moscow) 4, 782–789.Google Scholar
  55. Likhtenstein, G. I., Grebentchikov, Yu. B., Rosantev, E. G. and Ivanov, V. P. (1972) Study on the electrostatic charges in proteins by method of paramagnetic probes. Mol. Biol. (Moscow) 6, 498–507.Google Scholar
  56. Likhtenshtein, G. I., Kotelnikov, A. I., and Kulikov, A. V. (1981) Structure of reaction centers of photosynthetic bacteria. Dokl. ANSSSR 257, 733–736.Google Scholar
  57. Likhtenshtein, G. I., Kulikov, A. V., Kotelnikov, A. I. and Bogatyrenko, V. R. (1982) Structure and action mechanism of reaction centers of photosynthetic bacteria. Photobiochem. Photobiol 3, 178–182.Google Scholar
  58. Likhtenshtein, G. I., Kulikov, A. V., Kotelnikov, A. I., and Levchenko, L. A. (1986) Methods of physical labels–a combined approach to the study of microstructure and dynamics of biological systems. J. Biochem. Biophys. Meth 12, 1–28.CrossRefGoogle Scholar
  59. Likhtenshtein, G. I., Kulikov, A. V. and Kotelnikov, A. V. (1993) Relaxation process involving nitroxyl radical in molecular biology. In: Bioactive Spin Labels ( Zhdanov, R. I., ed.) pp. 125–151, Springer-Verlag, Heidelberg.Google Scholar
  60. Likhtenshtein, G. I., Vaisbuch, I., Adin, I., Shames, A., and Glaser, R. (1997) Distribution of electrostatic-field around biological molecules studied by methods of spin-probes and NMR. Biophys. J. 72, Al29.Google Scholar
  61. Likhtenshtein, G. I., Adin I., Krasnoselsky,A., Vaisbuch, I. Shames, A., and Glaser, R. (1999) NMR and ESR studies of electric field distribution around biologically important molecules. Biophys. J 77, 443–454.PubMedCentralPubMedCrossRefGoogle Scholar
  62. Marcus, R. A. and Sutin, N. (1985) Electron transfer in chemistry and biology. Biochim. Biophys. Acta 811, 625–632.CrossRefGoogle Scholar
  63. Marsh, D. (1989) Experimental methods in spin-label analysis. Biol. Magn. Reson 8, 255–285.CrossRefGoogle Scholar
  64. McElroy, J. D., Mauzerall, D. C., and Feher, G. (1974) Characterization of primary donor of bacterial photosynthesis.2. Kinetic studies of the light-induced ESR signal at g = 2.0026 and the optical absorbance at cryogenic temperatures. Biochim. Biophys. Acta 333, 261–272.PubMedCrossRefGoogle Scholar
  65. Medzhidov, A. A., Likhtenshtein, G. I. and Kirichenko, L. A. (1969) Metallocomplexes with the paramagnetic ligands. Bull. Acad. Sci. USSR (Chemistry) N 3, 698–902.Google Scholar
  66. Michel, H. and Deisenhofer J. (1986) X-ray diffraction studies on a crystalline bacterial photosynthetic center. A progress report and conclusions on the structure of the photosystem II reaction center. In Encyclopedia of Plant Physiology, New Series, v.19, (Stachelin, L.A. and Arntzen, C.J (eds) pp. 371–381, Berlin, Springer-Verlag.Google Scholar
  67. More J. K., More K. M., Eaton G. R., and Eaton, S. S. (1990) Metal-nitroxyl interaction. 55: Manganase (III)-nitroxyl electron-electron spin-spin interaction. Pure Appl. Chem 62, 241–246.CrossRefGoogle Scholar
  68. Niccolai, N., Valensin, G., Rossi, C. and Gibbons, W. A. (1982) The stereochemistry and dynamics of natural products and biopolymers from proton relaxation spectroscopy: spin-label delineation of inner and outer protons of gramicidin S including hydrogen bonds. J. Am. Chem. Soc 104, 1534–1537.CrossRefGoogle Scholar
  69. Nicollai, N., Rossi, C., Valensin, G. Mascagni, P. and Gibbons, W. A. (1984) An investigation of the mechanisms of nitroxide-induced proton relaxation enhancements in biopolymers. J. Phys. Chem 88, 5689–5692.CrossRefGoogle Scholar
  70. Parmon, V. N., Kokorin, A. I., and Zhidomirov, G. M. (1980) Stable Biradicals, Nauka, Moscow.Google Scholar
  71. Perutz, M.F. (1989) Mechanisms of cooperativity and allosteric regulation in proteins. Quart. Rev. Biophys 22, 139–236.CrossRefGoogle Scholar
  72. Plachy, W. and Kivelson, D. (1967) Spin exchange in solution of di-tertiary-butyl nitroxide. J. Chem. Phys 47, 3312–3318.CrossRefGoogle Scholar
  73. Poulos, T. L., Finzel, B. C., Gunzalus, I. C., Wagner, G. C., and Kraut, J. (1985) The 2.6 A crystal structure of Pseudomonas putida cytochrome P-450. J. Biol. Chem 200, 16122–16130.Google Scholar
  74. Rich, P., Tiede, D.M, Bonner, W. D., Jr. (1979) Studies on the molecular organization of cytochromes P-450 and b5 in the microsomal membrane. Biochim. Biophys. Acta 546, 307–315.PubMedCrossRefGoogle Scholar
  75. Safronov S. N., Mstislayskii V. I., Safronova U. I. and Muromtsev, V. I. (1969) Method of determination of relaxation times from saturation curves of the signals in the fast transmission conditions. Savodskaya Laboratoria 35, 1463–1465.Google Scholar
  76. Salikhov, K.M., Doctorov, A.B., Mohn, Yu.N., and Zamaraev, K.I. (1971) Spin relaxation of radicals and complexes upon encounters in solution J. Magn. Reson. 5, 189–196.Google Scholar
  77. Salikhov, K. M., Semenov, A. G., and Tsvetkov, Yu. D. (1976) Electron Spin Echo and Its Application. Nauka, Novosibirsk p. 342Google Scholar
  78. Sletten, E., Jackson, J. I., Burns, P. D. and La Mar, G. N. (1983) Effects of cross relaxation on the analysis of T1 data in paramagnetic proteins. J. Magn. Reson 52, 492–496.Google Scholar
  79. Solomon, J. and Bloembergen, N. (1956) Nuclear magnetic interaction in HF molecule. J. Chem. Phys, 25, 261–266.CrossRefGoogle Scholar
  80. Sundin, A. (1991) MacMimic version 2.1. InStar Software, Lund, Sweden.Google Scholar
  81. Syrtsova, L. A., Likhtenstein, G. I., Pisarkaya, T. N., Berdinskii, V. L., Lezina, V. P. and Stepanyants, A. U. (1974) Estimation of the distance between the ATPase and substrate-binding sites in nitrogenase by the NMR- H method. Mol. Biol. (Moscow) 8, 656–662.Google Scholar
  82. Taylor, J. C., Leigh, J. S. and Cohn, M. (1969) The effect of dipole-dipole interaction between nitroxide radical and a paramagnetic ion on the line shape of the ESR spectra of radical. Proc. Natl. Acad. Sci. USA 64, 219–206.PubMedCentralPubMedCrossRefGoogle Scholar
  83. Tiede, D. M., Prince, R. C., Reed, G. H., and Dutton, P. L. (1976) EPR properties of the electron camer intermediate between the reaction center bacteriochlorophyls and the primary acceptor. FEBS Lett. 65, 301–304.PubMedCrossRefGoogle Scholar
  84. Wien, R. W., Morriset, J. D. and McConnell, H. M. (1972) Spin-label induced nuclear relaxation. Distances between bound sacchat’ides, histidine-15, and tryptophan-123 on lysozyme in solution. Biochemistry 11, 3707–3716.PubMedCrossRefGoogle Scholar
  85. Zamaraev K. I., Molin Yu. N., Salikhov K. M. (1977) Spin Exchange. Theory and Physicochemical Application, Nauka, Novosibirsk pp. 267–278.Google Scholar
  86. Zamaraev K. I., Mohn Yu. N., Salikhov K. M. (1981) Spin Exchange. Theory and Physicochemical Application Springer-Verlag.Google Scholar

Copyright information

© Kluwer Academic / Plenum Publishers, New York 2002

Authors and Affiliations

  • Gertz I. Likhtenshtein
    • 1
  1. 1.Department of ChemistryBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations