Advertisement

EPR Spectroscopic Ruler: the Method and its Applications

  • Wenzhong Xiao
  • Yeon-Kyun Shin
Chapter
Part of the Biological Magnetic Resonance book series (BIMR, volume 19)

Abstract

The distance measurement method based on Fourier deconvolution of dipolar coupling in spin-labeled EPR spectra provides a new way of examining the structure and function of biological macromolecules. In this chapter, we describe a new approach that has been developed for effective and reasonably accurate data analysis, followed by discussions of several successful applications to interesting biological problems on membrane-associated proteins. This method of EPR spectroscopic ruler has emerged as a powerful tool to investigate the functions of membrane-associated proteins.

Keywords

Spin Label Coiled Coil Snare Complex Interspin Distance Distance Measurement Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ban, N., Nissen, P., Hansen, J., Capel, M., Moore, P., and Steitz, T. (1999). Placement of protein and RNA structures into a 5 A-resolution map of the 50S ribosomal subunit. Nature 400, 841–847.PubMedCrossRefGoogle Scholar
  2. Bennett, M., and Scheller, R. (1994). A molecular description of synaptic vesicle membrane trafficking. Ann. Rev. Biochem. 63, 63–100.PubMedCrossRefGoogle Scholar
  3. Berger, B., Wilson, D. B., Wolf, E., Tonchev, T., Mille, M., and Kim, P. S. (1995). Predicting coiled coils by use of pairwise residue correlations. Proc. Natl. Acad. Sci. USA 92, 8259–8263.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Broadie, K., Prokop, A., Bellen, H., O’Kane, C., Schulze, K., and Sweeney, S. (1995). Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 15, 663–673.PubMedCrossRefGoogle Scholar
  5. Cate, J., Yusupov, M., Yusupova, G., Earnest, T., and Noller, H. (1999). X-ray crystal structures of 70S ribosome functional complexes. Science 285, 2095–2104.PubMedCrossRefGoogle Scholar
  6. Chapman, E., An, S., Barton, N., and Jahn, R. (1994). SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. J. Biol. Chem. 269, 27427–27432.PubMedGoogle Scholar
  7. Clemons, W., May, J., Wimberly, B., McCutcheon, J., Capel, M., and Ramakrishnan, V. (1999). Structure of a bacterial 30S ribosomal subunit at 5.5 A resolution. Nature 400, 833–840.PubMedCrossRefGoogle Scholar
  8. Creighton, T. (1983). “Proteins”, Freeman, New York, NY.Google Scholar
  9. Edman, K., Nollert, P., Royant, A., Belrhali, H., Pebay-Peyroula, E., Hajdu, J., Neutze, R. and Landau, E. M. (1999). High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 401, 822–826.PubMedCrossRefGoogle Scholar
  10. Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. and Khorana, H. G. (1996). Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770.PubMedCrossRefGoogle Scholar
  11. Fasshauer, D., Bruns, D., Shen, B., Jahn, R., and Briinger, A. T. (1997a). A structural change occurs upon binding of syntaxin to SNAP-25. J. Biol. Chem. 272, 4582–4590.PubMedCrossRefGoogle Scholar
  12. Fasshauer, D., Otto, H., Eliason, W., Jahn, R., and Brünger, A. T. (1997b). Structural changes are associated with soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J Biol. Chem. 272, 28036–28041.PubMedCrossRefGoogle Scholar
  13. Gerstein, M. (1998). Patterns of protein-fold usage in eight microbial genomes: a comprehensive structural census. Proteins 33, 518–534.PubMedCrossRefGoogle Scholar
  14. Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M. and Henderson, R. (1996). Electron crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421.PubMedCrossRefGoogle Scholar
  15. Hanson, P., Roth, R., Morisaki, H., Jahn, R., and Heuser, J. (1997). Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535.PubMedCrossRefGoogle Scholar
  16. Haupts, U., Tittor, J., and Oesterhelt, D. (1997) Closing in on bacteriorhodopsin: progress in understanding the molecule. Ann. Rev. Biophys. Biomol. Struct. 28, 367–399.CrossRefGoogle Scholar
  17. Hayashi, T., McMahon, H., Yamasaki, S., Binz, T., Hata, Y., Südhof, T., and Nieman, H. (1994). Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051–5061.Google Scholar
  18. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, R., Beckmann, E. and Downing, K. H. (1990). Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy. J. Mol. Biol. 213, 899–929.PubMedCrossRefGoogle Scholar
  19. Hubbell W. L., and Altenbach C. (1994). Investigation of structure and dynamics in membrane proteins using site-directed spin labelling. Curr. Opin. Struct. Biol. 4, 566–573.CrossRefGoogle Scholar
  20. Hustedt, E., and Beth, A. (1999). Nitroxide spin-spin interactions: applications to protein structure and dynamics. Ann. Rev. Biophys. Biomol. Struct. 28, 129–153.CrossRefGoogle Scholar
  21. Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H. (1995). Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376, 660–669.PubMedCrossRefGoogle Scholar
  22. Jardetzky, O. (1966). Simple allosteric model for membrane pumps. Nature 211, 969–970.PubMedCrossRefGoogle Scholar
  23. Kee, Y., Lin, R., Hsu, S., and Scheller, R. (1995). Distinct domains of syntaxin are required for synaptic vesicle fusion complex formation and dissociation. Neuron 14, 991–998.PubMedCrossRefGoogle Scholar
  24. Lanyi, J. K. (1995). Bacteriorhodopsin as a model for proton pumps. Nature 375, 461–463.PubMedCrossRefGoogle Scholar
  25. Lin, R., and Scheller, R. (1997). Structural organization of the synaptic exocytosis core complex. Neuron 19, 1087–1094.PubMedCrossRefGoogle Scholar
  26. Luecke, H., Schobert, B., Richter, H.T., Cartailler, J. P. and Lanyi, J. K. (1999) Structural changes in bacteriorhodopsin during ion transport at 2 Angstrom resolution. Science 286, 255–260.PubMedCrossRefGoogle Scholar
  27. Lupas, A. (1996). Prediction and analysis of coiled-coil structures. Methods Enzymol. 266, 513–525.PubMedCrossRefGoogle Scholar
  28. Marqusee S., Robbins V., Baldwin R. (1989). Unusually stable helix formation in short alanine-based peptides. Proc. Natl. Acad. Sci. USA 86, 5286–5290.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Milligan, D. L., and Koshland, D. E. (1991). Intrasubunit signal transduction by the aspartate chemoreceptor. Science 254, 1651–1654.PubMedCrossRefGoogle Scholar
  30. Nickel, W., Weber, T., McNew, J. A., Parlati, F., Sollner, T. H., and Rothman, J. E. (1999). Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proc. Natl. Acad. Sci. USA 96, 12571–12576.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Niemann, H., Blasi, J., and Jahn, R. (1994). Clostridial neurotoxins: New tools for dissecting exocytosis. Trends Cell Biol. 4, 179–185.PubMedCrossRefGoogle Scholar
  32. Ottemann, K. M., Thorgeirsson, T., Kolodziej, A., Shin, Y.-K., and Koshland, D. E. (1998). Direct measurement of small ligand-induced conformational changes in the aspartate chemoreceptor using EPR. Biochemistry 37, 7062–7069.PubMedCrossRefGoogle Scholar
  33. Ottemann, K. M., Xiao, W., Shin, Y.-K., and Koshland, D. E. (1999). A piston model for transmembrane signaling of the aspartate receptor. Science 285, 1751–1754.PubMedCrossRefGoogle Scholar
  34. Otto, H., Hanson, P., and Jahn, R. (1997). Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. Proc. Natl. Acad. Sci. USA 94, 6197–6201.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Parlati, F., Weber, T., McNew, J., Westermann, B., Sollner, T., and Rothman, J. E. (1999) Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc. Natl. Acad. Sci. USA 96, 12565–12570.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Pebay-Peyroula, E., Rummel, G., Rosenbusch, J., and Landau, E. (1997). X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277, 1676–1681.PubMedCrossRefGoogle Scholar
  37. Perozo, E., Cortes, D. M., and Cuello, L. G. (1999). Structural rearrangements underlying K+-channel activation gating. Science 285: 73–78.PubMedCrossRefGoogle Scholar
  38. Poirier, M., Hao, J., Malkus, P., Chan, C., Moore, M., King, D., and Bennett, M. (1998a) Protease resistance of syntaxin SNAP-25 VAMP complexes. J. Biol. Chem. 273, 11370–11377.PubMedCrossRefGoogle Scholar
  39. Poirier, M., Xiao, W., Macosko, J., Chan, C., Shin, Y.-K., and Bennett, M. (1998b). The synaptic SNARE complex is a parallel four-stranded helical bundle. Nature Struct. Biol. 5, 765–769.PubMedCrossRefGoogle Scholar
  40. Rabenstein, M., and Shin, Y.-K. (1995). Determination of the distance between two spin labels attached to a macromolecule. Proc. Natl. Acad. Sci. USA 92, 8239–8243.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Spudich, J. L. and Lanyi, J. K. (1996). Shuttling between two protein conformations: the common mechanism for sensory transduction and ion transport. Curr. Opin. Cell. Biol. 8, 452–457.PubMedCrossRefGoogle Scholar
  42. Subramaniam S., Gerstein M., Oesterhelt D. and Henderson R. (1993). Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBOJ. 12, 1–8.Google Scholar
  43. Südhof, T. (1995). The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375, 645–653.PubMedCrossRefGoogle Scholar
  44. Sutton, R. B., Fasshauer, D., Jahn, R., and Brünger, A. T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 angstrom resolution. Nature 395, 347–353.PubMedCrossRefGoogle Scholar
  45. Tanford, C. (1983). Translocation pathway in the catalysis of active transport. Proc. Natl. Acad. Sci. USA 80, 3701–3705.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Thorgeirsson, T. E., Xiao, W., Brown, L. S., Needleman, R., Lanyi, J. K., and Shin, Y.-K. (1997). Transient channel-opening in bacteriorhodopsin: an EPR study. J. Mol. Biol. 273, 951–957.PubMedCrossRefGoogle Scholar
  47. Unwin, N. (1995). Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43.PubMedCrossRefGoogle Scholar
  48. Vonck, J. (1996). A three-dimensional difference map of the N intermediate in the bacteriorhodopsin photocycle: part of the F helix tilts in the M to N transition. Biochemistry 35, 5870–5878.PubMedCrossRefGoogle Scholar
  49. Weber, T., Zemeiman, B., McNew, J., Westermann, B., Gmachi, M., Panarti, F., Sóliner, T., and Rothman, J. E. (1998). SNAREpins: Minimal machinery for membrane fusion. Cell 92, 759–772.PubMedCrossRefGoogle Scholar
  50. Weimbs, T., Low, S., Chapin, S., Mostov, K., Bucher, P., and Hofmann, K. (1997). A conserved domain is present in different families of vesicular fusion proteins: a new superfamily. Proc. Natl. Acad. Sci. U S A 94, 3046–3051.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Weimbs, T., Mostov, K., Low, S., and Hofinan, K. (1998). A model for structural similarity between different SNARE complexes based on sequence relationships. Trends Cell Biol. 8, 260–262.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic / Plenum Publishers, New York 2002

Authors and Affiliations

  • Wenzhong Xiao
    • 1
  • Yeon-Kyun Shin
    • 2
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Biochemistry and BiophysicsIowa State UniversityAmesUSA

Personalised recommendations