Advertisement

Structural Information from CW-EPR Spectra of Dipolar Coupled Nitroxide Spin Labels

  • Eric J. Hustedt
  • Albert H. Beth
Chapter
Part of the Biological Magnetic Resonance book series (BIMR, volume 19)

Abstract

Site directed spin labeling has emerged as a powerful technique for determining structural features of proteins. By incorporating two spin labeled side chains, distances between elements of secondary structure can be determined by quantitation of spin-spin interactions between the probes. Recent advances in methods for extracting both the distance between spin labeled probes and their relative orientations are providing the capability for testing and refining accurate structural models for a wide variety of proteins. These methods take advantage of multifrequency EPR and global non-linear data analysis tools. The capabilities of current analytical methods are described for three relevant models of spin-spin interactions and directions for further refinement of these methods for future applications are described. Reliable structural information can be obtained for interelectron distances ranging from 5 to 20 Å and up to 25 Å using perdeuterated probes.

Keywords

Electron Paramagnetic Resonance Spin Label Dipolar Coupling Rotational Correlation Time Interspin Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenbach, C., T. Marti, H. G. Khorana, and W. L. Hubbell, 1990, Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science 248: 1088.PubMedCrossRefGoogle Scholar
  2. Anderson, D. J., P. Hanson, J. McNulty, G. Millhauser, V. Monaco, F. Formaggio, M. Crisma, and C. Toniolo, 1999, Solution structures of TOAC-labeled trichogin GA IV peptides from allowed (g approximate to 2) and half-field electron spin resonance. J. Am. Chem. Soc. 121: 6919.CrossRefGoogle Scholar
  3. Barnes, J. P., Z. Liang, H. S. Mchaourab, J. H. Freed, and W. L. Hubbell, 1999, A multifrequency electron spin resonance study of T4 lysozyme dynamics. Biophys. J. 76: 3298.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Beechem, J. M., 1992, Global analysis of biochemical and biophysical data. Methods Enzymol. 210: 37.PubMedCrossRefGoogle Scholar
  5. Beechem, J. M., E. Grafton, M. Ameloot, J. R. Knutson, and L. Brand, 1991, The global analysis of fluorescence intensity and anisotropy decay data: second generation theory and programs. in Topics in Fluorescence Spectroscopy ( Lakowicz, J. R., Ed.), Plenum Press, New York.Google Scholar
  6. Berengian, A. R., M. P. Bova, and H. S. Mchaourab, 1997, Structure and function of the conserved domain in aA-crystallin. Site-directed spin labeling identifies a ft-strand located near a subunit interface. Biochemistry 36: 9951.PubMedCrossRefGoogle Scholar
  7. Berliner, L. J., J. Grunwald, H. O. Hankovsky, and K. Hideg, 1982, A novel reversible thiol- spcific spin label: papain active site labeling and inhibition. Anal. Biochem. 119: 450.PubMedCrossRefGoogle Scholar
  8. Beth, A. H., B. H. Robinson, C. E. Cobb, L. R. Dalton, W. E. Trommer, J. J. Birktoft, and J. H. Park, 1984, Interactions and spatial arrangement of spin-labeled NAD+ bound to glyceraldehyde-3-phosphate dehydrogenase. J. Biol. Chem. 259: 9717.PubMedGoogle Scholar
  9. Calvo, R., W. Hofbauer, F. Lendzian, W. Lubitz, M. L. Paddock, E. C. Abresch, R. A. Isaacson, M. Y. Ohmura, and G. Feher, 1999, EPR study of the molecular and electronic structure of the QA− QB− state of the photosynthetic reactions center in Rb. Spaeroides R26 at 35 and 94 GHz. Talk at the 22nd International EPR Symposium.Google Scholar
  10. Eaton, G. R., and S. S. Eaton, 1989, Resolved electron-electron spin-spin splittings in EPR spectra. in Biological Magnetic Resonance (Berliner, L. J., & Reuben, J., Eds. ), Plenum Press.Google Scholar
  11. Fajer, P., R. Bennet, C. Polnazek, E. Fajer, and D. Thomas, 1990, General method for multiparameter fitting of high-resolution EPR spectra using a simplex algorithm. J. Magn. Reson. 88: 111.Google Scholar
  12. Feix, J. B., and C. S. Klug, 1999, Site-Directed spin labeling of membrane proteins and peptide-membrane interactions. in Spin Labeling: The New Millenium (Berliner, L. J., Ed. ) pp 251.Google Scholar
  13. Fiori, W. R., K. M. Lundberg, and G. L. Millhauser, 1994, A Single Carboxy-Terminal Arginine Determines the Amino- Terminal Helix Conformation of an Alanine-Based Peptide. Nat. Struct. Biol. 1: 374.PubMedCrossRefGoogle Scholar
  14. Fiori, W. R., G. V. Martinez, and G. L. Millhauser, 1993a, Length Dependence in Alanine-Based Peptides - the 3(10) Helix to Alpha-Helix Transition. Biophys. J. 64: A378.Google Scholar
  15. Fiori, W. R., S. M. Miick, and G. L. Millhauser, 1993b, Increasing Sequence Length Favors Alpha-Helix Over 3(10)-Helix in Alanine-Based Peptides - Evidence For a Length-Dependent Structural Transition. Biochemistry 32: 1 1957.CrossRefGoogle Scholar
  16. Fiori, W. R., and G. L. Millhauser, 1995, Exploring the Peptide 3(10)-Helix-ReversibleArrow-Alpha-Helix Equilibrium With Double-Label Electron-Spin-Resonance. Biopolymers 37: 243.PubMedCrossRefGoogle Scholar
  17. Hanson, P., D. J. Anderson, G. Martinez, G. Millhauser, F. Formaggio, M. Crisma, C. Toniolo, and C. Vita, 1998, Electron spin resonance and structural analysis of water soluble, alanine-rich peptides incorporating TOAC. Mol. Phys. 95: 957.Google Scholar
  18. Hanson, P., G. Martinez, G. Millhauser, F. Formaggio, M. Crisma, C. Toniolo, and C. Vita, 1996a, Distinguishing helix conformations in alanine-rich peptides using the unnatural amino acid TOAC and electron spin resonance. J. Am. Chem. Soc. 118: 271.CrossRefGoogle Scholar
  19. Hanson, P., G. Millhauser, F. Formaggio, M. Crisma, and C. Toniolo, 1996b, ESR characterization of hexameric, helical peptides using double TOAC spin labeling. J. Am. Chem. Soc. 118: 7618.CrossRefGoogle Scholar
  20. Hideg, K., and O. H. Hankovszky, 1989, Chemistry of spin-labeled amino acids and peptides. Some new mono-and bifunctionalized nitroxide free radicals. in Biological Magnetic Resonance (Berliner, L. J., & Reuben, J., Eds.) pp 427, Plenum Press, New York.Google Scholar
  21. Hubbell, W. L., and C. Altenbach, 1994a, Investigation of structure and dynamics in membrane proteins using site-directed spin labeling. Curr. Opin. Struct. Biol. 4: 566.CrossRefGoogle Scholar
  22. Hubbell, W. L., and C. Altenbach, 1994b, Site-directed spin-labeling of membrane proteins. in Membrane Protein Structure ( White, S. H., Ed.) pp 224, Oxford, New York.CrossRefGoogle Scholar
  23. Hubbell, W. L., A. Gross, R. Langen, and M. A. Lietzow, 1998, Recent advances in sitedirected spin labeling of proteins. Curr. Opin. Struct. Biol. 8: 649.PubMedCrossRefGoogle Scholar
  24. Hubbell, W. L., H. S. Mchaourab, C. Altenbach, and M. A. Lietzow, 1996, Watching proteins move using site-directed spin labeling. Structure 4: 779.PubMedCrossRefGoogle Scholar
  25. Hustedt, E. J., and A. H. Beth, 1995, Analysis of saturation transfer electron paramagnetic resonance spectra of a spin-labeled integral membrane protein, band 3, in terms of the uniaxial rotational diffusion model. Biophys. J. 69: 1409.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Hustedt, E. J., and A. H. Beth, 1996, Determination of the orientation of a band 3 affinity spin-label relative to the membrane normal axis of the human erythrocyte. Biochemistry 35: 6944.PubMedCrossRefGoogle Scholar
  27. Hustedt, E. J., and A. H. Beth, 1999, Nitroxide spin-spin interactions: Applications to protein structure and dynamics. Annu. Rev. Biophys. Biomol. Struct. 28: 129.PubMedCrossRefGoogle Scholar
  28. Hustedt, E. J., C. E. Cobb, A. H. Beth, and J. M. Beechem, 1993, Measurement of rotational dynamics by the simultaneous nonlinear analysis of optical and EPR data. Biophys. J. 64: 614.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Hustedt, E. J., J. J. Kirchner, A. Spaltenstein, P. B. Hopkins, and B. H. Robinson, 1995, Monitoring DNA dynamics using spin-labels with different independent mobilities. Biochemistry 34: 4369.PubMedCrossRefGoogle Scholar
  30. Hustedt, E. J., A. I. Smimov, C. F. Laub, and A. H. Beth, 1997, Molecular distances from dipolar coupled spin-labels: the global analysis of multifrequency continuous wave electron paramagnetic resonance data. Biophys. J. 74: 1861.CrossRefGoogle Scholar
  31. Lajzerowicz-Bonneteau, J., 1976, Molecular structure of nitroxides. in Spin Labeling: Theory and Applications ( Berliner, L. J., Ed.) pp 239, Academic Press, New York.CrossRefGoogle Scholar
  32. Martinez, G. V., and G. L. Millhauser, 1993, Alpha-Helices and 3(10)-Helices in Aqueous-Solution May Readily Be Distinguished Using FTIR Spectroscopy. Biophys. J. 64: A378.Google Scholar
  33. McCalley, R. C., E. J. Shimshick, and H. M. McConnell, 1972, The effect of slow rotational motion on paramagnetic resonance spectra. Chem. Phys. Lett. 13: 115.CrossRefGoogle Scholar
  34. Mchaourab, H. S., A. R. Berengian, and H. A. Koteiche, 1997a, Site-directed spin-labeling study of the structure and subunit interaction along a conserved sequence in the acrystallin domain of heat shock protein 27. Evidence of a conserved subunit interface. Biochemistry 36: 14627.PubMedCrossRefGoogle Scholar
  35. Mchaourab, H. S., T. K#x00F3;lai, K. Hideg, and W. L. Hubbell, 1999, Motion of spin-labeled side chains in T4 lysozyme: Effects of side chain structure. Biochemistry 38: 2947.PubMedCrossRefGoogle Scholar
  36. Mchaourab, H. S., M. A. Lietzow, K. Hideg, and W. L. Hubbell, 1996, Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry 35: 7692.PubMedCrossRefGoogle Scholar
  37. Mchaourab, H. S., K. J. Oh, C. J. Fang, and W. L. Hubbell, 1997b, Conformation of T4 lysozyme in solution. Hinge-bending motion and the substrate -induced conformational transition studied by site-directed spin labeling. Biochemistry 36: 307.PubMedCrossRefGoogle Scholar
  38. Millhauser, G. L., 1992, Selective placement of electron resonance spin labels: new structural probes for peptrides and proteins. Trends Biochem. Sci. 17: 448.PubMedCrossRefGoogle Scholar
  39. Millhauser, G. L., W. R. Fiori, and S. M. Miick, 1995, Electron spin labels. Methods Enzymol. 246: 589.PubMedCrossRefGoogle Scholar
  40. Monaco, V., F. Formaggio, M. Crisma, C. Toniolo, P. Hanson, G. Millhauser, C. George, J. R. Deschamps, and J. L. Flippen-Anderson, 1999a, Determining the occurrence of a 3(10)-helix and an alpha-helix in two different segments of a lipopeptaibol antibiotic using TOAC, a nitroxide spin-labeled C-alpha-tetrasubstituted alpha-amino acid. Bioorg. Med. Chem. 7: 119.PubMedCrossRefGoogle Scholar
  41. Monaco, V., F. Formaggio, M. Crisma, C. Toniolo, P. Hanson, and G. L. Millhauser, 1999b, Orientation and immersion depth of a helical lipopeptaibol in membranes using TOAC as an ESR probe. Biopolymers 50: 239.PubMedCrossRefGoogle Scholar
  42. Mustafi, D., H. Joela, and M. W. Makinen, 1991, The effective position of the electronic point dipole of the nitroxyl group of spin labels determined by ENDOR spectroscopy. J. Magn. Reson. 91: 497.Google Scholar
  43. Mustafi, D., A. Sosa-Peinado, V. Gupta, D. Gordon, and M. W. Makinen, 2000, Endor structure of spin-labeled methylmethanethiol-sulfonate in solution and bound to TEM-1ß-lactamase. Biophys. J. 78: 382A.Google Scholar
  44. Park, J. H., and W. Trommer, 1989, Advantages of 15N and deuterium spin probes for biomedical electron paramagnetic resonance investigations. in Biological Magnetic Resonance (Berliner, L. J., & Reuben, J., Eds.) pp 547, Plenum Press, New York.Google Scholar
  45. Perozo, E., D. M. Cortes, and L. G. Cuello, 1998, Three-dimensional architecture of a K+ channel: implications for the mechanism of ion channel gating. Nat. Struct. Biol. 5: 459.PubMedCrossRefGoogle Scholar
  46. Perozo, E., D. M. Cortes, and L. G. Cuello, 1999, Structural rearrangements underlying K+-channel activation gating. Science 285: 73.PubMedCrossRefGoogle Scholar
  47. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1992) Numerical Recipes in FORTRAN: the art of scientific computing., 2 ed., Cambridge University Press, New YorkGoogle Scholar
  48. Qu, K., J. L. Vaughn, A. Sienkiewicz, C. P. Scholes, and J. S. Fetrow, 1997, Kinetics and motional dynamics of spin-labeled yeast iso-l-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for folding/unfolding of the C-terminal helix spin-labeled at cysteine 102. Biochemistry 36: 2884.PubMedCrossRefGoogle Scholar
  49. Rabenstein, M. D., and Y.-K. Shin, 1995, Determination of the distance between two spin labels attached to a macromolecule. Proc. Natl. Acad. Sci. USA 92: 8239.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Robinson, B. H., L. J. Slutsky, and F. P. Auteri, 1992, Direct simulation of continuous wave electron paramagnetic resonance spectra from Brownian dynamics trajectories. J. Chem. Phys. 97: 2609.CrossRefGoogle Scholar
  51. Sale, K. L., K. A. Sharp, and P. G. Fajer, 1999, Predictions of spin label orientation in the crystal structure of proteins. Biophys. J. 76: A34.Google Scholar
  52. Schneider, D. J., and J. H. Freed, 1989, Calculating slow motional magnetic resonance spectra: a user’s guide. in Biological Magnetic Resonance (Berliner, L. J., & Reuben, J., Eds.) pp 1, Plenum Press, New York.Google Scholar
  53. Shin, Y.-K., C. Levinthal, F. Levinthal, and W. L. Hubbell, 1993, Colicin El binding to membranes: time-resolved studies of spin-labeled mutants. Science 259: 960.PubMedCrossRefGoogle Scholar
  54. Sienkiewicz, A., A. M. d. C. Ferreira, B. Danner, and C. P. Scholes, 1999, Dielectric resonator-based flow and stopped-flow EPR with rapid field scanning: a methodology for increasing kinetic information. J. Magn. Reson. 136: 137.PubMedCrossRefGoogle Scholar
  55. Steinhoff, H.-J., and W. L. Hubbell, 1996, Calculation of electron paramagnetic resonance spectra from Brownian dynamics trajectories: application to nitroxide side chains in proteins. Biophys. J. 71: 2201.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Steinhoff, H.-J., N. Radzwill, W. Thevis, V. Lenz, D. Brandenburg, A. Antson, G. Dodson, and A. Wollmer, 1997, Determination of interspin distances between spin labels attached to insulin: comparison of the electron paramagnetic resonance data with the X-ray structure. Biophys. J. 73: 3287.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Tjandra, N., and A. Bax, 1997, Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278: 1111.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic / Plenum Publishers, New York 2002

Authors and Affiliations

  • Eric J. Hustedt
    • 1
  • Albert H. Beth
    • 1
  1. 1.Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleUSA

Personalised recommendations