Advertisement

Determination of Protein Folds and Conformational Dynamics Using Spin-Labeling EPR Spectroscopy

  • Hassane S. Mchaourab
  • Eduardo Perozo
Chapter
Part of the Biological Magnetic Resonance book series (BIMR, volume 19)

Abstract

The near completion of a large number of genome sequencing projects is ushering in a new perspective on how research in biological and biomedical sciences will be conducted in the future, both at the conceptual and experimental levels. The rush is on to transform the molecular blueprints of life into global views of the biochemical and physiological circuitry that interconnect to form entire organisms. The evolutionary histories, now available as multiple sequence alignments, will be complemented with pictures of evolving structures. In this post genomic era, the process of scientific discovery will be the result of large-scale parallel measurements to answer questions formulated from a genomic perspective.

Keywords

Spin Label Transmembrane Segment Snare Complex Conformational Dynamics Lactose Permease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A. (1961). Principles of Nuclear Magnetism. Oxford: Oxford University Press.Google Scholar
  2. Altenbach, C., Cai, K., Khorana, H. G. and Hubbell, W. L. (1999a) Structural features and light-dependent changes in the sequence 306322 extending from helix VII to the palmitoylation sites in rhodopsin: a site-directed spin-labeling study. Biochemistry 38, 7931–7.PubMedCrossRefGoogle Scholar
  3. Altenbach, C., Klein-Seetharaman, J., Hwa, J., Khorana, H. G. and Hubbell, W. L. (1999b). Structural features and light-dependent changes in the sequence 59–75 connecting helices I and II in rhodopsin: a site-directed spin-labeling study. Biochemistry 38, 7945–9.PubMedCrossRefGoogle Scholar
  4. Altenbach, C., Marti, T., Khorana, H. G. and Hubbell, W. L. (1990). Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science 248, 1088–92.PubMedCrossRefGoogle Scholar
  5. Altenbach, C., Yang, K., Farrens, D. L., Farahbakhsh, Z. T., Khorana, H. G. and Hubbell, W. L. (1996). Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study. Biochemistry 35, 12470–8.PubMedCrossRefGoogle Scholar
  6. Armstrong, C. M. (1971). Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. Journal of General Physiology 58, 413–37.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Berengian, A. R., Bova, M. P. and Mchaourab, H. S. (1997). Structure and function of the conserved domain in aA-crystallin. Site-directed spin labeling identifies a beta-strand located near a subunit interface. Biochemistry 36, 9951–7.PubMedCrossRefGoogle Scholar
  8. Berengian, A. R., Parfenova, M. and Mchaourab, H. S. (1999). Site-directed spin labeling study of subunit interactions in the a-crystallin domain of small heat-shock proteins. Comparison of the oligomer symmetry in aA-crystallin, HSP 27, and HSP 16.3. Journal of Biological Chemistry 274, 6305–14.PubMedCrossRefGoogle Scholar
  9. Bova, M. P., Ding, L. L., Horwitz, J. and Fung, B. K. (1997). Subunit exchange of aA-crystallin. Journal of Biological Chemistry 272, 29511–7.PubMedCrossRefGoogle Scholar
  10. Bowie, J. U. (1997). Helix packing in membrane proteins. Journal of Molecular Biology 272, 780–9.PubMedCrossRefGoogle Scholar
  11. Burley, S. K., Almo, S. C., Bonanno, J. B., Capel, M., Chance, M. R., Gaasterland, T., Lin, D., Sali, A., Studier, F. W. and Swaminathan, S. (1999). Structural genomics: beyond the human genome project. Nature Genetics 23, 151–7.PubMedCrossRefGoogle Scholar
  12. Burr, M. and Koshland, D. E. (1964). Use of “reporter groups” in structure. function studies of proteins. Biochemistry 52, 1017–1024.Google Scholar
  13. Caffrey, M., Cai, M., Kaufman, J., Stahl, S. J., Wingfield, P. T., Covell, D. G., Gronenbom, A. M. and Clore, G. M. (1998). Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41. EMBO Journal 17, 4572–84.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Chan, D. C., Fass, D., Berger, J. M. and Kim, P. S. (1997). Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–73.PubMedCrossRefGoogle Scholar
  15. Chang, Z., Primm, T. P., Jakana, J., Lee, I. H., Serysheva, I., Chiu, W., Gilbert, H. F. and Quiocho, F. A. (1996). Mycobacterium tuberculosis 16-kDa antigen (Hsp16.3) functions as an oligomeric structure in vitro to suppress thermal aggregation. Journal of Biological Chemistry 271, 7218–23.PubMedCrossRefGoogle Scholar
  16. Chervitz, S. A. and Falke, J. J. (1996). Molecular mechanism of transmembrane signaling by the aspartate receptor: a model. Proceedings of the National Academy of Sciences of the United States of America 93, 2545–50.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Chothia, C. (1984). Principles that determine the structure of proteins. Annual Review of Biochemistry 53, 537–72.PubMedCrossRefGoogle Scholar
  18. Chothia, C. and Finkelstein, A. V. (1990). The classification and origins of protein folding patterns. Annual Review of Biochemistry 59, 1007–39.PubMedCrossRefGoogle Scholar
  19. Chothia, C., Hubbard, T., Brenner, S., Barns, H. and Murzin, A. (1997). Protein folds in the all-beta and all-a classes. Annual Review of Biophysics & Biomolecular Structure 26, 597–627.CrossRefGoogle Scholar
  20. Cornette, J. L., Cease, K. B., Margalit, H., Spouge, J. L., Berzofsky, J. A. and DeLisi, C. (1987). Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. Journal of Molecular Biology 195, 659–85.PubMedCrossRefGoogle Scholar
  21. Cuello, L. G., Romero, J. G., Cortes, D. M. and Perozo, E. (1998). pH-dependent gating in the Streptomyces lividans K+ channel. Biochemistry 37, 3229–36.PubMedCrossRefGoogle Scholar
  22. de Jong, W. W., Caspers, G. J. and Leunissen, J. A. (1998). Genealogy of the a-crystallin-small heat-shock protein superfamily. International Journal of Biological Macromolecules 22, 151–62.PubMedCrossRefGoogle Scholar
  23. Donnelly, D., Overington, J. P. and Blundell, T. L. (1994). The prediction and orientation of a-helices from sequence alignments: the combined use of environment-dependent substitution tables, Fourier transform methods and helix capping rules. Protein Engineering 7, 645–53.PubMedCrossRefGoogle Scholar
  24. Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T. and MacKinnon, R. (1998). The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77.PubMedCrossRefGoogle Scholar
  25. Eaton, G. R. and Eaton, S. S. (1989). Resolved electron-electron spin-spin splittings in EPR spectra. In Biological Magnetic Resonance, vol. 8 (ed. L. J. Berliner and J Reuben ), pp. 340–397. New York: Plenum.Google Scholar
  26. Faber, H. R. and Matthews, B. W. (1990). A mutant T4 lysozyme displays five different crystal conformations. Nature 348, 263–6.PubMedCrossRefGoogle Scholar
  27. Fajer, P. G. (2000) EPR in Peptide and Protein Analysis. In Encyclopedia of Analytical Chemistry (ed. R.A. Meyers) John Wiley and Sons, Ltd. In press.Google Scholar
  28. Falke, J. J., Bass, R. B., Butler, S. L., Chervitz, S. A. and Danielson, M. A. (1997). The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annual Review of Cell & Developmental Biology 13, 457–512.CrossRefGoogle Scholar
  29. Farahbakhsh, Z. T., Hideg, K. and Hubbell, W. L. (1993). Photoactivated conformational changes in rhodopsin: a time-resolved spin label study. Science 262, 1416–9.PubMedCrossRefGoogle Scholar
  30. Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. and Khorana, H. G. (1996). Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–70.PubMedCrossRefGoogle Scholar
  31. Freed, J. H. and Schneider, D. J. (1989). Calculating slow motional magnetic resonance spectra: A user’s guide. In Biological Magnetic Resonance, vol. 8 (ed. L. J. a. R. Berliner, J. ), pp. 1–76. New York: Plenum.Google Scholar
  32. Froncisz, W. and J.S., H. (1982). The loop-gap resonator: A new microwave lumped circuit ESR sample structure. J. Magn. Reson. 47, 515–522.Google Scholar
  33. Gaasterland, T. (1998a). Structural genomics taking shape. Trends in Genetics 14, 135.PubMedCrossRefGoogle Scholar
  34. Gaasterland, T. (1998b). Structural genomics: bioinformatics in the driver’s seat. Nature Biotechnology 16, 625–7.PubMedCrossRefGoogle Scholar
  35. Gerstein, M., Lesk, A. M. and Chothia, C. (1994). Structural mechanisms for domain movements in proteins. Biochemistry 33, 6739–49.PubMedCrossRefGoogle Scholar
  36. Gross, A., Columbus, L., Hideg, K., Altenbach, C. and Hubbell, W. L. (1999). Structure of the KcsA potassium channel from Streptomyces lividans: a site-directed spin labeling study of the second transmembrane segment. Biochemistry 38, 10324–35.PubMedCrossRefGoogle Scholar
  37. Haley, D. A., Horwitz, J. and Stewart, P. L. (1998). The small heat-shock protein, aB-crystallin, has a variable quatemary structure. Journal of Molecular Biology 277, 27–35.PubMedCrossRefGoogle Scholar
  38. Hanson, P., Millhauser, G., Formaggio, F., Crisma, M. and Toniolo, C. (1996). Esr Characterization of Hexameric, Helical Peptides Using Double Toac Spin Labeling. Journal of the American Chemical Society 118, 7618–7625.CrossRefGoogle Scholar
  39. Havel, T. F. (1991). An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. Progress in Biophysics & Molecular Biology 56, 43–78.CrossRefGoogle Scholar
  40. He, M. M., Sun, J. and Kaback, H. R. (1996). Cysteine-scanning mutagenesis of transmembrane domain XII and the flanking periplasmic loop in the lactose permease of EScherichia coli. Biochemistry 35, 12909–14.PubMedCrossRefGoogle Scholar
  41. He, M. M., Voss, J., Hubbell, W. L. and Kaback, H. R. (1997). Arginine 302 (helix IX) in the lactose permease of Escherichia coli is in close proximity to glutamate 269 (helix VIII) as well as glutamate 325. Biochemistry 36, 13682–7.PubMedCrossRefGoogle Scholar
  42. Heginbotham, L., Kolmakova Partensky, L. and Miller, C. (1998). Functional reconstitution of a prokaryotic K+ channel. Journal of General Physiology 111, 741–9.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Heginbotham, L., LeMasurier, M., Kolmakova-Partensky, L. and Miller, C. (1999). Single streptomyces lividans K+ channels: functional asymmetries and sidedness of proton activation. Journal of General Physiology 114, 551–60.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Heginbotham, L., Lu, Z., Abramson, T. and MacKinnon, R. (1994). Mutations in the K+ channel signature sequence. Biophysical Journal 66, 1061–7.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E. and Downing, K. H. (1990). Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. Journal of Molecular Biology 213, 899–929.PubMedCrossRefGoogle Scholar
  46. Horwitz, J. (1993). The function of a-crystallin. Investigative Ophthalmology & Visual Science 34, 10–22.Google Scholar
  47. Hubbell, W. L. and Altenbach, C. (1994). Site-directed spin labeling of membrane proteins. In Membrane protein structure. Experimental approaches (ed. S. H. White ). New York, NY: Oxford Univ. Press.Google Scholar
  48. Hubbell, W. L., Gross, A., Langen, R. and Lietzow, M. A. (1998). Recent Advances in Site-Directed Spin Labeling of Proteins. Current Opinion in Structural Biology 8, 649–656.PubMedCrossRefGoogle Scholar
  49. Hubbell, W. L., Mchaourab, H. S., Altenbach, C. and Lietzow, M. A. (1996). Watching proteins move using site-directed spin labeling. Structure 4, 779–83.PubMedCrossRefGoogle Scholar
  50. Hustedt, E. J., Smirnov, A. I., Laub, C. F., Cobb, C. E. and Beth, A. H. (1997). Molecular Distances From Dipolar Coupled Spin-Labels–the Global Analysis of Multifrequency Continuous Wave Electron Paramagnetic Resonance Data. Biophysical Journal 72, 1861–1877.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Hyde, J. S. and Subczynski, W. K. (1989). Spin label oxymetry. In Biological Magnetic Resonance, vol. 8 (ed. L. J. a. R. Berliner, J. ), pp. 399–425. New York: Plenum.Google Scholar
  52. Janin, J., and Chothia, C. (1980). Packing of a-helices onto beta-pleated sheets and the anatomy of a/ß proteins. J. Mol. Biol 143, 95–128.PubMedCrossRefGoogle Scholar
  53. Kaback, H. R. and Wu, J. H. (1999). What to do while awaiting crystals of a membrane transport protein and thereafter. Accounts of Chemical Research 32, 805–813.CrossRefGoogle Scholar
  54. Kabsch, W. and Sander, C. (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–637.PubMedCrossRefGoogle Scholar
  55. Kim, K. K., Yokota, H. and Kim, S. H. (1999). Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400, 787–92.PubMedCrossRefGoogle Scholar
  56. Kim, S. H. (1998). Shining a light on structural genomics. Nature Structural Biology 5, 643–5.PubMedCrossRefGoogle Scholar
  57. Koteiche, H. A., Berengian, A. R. and Mchaourab, H. S. (1998). Identification of protein folding patterns using site.directed spin labeling. Structural characterization of a beta-sheet and putative substrate binding regions in the conserved domain of a A-crystallin. Biochemistry 37, 12681–8.PubMedCrossRefGoogle Scholar
  58. Koteiche, H. A. and Mchaourab, H. S. (1999). Folding pattern of the acrystallin domain in aA-crystallin determined by site-directed spin labeling. Journal of Molecular Biology 294, 561–77.PubMedCrossRefGoogle Scholar
  59. Kuroki, R., Weaver, L. H. and Matthews, B. W. (1993). A covalent enzyme-substrate intermediate with saccharide distortion in a mutant T4 lysozyme. Science 262, 2030–3.PubMedCrossRefGoogle Scholar
  60. Langen, R., Cai, K., Altenbach, C., Khorana, H. G. and Hubbell, W. L. (1999). Structural features of the C-terminal domain of bovine rhodopsin: a site-directed spin-labeling study. Biochemistry 38, 7918–24.PubMedCrossRefGoogle Scholar
  61. Langen, R., Isas, J. M., Luecke, H., Haigler, H. T. and Hubbell, W. L. (1998). Membrane-mediated assembly of annexins studied by site-directed spin labeling. Journal of Biological Chemistry 273, 22453–7.PubMedCrossRefGoogle Scholar
  62. Liu, Y., Holmgren, M., Jurman, M. E. and Yellen, G. (1997). Gated access to the pore of a voltage-dependent K+ channel. Neuron 19, 175–84.PubMedCrossRefGoogle Scholar
  63. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P. and Lanyi, J. K. (1999). Structure of bacteriorhodopsin at 1.55 A resolution. Journal of Molecular Biology 291, 899–911.PubMedCrossRefGoogle Scholar
  64. Matthews, B. W. (1995). Studies on protein stability with T4 lysozyme. Advances in Protein Chemistry 46, 249–78.PubMedCrossRefGoogle Scholar
  65. Mchaourab, H. S., Berengian, A. R. and Koteiche, H. A. (1997a). Site-directed spin-labeling study of the structure and subunit interactions along a conserved sequence in the a-crystallin domain of heat-shock protein 27. Evidence of a conserved subunit interface. Biochemistry 36, 14627–34.PubMedCrossRefGoogle Scholar
  66. Mchaourab, H. S., Lietzow, M. A., Hideg, K. and Hubbell, W. L. (1996). Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry 35, 7692–704.PubMedCrossRefGoogle Scholar
  67. Mchaourab, H. S., Oh, K. J., Fang, C. J. and Hubbell, W. L. (1997b). Conformation of T4 lysozyme in solution. Hinge-bending motion and the substrate-induced conformational transition studied by site-directed spin labeling. Biochemistry 36, 307–16.PubMedCrossRefGoogle Scholar
  68. Michon, J. and Rassat, A. (1974). Rotational correlation time determination of nitroxide biradical aplication to solution studies. J. Amer. Chem. Soc. 96, 335–337.CrossRefGoogle Scholar
  69. Milburn, M. V., Prive, G. G., Milligan, D. L., Scott, W. G., Yeh, J., Jancarik, J., Koshland, D. E., Jr. and Kim, S. H. (1991). Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. Science 254, 1342–7.PubMedCrossRefGoogle Scholar
  70. Montelione, G. T. and Anderson, S. (1999). Structural genomics: keystone for a Human Proteome Project. Nature Structural Biology 6, 11–2.PubMedCrossRefGoogle Scholar
  71. Ogawa, S. and McConnell, H. M. (1967). Spin-label study of hemoglobin conformations in solution. Proceedings of the National Academy of Sciences of the United States of America 58, 19–26.PubMedCentralPubMedCrossRefGoogle Scholar
  72. Ogawa, S., McConnell, H. M. and Horwitz, A. (1968). Overlapping conformation changes in spin-labeled hemoglobin. Proceedings of the National Academy of Sciences of the United States of America 61, 4015.CrossRefGoogle Scholar
  73. Oh, K. J., Zhan, H., Cui, C., Hideg, K., Collier, R. J. and Hubbell, W. L. (1996). Organization of diphtheria toxin T domain in bilayers: a site-directed spin labeling study. Science 273, 810–2.PubMedCrossRefGoogle Scholar
  74. Ottemann, K. M., Thorgeirsson, T. E., Kolodziej, A. F., Shin, Y. K. and Koshland, D. E. (1998). Direct Measurement of Small Ligand-Induced Conformational Changes in the Aspartate Chemoreceptor Using Epr. Biochemistry 37, 7062–7069.PubMedCrossRefGoogle Scholar
  75. Ottemann, K. M., Xiao, W. Z., Shin, Y. K. and Koshland, D. E. (1999). A piston model for transmembrane signaling of the aspartate receptor. Science 285, 1751–1754.PubMedCrossRefGoogle Scholar
  76. Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P. and Landau, E. M. (1997). X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277, 1676–81.PubMedCrossRefGoogle Scholar
  77. Perozo, E., Cortes, D. M. and Cuello, L. G. (1998). Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nature Structural Biology 5, 459–69.PubMedCrossRefGoogle Scholar
  78. Perozo, E., Cortes, D. M. and Cuello, L. G. (1999). Structural rearrangements underlying K+-channel activation gating. Science 285, 73–8.PubMedCrossRefGoogle Scholar
  79. Poirier, M. A., Xiao, W., Macosko, J. C., Chan, C., Shin, Y. K. and Bennett, M. K. (1998). The synaptic SNARE complex is a parallel four-stranded helical bundle. Nature Structural Biology 5, 765–9.PubMedCrossRefGoogle Scholar
  80. Rabenstein, M. D. and Shin, Y. K. (1995). Determination of the distance between two spin labels attached to a macromolecule. Proceedings of the National Academy of Sciences of the United States of America 92, 8239–43.PubMedCentralPubMedCrossRefGoogle Scholar
  81. Rabenstein, M. D. and Shin, Y. K. (1996). HIV-1 gp41 tertiary structure studied by EPR spectroscopy. Biochemistry 35, 13922–8.PubMedCrossRefGoogle Scholar
  82. Rees, D. C., DeAntonio, L. and Eisenberg, D. (1989). Hydrophobic organization of membrane proteins. Science 245, 510–3.PubMedCrossRefGoogle Scholar
  83. Rink, T., Riesle, J., Oesterhelt, D., Gerwert, K. and Steinhoff, H. J. (1997). Spin-labeling studies of the conformational changes in the vicinity of D36, D38, T46, and E161 of bacteriorhodopsin during the photocycle. Biophysical Journal 73, 983–93.PubMedCentralPubMedCrossRefGoogle Scholar
  84. Robinson, B. H., Haas, D. A. and Mailer, C. (1994). Molecular dynamics in liquids: spin-lattice relaxation of nitroxide spin labels. Science 263, 490–3.PubMedCrossRefGoogle Scholar
  85. Salwinski, L. and Hubbell, W. L. (1999). Structure in the channel forming domain of colicin El bound to membranes: the 402–424 sequence. Protein Science 8, 562–72.PubMedCentralPubMedCrossRefGoogle Scholar
  86. Schrempf, H., Schmidt, O., Kummerlen, R., Hinnah, S., Muller, D., Betzler, M., Steinkamp, T. and Wagner, R. (1995). A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO Journal 14, 5170–8.PubMedCentralPubMedGoogle Scholar
  87. Shin, Y. K., Levinthal, C., Levinthal, F. and Hubbell, W. L. (1993). Colicin E 1 binding to membranes: time-resolved studies of spin-labeled mutants. Science 259, 960–3.PubMedCrossRefGoogle Scholar
  88. Steinhoff, H. J. and Hubbell, W. L. (1996). Calculation of electron paramagnetic resonance spectra from Brownian dynamics trajectories: application to nitroxide side chains in proteins. Biophysical Journal 71, 2201–12.PubMedCentralPubMedCrossRefGoogle Scholar
  89. Steinhoff, H. J., Mollaaghababa, R., Altenbach, C., Hideg, K., Krebs, M., Khorana, H. G. and Hubbell, W. L. (1994). Time-resolved detection of structural changes during the photocycle of spin-labeled bacteriorhodopsin. Science 266, 105–7.PubMedCrossRefGoogle Scholar
  90. Subramaniam, S. and Henderson, R. (1999). Electron crystallography of bacteriorhodopsin with millisecond time resolution. Journal of Structural Biology 128, 19–25.PubMedCrossRefGoogle Scholar
  91. Sun, J., Voss, J., Hubbell, W. L. and Kaback, H. R. (1999). Proximity between periplasmic loops in the lactose permease of Escherichia coli as determined by site-directed spin labeling. Biochemistry 38, 3100–5.PubMedCrossRefGoogle Scholar
  92. Sutton, R. B., Fasshauer, D., Jahn, R. and Brunger, A. T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347–53.PubMedCrossRefGoogle Scholar
  93. Terwilliger, T. C., Waldo, G., Peat, T. S., Newman, J. M., Chu, K. and Berendzen, J. (1998). Class-directed structure determination foundation for a protein structure initiative. Protein Science 7, 1851–6.PubMedCentralPubMedCrossRefGoogle Scholar
  94. Thorgeirsson, T. E., Xiao, W., Brown, L. S., Needleman, R., Lanyi, J. K. and Shin, Y. K. (1997). Transient channel-opening in bacteriorhodopsin: an EPR study. Journal of Molecular Biology 273, 951–7.PubMedCrossRefGoogle Scholar
  95. Ujwal, M. L., Jung, H., Bibi, E., Manoil, C., Altenbach, C., Hubbell, W. L. and Kaback, H. R. (1995). Membrane topology of helices VII and XI in the lactose permease of Escherichia coli studied by lacY-phoA fusion analysis and site-directed spectroscopy. Biochemistry 34, 14909–17.PubMedCrossRefGoogle Scholar
  96. Unger, V. M., Hargrave, P. A., Baldwin, J. M. and Schertler, G. F. (1997). Arrangement of rhodopsin transmembrane a-helices. Nature 389, 2036.Google Scholar
  97. Voss, J., He, M. M., Hubbell, W. L. and Kaback, H. R. (1996). Site-directed spin labeling demonstrates that transmembrane domain XII in the lactose permease of Escherichia coli is an a-helix. Biochemistry 35, 12915–8.PubMedCrossRefGoogle Scholar
  98. Voss, J., Hubbell, W. L., Hemandez-Borrell, J. and Kaback, H. R. (1997). Site-directed spin-labeling of transmembrane domain VII and the 4B1 antibody epitope in the lactose permease of Escherichia coli. Biochemistry 36, 15055–61.PubMedCrossRefGoogle Scholar
  99. Voss, J., Hubbell, W. L. and Kaback, H. R. (1995a). Distance determination in proteins using designed metal ion binding sites and site-directed spin labeling: application to the lactose permease of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 92, 12300–3.PubMedCentralPubMedCrossRefGoogle Scholar
  100. Voss, J., Hubbell, W. L. and Kaback, H. R. (1998). Helix packing in the lactose permease determined by metal-nitroxide interaction. Biochemistry 37, 211–6.PubMedCrossRefGoogle Scholar
  101. Voss, J., Salwinski, L., Kaback, H. R. and Hubbell, W. L. (1995b). A method for distance determination in proteins using a designed metal ion binding site and site-directed spin labeling: evaluation with T4 lysozyme. Proceedings of the National Academy of Sciences of the United States of America 92, 12295–9.PubMedCentralPubMedCrossRefGoogle Scholar
  102. Wahl, P. and Weber, G. (1967). Fluorescence depolarization of rabbit gamma globulin conjugates. Journal of Molecular Biology 30, 371–82.PubMedCrossRefGoogle Scholar
  103. Wang, Q., Voss, J., Hubbell, W. L. and Kaback, H. R. (1998). Proximity of helices VIII (Ala273) and IX (Met299) in the lactose permease of Escherichia coli. Biochemistry 37, 4910–5.PubMedCrossRefGoogle Scholar
  104. Weber, T., Zemelman, B. V., McNew, J. A., Westermann, B., Gmachl, M., Parlati, F., Sollner, T. H. and Rothman, J. E. (1998). SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–72.PubMedCrossRefGoogle Scholar
  105. Weimbs, T., Low, S. H., Chapin, S. J., Mostov, K. E., Bucher, P. and Hofmann, K. (1997). A conserved domain is present in different families of vesicular fusion proteins: a new superfamily. Proceedings of the National Academy of Sciences of the United States of America 94, 3046–51.PubMedCentralPubMedCrossRefGoogle Scholar
  106. Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J. and Wiley, D. C. (1997). Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426–30.PubMedCrossRefGoogle Scholar
  107. Wu, J., Voss, J., Hubbell, W. L. and Kaback, H. R. (1996). Site-directed spin labeling and chemical crosslinking demonstrate that helix V is close to helices VII and VIII in the lactose permease of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 93, 10123–7.PubMedCentralPubMedCrossRefGoogle Scholar
  108. Yeh, J. I., Biemann, H. P., Prive, G. G., Pandit, J., Koshland, D. E., Jr. and Kim, S. H. (1996). High-resolution structures of the ligand binding domain of the wild-type bacterial aspartate receptor. Journal of Molecular Biology 262, 186–201.PubMedCrossRefGoogle Scholar
  109. Zhao, M., Zen, K. C., Hubbell, W. L. and Kaback, H. R. (1999). Proximity between G1u126 and Arg144 in the lactose permease of Escherichia coli. Biochemistry 38, 7407–12.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic / Plenum Publishers, New York 2002

Authors and Affiliations

  • Hassane S. Mchaourab
    • 1
  • Eduardo Perozo
    • 2
  1. 1.Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleUSA
  2. 2.Department of Molecular Physiology and Biological PhysicsUniversity of Virginia Health Sciences CenterCharlottesvilleUSA

Personalised recommendations